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ABSTRACT
There is evidence that most chains of mean motion resonances of type k:k − 1 among
exoplanets become unstable once the dissipative action from the gas is removed from the
system, particularly for large N (the number of planets) and k (indicating how compact the chain
is). We present a novel dynamical mechanism that can explain the origin of these instabilities
and thus the dearth of resonant systems in the exoplanet sample. It relies on the emergence
of secondary resonances between a fraction of the synodic frequency 2π (1/P1 − 1/P2) and
the libration frequencies in the mean motion resonance. These secondary resonances excite
the amplitudes of libration of the mean motion resonances, thus leading to an instability. We
detail the emergence of these secondary resonances by carrying out an explicit perturbative
scheme to second order in the planetary masses and isolating the harmonic terms that are
associated with them. Focusing on the case of three planets in the 3:2–3:2 mean motion
resonance as an example, a simple but general analytical model of one of these resonances is
obtained, which describes the initial phase of the activation of one such secondary resonance.
The dynamics of the excited system is also briefly described. Finally, a generalization of
this dynamical mechanism is obtained for arbitrary N and k. This leads to an explanation of
previous numerical experiments on the stability of resonant chains, showing why the critical
planetary mass allowed for stability decreases with increasing N and k.

Key words: methods: analytical – methods: numerical – celestial mechanics – planets and
satellites: dynamical evolution and stability.

1 IN T RO D U C T I O N

The formation of planetary systems is one of the key questions of
planetary science; however, it remains to this date observationally
poorly constrained. One can none the less contemplate fully formed
planetary systems, of which we have examples galore thanks to
exoplanet-hunting missions such as HARPS and NASA’s Kepler
surveys, and consider what physical and dynamical mechanisms
can produce them. Despite our limited knowledge on the real
nature of exoplanetary systems, there are some clear trends in
the exoplanet sample, which thus impose constraints on formation
scenarios.

A very common type of exoplanet, which was unknown in our
Solar system, is what we now call Super-Earths or Mini-Neptunes.
These are planets having a mass of about 1–20M⊕ (Earth’s masses)
and are found on relatively short orbital periods, of less than about
200 d. They are estimated to orbit a third to a half of all Sun-like stars
(Mayor et al. 2011; Howard et al. 2012; Fressin et al. 2013; Petigura,
Howard & Marcy 2013), and multiplanetary systems are not rare
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(of the order of a few hundred). Given that several of them host
H/He gaseous atmospheres that cannot be explained by production
of volatiles after the formation of the planet (e.g. Rogers 2015; Zeng
et al. 2019), these planets are believed to form within the lifetime of
their protoplanetary disc, and therefore interact dynamically with it.
This type of interaction is called type-I migration: on the one hand,
the eccentricities of the orbits are damped by the disc, and, on the
other hand (and on longer time-scales), the orbit’s size changes over
time, usually shrinking, so that the planet is seen to migrate inward
towards the star. At the inner edge of the disc, carved by the magnetic
activity of the host star itself, another torque is activated which halts
inward migration (a so-called planetary trap; e.g. Masset et al. 2006).
In systems with multiple planets, when the inner planet has reached
the inner edge of the disc, the second planet is still migrating inward,
so the two planets are approaching each other. A preferred outcome
of this convergent migration is the formation of compact chains of
mean motion resonances, where the period ratio of neighbouring
planets is close to a ratio of simple integers (Terquem & Papaloizou
2007; Cresswell & Nelson 2008; Morbidelli et al. 2008; Ogihara,
Morbidelli & Guillot 2015; Izidoro et al. 2017, 2019; Pichierri,
Morbidelli & Crida 2018).
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Instability in resonant chains 4951

Since these are transiting planets, their orbital period is known
with extremely good precision; the period ratio distribution is
therefore one of the best constrained distribution for exoplanets.
Within the observed Super-Earth population, we do observe rela-
tively long, coplanar resonant chains of planets, such as Trappist-1
(Gillon et al. 2016, 2017; Luger et al. 2017) and Kepler-223 (Mills
et al. 2016). However, an initially puzzling realization is that the
overall distribution of the period ratios is marked by systems that
show little preference for near-integer period ratios, hosting planets
with much wider orbital separations than those characterizing
resonant chains (e.g. Winn & Fabrycky 2015). This appears at
first in striking contradiction with the type-I migration scenario
for Super-Earths and Mini-Neptunes, which naturally produces
resonant chains. This paradox is however only apparent, as pointed
out by Izidoro et al. (2017). Their analysis showed that many orbital
properties of observed Kepler systems (including orbital spacing
and multiplicity distribution) are very well reproduced if a large
fraction of resonant systems eventually become unstable in the Gy
evolution following the dissipation of the disc, with instability rates
of ∼ 95 per cent. The remaining stable systems naturally represent
the observed resonant systems, such as Trappist-1, Kepler-223, etc.
In Izidoro et al.’s (2017) original paper, only a limited fraction of
resonant systems constructed via type-I migration went unstable
within reasonable systems’ lifetimes after the removal of the disc.
However, in Izidoro et al. (2019), these high rates of post-disc phase
instabilities needed to explain the Kepler data are actually recovered,
especially in the simulations where the formed systems are more
massive and more compact. They therefore conclude that the final
number of planets in the chain, the compactness of the system, and
the planets’ masses are crucial parameters that differentiate between
systems that remain stable after disc removal (for total integration
times of 50–300 My) and system that suffer dynamical instabilities
(collisions or ejections).

The results of Izidoro et al. (2017, 2019) motivate a careful
dynamical analysis on the threshold of stability in mean motion
resonant chains, and, in this paper, we focus on the dynamical
mechanisms leading to the instability even in the absence of external
perturbations.1 On this subject, an important numerical study was
performed by Matsumoto, Nagasawa & Ida (2012), where the
authors studied numerically the stability of resonant multiplanetary
systems for high-integer first-order mean motion resonances. They
built the desired resonant configuration by simulating the convergent
type-I migration phase in a protoplanetary disc of gas; then they
slowly depleted the disc. They observed that there is a critical
number of planets Ncrit above which the resonant systems go
naturally unstable, with a crossing time comparable to that of
non-resonant systems, and studied how this number changes with
the planetary masses (mpl/M∗, where M∗ is the stellar mass) and
compactness of the chain (index k of the k:k − 1 resonance).
More specifically, they demonstrated numerically that the critical
number Ncrit, which guarantees stability, decreases with increasing
compactness of the chain (increasing k) and increasing planetary
mass mpl. The dynamical reason of the instability, however, was not
discussed, nor the exact scaling law that links Ncrit, mpl, and k.

The main goal of this paper is to investigate both analytically
and numerically the dynamical mechanisms at the origin of the

1External perturbations have also been invoked to increase the fraction
of unstable systems, such as the turbulence in the disc (which prevents
capture in deep resonance; Batygin & Adams 2017) or the scattering of
leftover planetesimals from the planetary region (Chatterjee, Krantzler &
Ford 2016).

onset of instability in resonant chains, in order to explain the result
of Matsumoto et al. (2012) and the large instability fraction of
resonant chains observed in Izidoro et al.’s (2017, 2019) simulations.
More precisely, we focus on the stability of resonant configurations
with small amplitude of libration around a resonant equilibrium
point. These configurations are the resonant states less susceptible to
instabilities (Pichierri et al. 2018), and therefore represent a natural
testing ground to assess the limits of stability of resonant chains.
Because we intend to work analytically, and since the planetary
Hamiltonian is not a continuous function of the number of planets N,
it is convenient to rephrase the findings of Matsumoto et al. (2012)
with the following equivalent statement: Given the number N of
planets and the compactness of the system (the resonant index k),
there is a limit mass (mpl/M∗)crit for stability, which decreases with
increasing N and k. Thus, in this paper, we address the question of
why resonant chains at an initial state of low amplitude of libration
become unstable if the planets are too massive, for different values
of N and k. This work is the continuation of our previous paper
(Pichierri et al. 2018), in which we considered the stability of two
deeply resonant planets as a function of the planetary mass.

In order to fix ideas, as in the case of two resonant planets, we
consider systems of planets of the same mass, mi ≡ mpl, ∀i = 1, . . . ,
N. This is a useful simplification that allows one to grasp the main
points having to work with only one parameter. We note also that
individual Kepler systems seem to show a homogeneity in planetary
masses (Millholland, Wang & Laughlin 2017; Weiss et al. 2018),
so this simplification does not constitute a major inconvenience.
We will also consider coplanar orbits for simplicity. Indeed, if the
chains that we intend to study are the result of capture in mean
motion resonances during the disc phase, any significant mutual
inclinations would have been damped out by the disc. Moreover,
the few confirmed truly resonant systems (such as Trappist-1 or
Kepler-223) show very small mutual inclinations. This suggests that
resonant chains form in a relatively planar orbital configuration.

The remainder of this paper is organized as follows. In Section 2,
we detail the setup for our numerical investigations, similar to the
one used in Pichierri et al. (2018). In the (N + 1)-body simulations
with N = 3 resonant planets, a new dynamical phenomenon is
observed, which was not present in the case N = 2, that triggers
the instability of the resonant chains. In Section 3, we give a
phenomenological description of this dynamical feature, and how
it can explain the dependence of the limit mass for stability with
the number N of the planets and the index k of the resonance,
thus elucidating the numerical findings of Matsumoto et al. (2012)
and Izidoro et al. (2019). In Section 4, we give a detailed analytical
description of this dynamical phenomenon in the exemplifying case
N = 3, k = 3, and in Section 5, we generalize the analytical scheme
to arbitrary N and k. Our conclusions are presented in Section 6.
Finally, in Appendix A (available as online supplementary material),
we summarize the main aspects of the numerical setup, which allows
to capture planets into mean motion resonance at different desired
eccentricities.

2 NUMERI CAL MAPS OF STABI LI TY O F
RESONANT PLANETS

In this section, we describe the setup of our numerical investigation
of resonant chains. Motivated by the results of Matsumoto et al.
(2012), we investigate the stability of planets in chains of first-order
mean motion resonances in terms of the critical planetary mass mcrit

allowed for stability. Specifically, we want to understand why mcrit

decreases with the number of the planets N and the index of the
resonance k along the chain.
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4952 G. Pichierri and A. Morbidelli

The setup of our numerical experiments is the same as in our
previous paper (Pichierri et al. (018) on two resonant planets, and
we review it here briefly for ease of reading but refer to the first paper
for the details. The underlying idea is similar to that of Matsumoto
et al. (2012; also see e.g. Deck & Batygin 2015; Ramos et al.
2017; Xu, Lai & Morbidelli 2018): Planets are captured into mean
motion resonance by running (N + 1)-body simulations with added
dissipative forces that mimic disc-planet interactions of the type-I
migration regime (relevant for Super-Earths and Mini-Neptunes).
However, unlike Matsumoto et al. (2012), we do not attempt
resonant capture experiments with different masses. The reason
is that for relatively large planetary masses, close to the instability
limit, the capture itself can become quite chaotic, which may lead to
large amplitudes of libration. Then, it becomes difficult to compare
the long-term stability of these systems with a large amplitude
of libration with those with smaller masses that settle near the
resonant equilibrium point. Instead, for a theoretical understanding
of stability of a resonant chain as a function of planetary mass
only, it is preferable to capture all the planets in resonance at low
libration amplitudes at small masses and then, after gas removal,
slowly increase the planetary masses until an instability is achieved.
We stress that this growth in mass should not be interpreted as a
physical process. It is just a numerical artifice to explore resonant
dynamics as a function of the planetary mass and achieve an analytic
understanding of the instability process.

Our numerical experiments to probe the stability of resonant
planets thus consist of two phases. First, the desired number of
planets is captured deeply in the desired resonant chain at low
planetary mass, and we consider planets of the same mass for
simplicity. We implement a planetary trap at the inner edge in
order to ensure convergent migration, which is needed for the
planets to capture (e.g. Masset et al. 2006). Then the disc is slowly
dissipated away, leaving the system in a state of small libration
around a resonant equilibrium point (Pichierri et al. 2018, see also
Appendix A) and only the pure conservative dynamics remains.
In the second phase, the value of mpl is slowly increased at each
time-step, maintaining the small amplitude of oscillation around
the resonance, until an instability is reached (usually, the instability
results in planetary collisions); again, this mass increase is purely
fictitious and serves the only purpose to study for each value of
mpl the stability of resonant configurations with the same level of
excitation of the resonant degrees of freedom.

Built around the same numerical setup, we review below a few
important aspects discussed in Pichierri et al. (2018) on the case of
two resonant planets, as they will turn out to be relevant for the case
of three and more planets as well. We then discuss the application of
the numerical simulations on the stability of three resonant planets
in Section 2.2.

2.1 Review on the case of two resonant planets

There are some points that should be revisited from our previous
paper (Pichierri et al. 2018) on the stability of mean motion
resonances in two-planets systems. We summarize them below, and
refer to Pichierri et al. (2018) for a full discussion.

The first point is that, when two planets are in a first-order mean
motion resonance k:k − 1, there are two frequencies associated
with the libration of the system around the resonant equilibrium
point, which we call resonant frequencies and indicate with ωres,i,
i = 1, 2. These frequencies dictate the evolution of the system over
long time-scales, and are essentially associated with the evolution
of the two resonant angles ψ i = kλ2 − (k − 1)λ1 − � i, i =
1, 2, which indeed have slow variation under the assumption that

the system is in the k:k − 1 mean motion resonance. Instead, on
shorter time-scales, the evolution is dominated by the non-resonant
combination δλ1,2 = λ1 − λ2 of the mean longitudes λi, which is
a fast-evolving angle; this angle is called the synodic angle, and
its frequency is called the synodic frequency ωsyn. Since λ̇i = ni ,
n1/n2 � k/(k − 1) by the resonance condition, and ni is linked to the
semi-major axis by Kepler’s third law ni =

√
GM∗/a3, we have

that the synodic frequency ωsyn = δ̇λ1,2 = n1/k =
√

GM∗/a3/k.
Thus, the synodic frequency is independent of the planetary mass
and depends only on the nominal separation of the planets to the
star. Instead, the resonant frequencies grow with the planetary
mass mpl: for example, in a simple pendulum approximation of
the mean motion resonant dynamics, the resonant frequencies are
expected to grow as

√
mpl (see Section 4.3). Thus, for small enough

planetary masses, the synodic frequency is much higher than the
resonant frequencies, so that the two contributions happen on totally
different time-scales and are perfectly decoupled: then, the fast
synodic degree of freedom can be averaged out and only the purely
resonant evolution (the combination of both resonant frequencies)
matters over a long time. However, at large enough planetary
masses, the resonant frequencies might become comparable with the
synodic frequency. When the ratio between the synodic frequency
and resonant frequencies is close to an integer ratio, a secondary
resonance is encountered: this means that the purely resonant
degrees of freedom can now exchange energy with the synodic
degree of freedom. Therefore, these secondary resonances between
the synodic and resonant frequencies could, in principle, destabilize
a resonant pair of planets. In Pichierri et al. (2018), we found that,
in the case of two planets in first-order mean motion resonance,
these secondary resonances are active at such high planetary masses
that the system actually becomes unstable at smaller values of mpl

because of close encounters between the planets. Therefore, we
concluded that these secondary resonances are not responsible for
instability in a system of two resonant planets.

The second point thus concerns the instability caused by close
encounters in the case of resonant planets. This type of planetary
instability is a well-understood phenomenon, so that we can dis-
criminate the orbital configurations that are stable with respect to
close encounters (also called Hill-stable) and those that are not (e.g.
Marchal & Bozis 1982; Gladman 1993; Petit, Laskar & Boué 2018).
Following, for example, the approximation for initially circular
and coplanar planets made in Gladman (1993), one has that (for
a general, non-resonant system) if the orbital distance d = a2 − a1

satisfies

d ≥ dcrit = 2
√

3rH,1,2 � 3.46rH,1,2, (1)

then the system is Hill-stable (see also Obertas, Van Laerhoven &
Tamayo 2017).2 Here rH,1,2 is the mutual Hill radius of the two
planets, defined as

rH,1,2 = a1 + a2

2

(
m1 + m2

3M∗

)1/3

. (2)

We found in Pichierri et al. (2018) that resonant planets are more
stable with respect to close encounters than non-resonant ones, in the

2One should note that the resonant condition is a condition on the angles,
which prevents the closest approach along the two planets’ orbits to happen.
This means that resonant systems are expected to be more protected than
non-resonant ones with respect to close encounters. However, in Pichierri
et al. (2018), we used the actual minimal approach distance d rather than
the orbital distance dorb in (1) to measure the limits of stability against close
encounters, and to compare the result with the general case of non-resonant
systems.
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Instability in resonant chains 4953

Figure 1. Numerical investigation of the stability of three planets deep in the 3:2 – 3:2 mean motion resonance chain, as a function of the planetary mass mpl,
equal for all planets. In panel (a), four numerical simulations (the coloured markers) are performed starting from low-mass planets (mpl = 10−5M∗) and slowly
increasing the planetary mass until an instability occurs (a collision in all cases). The dotted curve indicates the limit of stability for a system of two planets
deep in the 3:2 mean motion resonance (Pichierri et al. 2018): this shows that three resonant planets go unstable at lower masses than two resonant planets, in
accord with Matsumoto et al. (2012). As explained in the main text, the anticipated instability is unlikely caused by close encounters, which were causing the
instability in the two-planet case. Indeed, in the case of three resonant planets, a new dynamical phenomenon appears, which is not observed in simulations of
two planets: The system experiences an excitation in amplitude of oscillation before going unstable. This excitation, starting at mpl/M∗ � 1.28 × 10−3 (vertical
dashed line), is more clearly visible in panel (b), where the result of one such numerical simulation is shown in light green circles. In panel (b), this simulation
is also compared with the integration of two simplified models (dark green diamonds and orange triangles), with the same initial conditions as the numerical
simulation of the complete equations of motion. In both simplified models, only terms up to first order in the eccentricities are considered (cf. Section 4.2).
The orange triangles represent the evolution of the averaged equations of motion where all non-resonant terms have been dropped: The evolution is initially
qualitatively similar to the complete simulation; however, no excitation is observed (cf. Section 4.3). The dark green diamonds represent the evolution of a
model with both resonant and synodic interaction terms for each planet pair: Although only terms up to order one in the eccentricities have been considered,
we see that the excitation at mpl/M∗ � 1.28 × 10−3 is well reproduced in this simplified system (cf. Section 4.4).

sense that, to suffer mutual scattering, the planets need to approach
to each other significantly closer than dcrit; however, we did find that
close encounters destabilize the systems at lower planetary masses
than the aforementioned secondary resonances would. Moreover,
we found that the larger the amplitude of oscillation associated
with the resonant motion around the resonant equilibrium point, the
closer to dcrit is the minimal physical distance for instability (the
same remains true with respect to the more general criterion found
e.g. in Marchal & Bozis 1982; Petit et al. 2018).

It will be important to keep these two points in mind even in the
case of three and more resonant planets, as they will be relevant for
understanding their stability. We investigate the case N ≥ 3 below.

2.2 Numerical stability maps for three resonant planets

The first step is to perform numerical experiments as explained at
the beginning of Section 2. We refer to Pichierri et al. (2018) for a
more in-depth discussion on the setup for capture into mean motion
resonance (including an analytical understanding of this process,
which is consistent with the Hamiltonian formalism and adiabatic
theory), the subsequent phase of fictitious mass growth and how it
can be understood analytically. There is only one small difference to
be pointed out in the capture phase of our simulations. In Pichierri
et al. (2018), we could obtain any desired value of e2 (equivalently,
e1) by changing the value of the eccentricity damping time-scale τ e.
By setting a large value for τ e, large planetary eccentricities could
be obtained (cf. equation A8). Here, because the planets capture in
resonance in sequence (first planets 1 and 2, then planet 3) if τ e

is large, e1 and e2 can grow significantly before planet 3 enters in
resonance. This can force large secular eccentricity oscillations of
planet 3, which may preclude its resonant capture (see e.g. Batygin

2015 on criteria for resonant capture). We give the details of the
setup for capture in Appendix A and describe a numerical recipe to
overcome this difficulty, which poses no problem at all in the context
of the second phase where we actually investigate the stability of
the chains as a function of planetary mass.

2.2.1 Numerical stability maps for N = 3 and k = 3

We show in Fig. 1(a) the result of four simulations of the second
phase of our numerical experiments for the case N = 3 and the 3:2 –
3:2 resonant chain, starting from different initial eccentricities. On
the horizontal axis we report the (increasing) planetary mass, while
on the vertical axis we show the evolution of the eccentricity. The
simulations are stopped when an instability occurs (a collision in all
cases). This plot is to be compared with the similar figs 9 and 10 in
Pichierri et al. (2018) for the case of N = 2 and the same resonance
index k = 3, and uses the same scale on both axes to allow for
an easier comparison. The approximate location of the observed
instability for two planets in the same resonance is represented in
Fig. 1(a) by a dotted line. Comparing the cases N = 2 and 3, there are
two important observations to make. The first is that the instabilities
occur at lower masses in the case N = 3 than in the case N = 2.
This is in agreement with the results of Matsumoto et al. (2012).
This anticipated instability, in terms of planetary mass, is unlikely
to be due to too-close encounters between pairs of planets as it was
the case N = 2. This is because a resonant chain repeats the same
orbital geometry between adjacent planets of a two-planet resonance
of the same order. Thus, if the critical mass mcrit corresponding to
the instability in the case N = 3 is smaller, the minimal approach
distance between each pair of neighbouring planets is necessarily
larger in terms of mutual Hill radii than that causing an instability
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4954 G. Pichierri and A. Morbidelli

for N = 2. There is no apparent reason for which the threshold
distance for destabilizing two-body encounters should significantly
change with the number N of planets in the system. So, the instability
is likely to have a different cause. Upon close examination of the
(N + 1)-body integrations shown in Fig. 1(a), one notices that an
interesting phenomenon is evident. For mpl/M∗ < 1.28 × 10−3, the
amplitude of oscillation of the eccentricity grows linearly with the
planets’ mass. This is due to the increasing amplitude of the fast-
frequency term associated with the synodic terms (the same effect
was present in the case of two planets); instead, the amplitude of
libration associated with the purely resonant dynamics is conserved
adiabatically. Then, at mpl/M∗ � 1.28 × 10−3 (the dashed vertical
line in the figure), there is a sudden excitation of the amplitude
of eccentricity oscillations. Upon close inspection of the numerical
output with high temporal resolution, we realize that this excitation
is now due to an actual increase of the amplitude of libration inside
the resonance, as will be clear below. After the excitation at mpl/M∗
� 1.28 × 10−3, the systems temporarily remain in resonance,
albeit with an increased libration amplitude of the resonant angles;
soon after, while the planetary mass is still increasing, the systems
finally become unstable as the planets experience close encounters,
eventually leading to collisions. This is observed in all simulations.

We have seen in Pichierri et al. (2018, see also Section 2.1)
that, with increasing amplitude of libration, the planets need to
farther away from each other (in terms of mutual Hill radius) to
be stable. On the other hand, the larger is the libration amplitude
in the resonance, the closer the planets approach each other during
their evolution. Thus, in order to remain stable, the planetary masses
have to be smaller, so that the mutual Hill radius rH,1,2 shrinks and
their minimal physical distance in terms of rH,1,2 remains large. In
other words, we concluded that more excited resonant states become
unstable at smaller planetary masses. So, our interpretation for the
anticipated instability in the N = 3 case is the following: first some
dynamical process excites the libration amplitude; then the planets
become encounter-unstable because the threshold distance for
instability exceeds the actual minimal distance of approach between
planet pairs. Thus, below we will look for the dynamical mechanism
increasing the libration amplitude. It should be noticed that if such
mechanism exists, it would also preclude capture in the resonance at
the small libration amplitude for the corresponding planetary mass,
which is what was observed by Matsumoto et al. (2012).

2.2.2 Numerical and analytical investigation of the phenomenon

In the previous sub-section, we have underlined the importance
of the observed increase in the amplitude of libration around the
equilibrium point in the (N + 1)-body simulations, and its relevance
for triggering the instability of resonant chains. In the following,
we aim at better understanding the dynamical origin of this growth
of libration amplitude.

Our approach is to find a simplified N-planets Hamiltonian model
that captures the main features of the dynamics that are observed
in the complete (N + 1)-body integrations. This is because the
complete model contains a virtually infinite number of harmonics,
making it extremely hard to proceed analytically or to obtain any
insights from the observed evolution. If we are able to observe
the same phenomenon in a simplified problem, it will be easier
to isolate its origin. Thus, in the following, we start from a
Hamiltonian planetary model that has only a minimal number of
terms (harmonics) and we progressively add more terms until we
observe in the integration of the considered Hamiltonian the same
phenomenon that we have seen in the full numerical integration.

The Hamiltonian models are integrated numerically, while slowly
increasing the mass of the planets at each integration time-step in
accordance with the (N + 1)-body simulations in Section 2.2.1. Only
when the numerical integrations show very good agreement with the
full (N + 1)-body integrations will we consider the corresponding
Hamiltonian as a good approximation to the full one and work
directly with the former. Before we get into the technicalities of our
investigation, we plan out our methodology below.

The first reasonable choice for the numerical integrations is to
consider the averaged equations of motion, expanded to some order
in the eccentricity. This corresponds to dropping all non-resonant
harmonics from the planetary Hamiltonian (cf. Section 4.1) and
only keeping resonant harmonics up to some order in e. This results
in a system governed by a Hamiltonian H̄ := Hkepl + Hres; this
approach is presented in Section 4.3. By doing so, one realizes
that these terms cannot alone be responsible for the increase in
amplitude of libration observed in the (N + 1)-body integrations.
This fact is anticipated in Fig. 1(b), where we plot with dark orange
triangles the evolution of the system governed by H̄ over one of
the full (N + 1)-body integrations with the same initial conditions;
we see that at first, the two simulations are qualitatively equivalent
(the slight differences emerge solely from the expansion up to first
order in the eccentricities made in the truncated model H̄), but the
averaged model does not reproduce the excitation observed in the
(N + 1)-body simulation at the location of the dashed vertical line.
Actually, we will show that such excitation in the purely averaged
model is not possible at any value of the planetary mass mpl. This
is the first main result of this section: the purely resonant system
H̄ = Hkepl + Hres with initial conditions at vanishing amplitude
around a resonant equilibrium point is (Lyapunov) stable for all
planetary masses.

The next step is therefore to include additional non-resonant
terms, which were naturally present in the full Hamiltonian that
governs the evolution of the (N + 1)-body integrations. Maintaining
for simplicity the expansion to first order in the eccentricity (which
should be valid at least when all eccentricities are small enough), we
then add synodic terms. In the case of three planets, these include
the harmonics λ1 − λ2 and λ2 − λ3, which we add in an additional
interaction Hamiltonian Hsyn. As we show in Section 4.4, the
introduction of these terms is responsible for the same phenomenon
observed in Fig. 1(a). This fact is anticipated in Fig. 1(b), where
we plot with darker-coloured diamonds the evolution of the system
governed by H∗ := Hkepl + Hres + Hsyn over one of the full (N +
1)-body integrations with the same initial conditions, and we see
that there is good qualitative agreement between the two evolutions.
We also investigate the possibility of adding only one of the two
synodic terms, but show that both are needed to reproduce the
phenomenon at similar planetary masses, which is a result that
we will also explain analytically (cf. Section 4.4.2). In the light
of this, we will use the evolution yielded by the simplified model
H∗ = Hkepl + Hres + Hsyn as a guide to understand the relevant
dynamics contained in the full (N + 1)-body integrations. At
the same time, working with a controlled number of interaction
terms allows us to proceed analytically (see Section 4.4.1) and to
understand what is the dynamical mechanism that gives rise to the
increase in amplitude of libration around the resonant equilibrium
point. Carrying out the calculation explicitly in the specific case of
N = 3 planets and for the 3:2 – 3:2 chain, we show in Section 4.4.2
that this is due to a set of secondary resonances between a fraction
of the synodic frequency (which remains relatively constant with
increasing mpl) and specific combinations of the libration frequen-
cies around the equilibrium point (which increase with mpl, as we
will show). Considering relevant canonical action-angle variables
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centred at the equilibrium, such secondary resonances have the
effect of exciting the action to values farther and farther away from
the origin. This is the second main result of this section: the synodic
contribution introduces terms of order O(m2

pl), which include
secondary resonances between a fraction the synodic frequency,
and the resonant libration frequencies, which are responsible for
the excitation of the system and eventually for its instability. In
Section 4.4.3, we build a model for the secondary resonance that is
encountered in the specific case N = 3 and k = 3, but the method
can be easily generalized to the other secondary resonances that
can, in principl,e be encountered. Finally, we proceed to generalize
this result to more populated and/or more compact resonant chains
in Section 5.

3 THE ORIGIN OF INSTABILITY IN
R E S O NA N T C H A I N S

In the next section, we will begin a careful analysis of the dynamics
for three planets in a chain of mean motion resonances based
on the insights elucidated above, which were lead by numerical
integrations such as those of Fig. 1. In particular, we aim at gaining
a deep understanding of the process, which causes the sudden
excitation in the systems shown in Fig. 1. As anticipated at the end
of the last subsection, this process involves secondary resonances
between some fraction of the synodic frequency ωsyn = d

dt
(λ1 − λ2)

and the resonant frequencies ωres,l associated with the libration of the
system around the resonant equilibrium point. Before we delve into
the dynamical details of these secondary resonances, let us delineate
in a more general and practical sense why they are relevant for the
problem of the stability of resonant chains of N planets.

The idea is that, normally, the synodic evolution (with charac-
teristic frequency ωsyn) and the purely resonant evolution (with
characteristic frequency ωres,l � ωsyn) happen on such different
time-scales that there can be no interaction between them (as we
already recalled in Section 2.1). However, a secondary resonance
between them effectively allows energy to be transferred between
the synodic and resonant degrees of freedom, and can ultimately
cause an excitation of the latter, which, in turn, makes the chain
unstable to close encounters between the planets.

Now, in the case of two planets, the resonant frequencies were
too small compared to ωsyn and grew too slowly with mpl, so that
secondary resonances were active at such high planetary masses
that the system was already unstable to close encounters (cf.
Section 2.1). Note that for the same planetary mass mpl and for
the same k, the libration frequencies for two and three resonant
planets are roughly similar for similar eccentricities. However, the
key point is that in the case N ≥ 3, there is a fraction of the synodic
frequency that appears in the Hamiltonian (in terms at second order
in the planetary masses). In the case of three planets, this fraction
is ωsyn/k where k as usual is the index of the resonance.3 Thus, in
the case of three planets, in order to reach a secondary resonance

3A simple explanation for why this fraction of the synodic frequency
naturally pops up in the equations of motion (that is in the Hamiltonian)
at second order in mpl is the following. The Hamiltonian of three planets
contains both the δλ1,2 = λ1 − λ2 and δλ2,3 = λ2 − λ3 harmonics. If
both planet pairs are in the k:k − 1 mean motion resonance, one can write
δλ2,3 as (k − 1)δλ1,2/k plus some correction harmonic terms that depend
only on the resonant angles (cf. 16) with constant index k along the chain);
this can be easily understood by noting that ˙δλ2,3 should be comparable
to (k − 1) ˙δλ1,2/k in a k:k − 1 chain. Then, the two angles δλ1,2 and (k −
1)δλ1,2/k get combined at second order in mpl, which yields a harmonic
containing δλ1,2/k plus purely resonant harmonics (cf. 39).

involving synodic and resonant degrees of freedom, the resonant
frequencies do not have to be as large, that is, the planetary masses
do not have to be as large as in the two-planet case. This is why for
N ≥ 3, these secondary resonances can be relevant while they were
not in the case N = 2.

To extend this principle to the general case N ≥ 3, one can
easily calculate that the smallest fraction of the synodic frequency
that appears in the case of N planets in a k:k − 1 resonant chain
is 1

k
( k−1

k
)N−3ωsyn (cf. equation 52). Again, this frequency can

resonate with the resonant frequencies ωres, and, just as before,
1
k
( k−1

k
)N−3ωsyn � 1

k2 ( k−1
k

)N−3n1 is independent of the planetary
masses, and, for fixed orbital separation (fixed n1), decreases with
k and N. Finally, the resonant frequencies ωres still increase with
mpl (and with k), more or less independently of the number of
planets. Thus, there will be a critical mass after which a regime of
secondary resonances is encountered, which can excite the system
and cause its subsequent instability by close encounters. Since the
factor 1

k
( k−1

k
)N−3 multiplying ωsyn decreases with increasing N and

with k, the conclusion is that the regime of secondary resonances
between synodic and resonant degrees of freedom is encountered at
lower masses for increasing k and/or increasing N, and therefore the
critical mass (mpl/M∗)crit allowed for stability decreases with N and
k. This mechanism gives a dynamical explanation to the numerical
findings of Matsumoto et al. (2012) and Izidoro et al. (2019). In the
rest of this paper, we give a detailed analytical description of the
dynamical emergence of these secondary resonances.

4 H A M I LTO N I A N M O D E L

In this section we describe the analytical tools used to investigate the
emergence of secondary resonances between synodic and resonant
degrees of freedom. We begin introducing the general planetary
Hamiltonian and the customary notation in Section 4.1, and we
then consider the relevant harmonic terms in the Hamiltonian that
interest us in Section 4.2. Then, in Sections 4.3 and 4.4, respectively,
we consider the averaged model H̄ and the model H∗ that includes
synodic terms. There, we give an analytical descriptions of the main
dynamical features of the simulations shown in Fig. 1.

4.1 Planetary Hamiltonian

We start with the Hamiltonian H of N planets of masses mi, i =
1, . . . , N orbiting a star of mass M∗. We let ui be the inertial
barycentric Cartesian coordinate of each planet, and ũi = mi u̇i

the conjugated momentum. We write H in canonical heliocentric
variables ( pi , r i), i = 1, . . . , N, defined from the inertial barycentric
canonical variables (u, ũi) as

p0 =
N∑

i=0

ũi , r0 = u0,

pi = ũi , r i = ui − u0, i = 1, . . . , N (3)

(e.g. Poincaré 1892; Laskar 1990). Doing so, the Hamiltonian can
be split as

H( p, r) = Hkepl + Hpert,

Hkepl =
N∑

i=1

(‖ pi‖2

2μi

− G(M∗ + mi)μi

‖r i‖
)

=
N∑

i=1

Hkepl,i ,

Hpert =
∑

1≤i<j≤N

(
pi pj

M∗
− Gmimj

‖r i − rj‖
)

. (4)

In other words, the Hamiltonian appears as a sum of two
terms. One term is the sum of the Keplerian unperturbed
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4956 G. Pichierri and A. Morbidelli

Hamiltonians for each planet Hkepl,i , describing the planet–
star interactions. The other is the perturbing Hamiltonian Hpert

that describes all planet–planet interactions; Hpert itself is split
into direct terms, −∑

1≤i<j≤N Gmimj/‖r i − rj‖, and indirect
terms,

∑
1≤i<j≤N pi pj /M∗, which come from having considered

canonical heliocentric rather than barycentric variables. Hkepl =∑N

i=1 Hkepl,i is integrable, while Hpert is of order mpl/M∗ with
respect to Hkepl (where mpl is the typical mass of the planets) so
it can be seen as a small perturbation to the integrable Keplerian
Hamiltonian. For each planet, the canonical modified Delaunay
variables can be introduced, which are action-angle variables for
the reference Keplerian problems Hkepl,i . We will consider only
coplanar motion for the planets, so we only have two pairs of action-
angle variables (
i, λi) and (�i, γ i). Their definition in terms of the
orbital elements is (e.g. Morbidelli 2002)


i = μi

√
G(M∗ + mi)ai, λi = i + �i,

�i = 
i(1 −
√

1 − e2
i ) ∼ 
ie

2
i /2, γi = −�i. (5)

As usual, for each planet, ai is the semi-major axis, ei is the
eccentricity, λi is the mean longitude, i is the mean anomaly � i is
the longitude of the pericentre, and μi = miM∗/(M∗ + mi) � mi is
the reduced mass; the index i = 1, . . . , N refers to the ith planet,
with planets ordered with increasing semi-major axis. We note that,
as in Pichierri et al. (2018), the orbital elements are defined starting
from heliocentric positions and barycentric velocities (3) (they are
the so-called formal osculating elements; Morbidelli 2002).

In the modified Delaunay variables (5), the Keplerian part can be
rewritten as

Hkepl = −G2
N∑

i=1

μ3
i (M∗ + mi)2

2
2
i

, (6)

while no simple expression exists for Hpert, which is usually
expanded in Fourier series of the angles. In this expansion, there
are only combinations of λi and γ i that satisfy the d’Alembert
characteristics, and only harmonic terms combining angles from
two planets. We will not go into the details of how this expansion
is performed in general, which can be found in many works (e.g.
Laskar & Robutel 1995; Murray & Dermott 1999), and we will only
concentrate on the specific terms that interest us below.

4.2 Rescaled Hamiltonian and new set of canonical variables

In order to make the calculations and algebraic expressions less
cumbersome, we start by performing the following simplifications.
These are clearly general and are carried out here for any number
N of planets, but we will give specific examples to the case of 3
planets to fix ideas.

First, since the instabilities for N ≥ 3 planets occur at much lower
values of mpl/M∗ than for two planets, we approximate the reduced

mass μ = mplM∗
M∗+mpl

∼ mpl and M∗ + mpl ∼ M∗. Then, we recall that all
the planets have the same mass mpl, and we intend later on to make
use of the tools of perturbation theory to study the dynamics of the
resonant chains. It is therefore convenient to write the Hamiltonian
in the form of a sum of an integrable part which does not depend
on the small parameter mpl, plus a small perturbation proportional
to mpl. The natural choice is to rescale all the actions (
, �) of
the modified Delaunay variables by the planetary mass mpl, which
yields


 =
√

GM∗a, � = 
(1 −
√

1 − e2), (7)

where, for simplicity, we have maintained the same notation as for
the non-rescaled variables. In order to maintain the canonicity of
the Hamiltonian, H itself must be rescaled by mpl. With this choice,
the reduced N-planets Hamiltonian takes the form (again, as for the
canonical variables, we do not change the notation for the rescaled
Hamiltonian)

H = Hkepl + Hpert, Hkepl = −
N∑

i=1

G2M2
∗

2
2
i

, (8)

where Hkepl is independent of mpl, and the (rescaled) perturbation
is of order O(mpl):

Hpert = mplHpert
′. (9)

For a pair of neighbouring planets labelled by the indices i and
i + 1, which are near a k(i): (k(i) − 1) mean motion resonance, the
perturbing resonant contribution to first order in the eccentricity
takes the form

Hres
(i) = mpl

[
α

(i)
1 ei cos

(
k(i)λi+1 − (k(i) − i)λi + γi

)
+α

(i)
2 ei+1 cos

(
k(i)λi+1 − (k(i) − i)λi + γi+1

)]
, (10)

where the (rescaled) coefficients α are

α
(i)
j = −G2M∗


̄2
i+1

f (j,i)
res (α(i)

res), (11)

where f (j,i)
res (α(i)

res) are functions of the Laplace coefficients b(j )
s

(Murray & Dermott 1999), themselves (weakly) depending on the
semi-major axis ratios (they include both direct and indirect terms;
indirect terms only appear in the 2:1 mean motion resonance). Here,
as usual, α(i)

res = āi/āi+1 = (
(k(i) − 1)/k(i)

)2/3
is the nominal semi-

major axial ratio corresponding to the resonance location in the
Keplerian approximation, so the Laplace coefficients are the same
for each pair of planets in a resonant chain repeating the k:k −
1 commensurability. Moreover, we have evaluated the 
2

i+1 at the
denominator at its nominal Keplerian value 
̄i+1 [because the terms
in (11) are already of order O(e), e.g. Batygin & Morbidelli 2013].
Doing so, the coefficients α

(i)
j are effectively constants for a given

chain and a given nominal orbital separation, and they represent the
strengths of the resonances.

The other terms in the perturbing functionHpert that are of interest
to us are the synodic terms for each neighbouring planet pair. At
lowest order in the eccentricities and lowest harmonic order in λi −
λi + 1, they take the form

Hsyn
(i) = ci cos(λi − λi+1) = mplCi cos(λi − λi+1), (12)

where the coefficients Ci for the rescaled Hamiltonian are

Ci = −G2M∗

̄2

i+1

×
[

1

2
b

(1)
1/2

(
α(i)

res

) − (
α(i)

res

)−1/2
]

, (13)

and have the same scaling in 
̄i+1 as the coefficients in (11) but a
different dependence on the Laplace coefficients b(j )

s (e.g. Murray
& Dermott 1999; the term −(α(i)

res)
−1/2 comes from the indirect

term of the perturbing function). Notice that (12) is of order 0 in
eccentricity. The termO(e) cannot exist because it would not satisfy
the d’Alembert rules. So, (12) is all we have for the terms dependent
on the difference of the mean longitudes of neighbouring planets λi

− λi + 1, but independent of the resonant angles, in an expansion up
to O(e) of the original Hamiltonian. At order 1 in eccentricity, there
are also terms coupling resonant and synodic angles (e.g. the terms
(k(i)λi + 1 − (k(i) − i)λi + γ i) + j(λi − λi + 1), for an arbitrary integer
j). Because, in what follows, they would behave like those in Hsyn
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Instability in resonant chains 4957

in (12) but are O(e) smaller, we neglect them for simplicity. Notice
also that in (12) we can limit ourselves to the lowest multiples of
λi − λi + 1 because we are looking for the slowest possible synodic
frequency, as explained in Section 3.

In the following, we will want to consider the case of N planets,
each pair being near a k(i): (k(i) − 1) mean motion resonance, and thus
introduce the resonant angles as canonical coordinates. However,
at the same time, we will want to make use of the non-resonant
synodic angles λi − λi + 1, so it is preferable that one of them, say
λ1 − λ2, be also one of the canonical variables. The natural choice
is to use as canonical positions the resonant angles ψ

(i)
1 = θ (i) + γi

(where θ (i) = k(i)λi + 1 − (k(i) − 1)λi is the longitude of conjunction
for the ith pair) and the apsidal differences δγ i,i + 1 = γ i − γ i + 1

for i = 1, . . . , N − 1, then define δλ1,2 = λ1 − λ2 and finally keep
an angle that will not appear explicitly in the Hamiltonian, such as
γ N. These linear changes of variables for the positions are easily
extended to a canonical transformation (the transformation on the
actions is linear, with matrix equal to the transpose of the inverse of
the matrix defining the transformation on the angles). For example,
in the case N = 3, the new angles will be

ψ
(1)
1 = k(1)λ2 − (k(1) − 1)λ1 + γ1,

ψ
(2)
1 = k(2)λ3 − (k(2) − 1)λ2 + γ2,

δγ1,2 = γ1 − γ2,

δγ2,3 = γ2 − γ3,

δλ1,2 = λ1 − λ2,

γ ′
3 = −γ3, (14)

while the new conjugated actions are4

ψ
(1)
1 = 
1 + 
2 + k(2) − 1

k(2)

3,

ψ
(2)
1 = 1

k(2)

3,

�γ1,2 = −
(


1 + 
2 + k(2) − 1

k(2)

3

)
+ �1,

�γ2,3 = −(
1 + 
2 + 
3) + �1 + �2,

�λ1,2 = k(1)
1+(k(1) − 1)
2+ (k(1) − 1)(k(2) − 1)

k(2)

3 = k(1)K,

L = (
1 + 
2 + 
3) − (�1 + �2 + �3). (15)

The canonicity of this transformation can easily be checked using
the Poisson bracket criterion. This canonical change of variable
has the advantage of being easily generalizable to any number N of
planets and of having the specific angular momentumL appearing as
an explicit constant of motion, since its conjugated angle γ ′

N = −γN

never appears explicitly in the transformed Hamiltonian (all the

4A note on notation can help clarify the meaning of the names of these
variables. Reading the definitions for the angles, the upper indices (i) refer
to which pair of planets is considered, so that k(1) is the index of the first-
order mean motion resonance for the inner pair and ψ (1) refers to a resonant
angle for that pair. Similarly, θ (i) = k(i)λi + 1 − (k(i) − 1)λi is the longitude
of conjunction of the ith pair. The subscript 1 in ψ

(i)
1 signifies the fact that for

each pair, we choose to use the resonant angle that depends on the longitude
of pericentre γ of the innermost planet of the pair, so ψ

(i)
1 = θ (i) + γi , while

the other resonant angle would then be ψ
(i)
2 = θ (i) + γi+1 (and it does not

appear since we also use γ i − γ i + 1 as canonical angles). The conventions
for the other angles are evident. For the actions, we simply use an uppercase
first letter to indicate to which angle each action is conjugated, except for the
last action since it is just the orbital angular momentum, which we always
indicate with L, and it is always a constant of motion.

other angles satisfy the d’Alembert rules, while this one does not
so it cannot appear in the Hamiltonian function, even the non-
averaged one). We remark that L is now the specific angular
momentum because the actions have been rescaled by the planetary
mass; this also entails that when integrating the system (8) with
increasing mpl, L will always remain constant. Moreover, the action
�λ1,2 conjugated to the angle δλ1,2 is simply a factor away from
the action K used in Pichierri et al. (2018; see also e.g. Batygin
& Morbidelli 2013a); this action has been called the ‘spacing
parameter’ (Michtchenko, Beaugé & Ferraz-Mello 2008) and is a
constant in the averaged model where all non-resonant contributions
to Hpert are dropped, yielding information on the nominal location

̄ of the resonance at hand.

We note that in these variables in the case of three resonant planets
in a k(1): (k(1) − 1) – k(2): (k(2) − 1) chain, the synodic harmonics
for the two pairs of planets can be written as

λ1 − λ2 = δλ1,2,

λ2 − λ3 = 1

k(2)

(
(k(1) − 1)δλ1,2 + ψ

(1)
1 − ψ

(2)
1 − δγ1,2

)
. (16)

Then, in the new variables, the Keplerian Hamiltonian (8), the
resonant contribution (10), and the synodic contribution (12) for
pairs of neighbouring planets write

Hkepl = − G2M2
∗

2
( − �λ1,2 + k(1)ψ

(1)
1 − k(2)ψ

(2)
1 + ψ

(2)
1

)2

− G2M2
∗

2
(
�λ1,2 − k(1)ψ

(1)
1 + ψ

(1)
1

)2 − G2M2
∗

2
(
k(2)ψ

(2)
1

)2 , (17a)

Hres = mplHres
′, (17b)

Hsyn = mpl

[
C1 cos(δλ1,2)

+C2 cos

(
1

k(2)

(
(k(1) − 1)δλ1,2 + ψ

(1)
1 − ψ

(2)
1 − δγ1,2

))]
= mplHsyn

′. (17c)

Hkepl is independent of mpl and depends on the variables ψ
(1)
1 ,

ψ
(2)
1 , and �λ1,2 only; one can introduce the frequencies (analogous

to the mean motions n)

η
ψ

(1)
1

:= ∂H
∂ψ

(1)
1

, η
ψ

(2)
1

:= ∂H
∂ψ

(2)
1

, η�λ1,2 := ∂H
�λ1,2

. (18)

Hres depends only on the angles through the harmonic terms
cos ψ

(1)
1 , cos(ψ (1)

1 − δγ1,2), cos ψ
(2)
1 , and cos(ψ (2)

1 − δγ2,3), and each
term has a coefficient depending on the actions (15) and the
coefficients α

(i)
j ; the exact expression can easily be obtained by

direct substitution. In (17b) and (17c), we use a prime (
′
) to indicate

that the Hamiltonian term has been rescaled by mpl itself, so it is
O(0) in mpl, and the dependence on mpl has been clearly expressed
with a coefficient. In the following, we will also use the notation

x = (
ψ

(1)
1 , ψ

(2)
1 , �γ1,2, �γ2,3, �λ1,2, ψ

(1)
1 , ψ

(2)
1 , δγ1,2, δγ2,3,

× δλ1,2

)
(19)

for the canonical variables that enter in H (except the pair (L, γ ′
3),

since γ ′
3 does not appear in H and L is a constant of motion); we

write for the actions p = (ψ (1)
1 , ψ

(2)
1 , �γ1,2, �γ2,3, �λ1,2) and for

the angles q = (ψ (1)
1 , ψ

(2)
1 , δγ1,2, δγ2,3, δλ1,2).
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4.3 Purely resonant dynamics

The purely resonant dynamics is the one governed by the Hamil-
tonian averaged over the fast angle δλ1,2, i.e. H̄ = Hkepl + Hres.
H̄ is now rewritten in terms of the new canonical variables
(14, 15) (cf. equation 17), and since the synodic terms have
been removed by averaging, not only L but also �λ1,2 is a
constant of motion, so that only the ‘barred’ variables x̄ =
( p̄, q̄) = (ψ (1)

1 , ψ
(2)
1 , �γ1,2, �γ2,3, ψ

(1)
1 , ψ

(2)
1 , δγ1,2, δγ2,3) evolve.5

These barred variables x̄ = ( p̄, q̄) are simply a subset of the
variables x = (p, q) introduced above, and represent the
purely resonant degrees of freedom (this notation is only in-
troduced to separate these variables from the synodic canon-
ical pair (�λ1,2, δλ1,2); this will be a useful distinction later
on).

We integrate this Hamiltonian with a numerical integrator while
slowly increasing the planetary mass at each time-step as detailed
above. We use again as an example the case of the 3:2 – 3:2
chain starting with an initial planetary mass mpl/M∗ = 10−5 and
we choose as initial condition that of Fig. 1(b). The resulting
evolution of the canonical actions p̄ is shown in dark green
triangles in Fig. 2, panels (a)–(d) (the evolution of the eccentricity
has been already presented in Fig. 1b). We observe that the
four resonant degrees of freedom are never unstable even up to
masses significantly higher than the critical mass (mpl/M∗)crit �
1.28 × 10−3, which is found in the numerical (N + 1)-body simula-
tions with the same initial conditions (Fig. 1b, light green circles in
Fig. 2).

We can present an analytical explanation for this. As in Pichierri
et al. (2018), we find the stable resonant equilibrium points for
H̄(x̄;L, �λ1,2, mpl) in the variables x̄, while keeping L and �λ1,2

constants and for different values of mpl, yielding x̄eq(mpl) =
x̄eq(mpl;L, �λ1,2). Notice that at these low eccentricities, we are
interested in symmetric linearly stable equilibria only, so the
equilibrium values q̄eq of the angles are simply

ψ
(1)
1,eq = 0, ψ

(2)
1,eq = 0, δγ1,2,eq = π, δγ2,3,eq = π, (20)

and we only need to solve for the equilibrium actions p̄eq =
(ψ (1)

1,eq, ψ
(1)
2,eq, �γ1,2,eq, �γ2,3,eq). In Fig. 2, panels (a)–(d), we su-

perimposed the analytically calculated equilibrium points (dashed
purple lines) and the numerically obtained evolution, showing
excellent agreement, which implies that the numerical solution
stays on the stable equilibrium at all times. Then, we diago-
nalize the system around the equilibrium point x̄eq; since it is
a stable equilibrium point, all eigenvalues are purely imaginary
and the diagonalization procedure yields a Hamiltonian of the
form

H̄(ξ , η) =
4∑

l=1

ωl

2

(
ξ 2
l + η2

l

) + O(‖(ξ , η)3‖) (21)

in Cartesian coordinates x̄ = T (ξ , η), with T being a transformation
matrix. Using canonical polar coordinates (Il, φl)l = 1, . . . , 4 with(
ξl = √

2Il cos φl, ηl = √
2Il sin φl

)
, we get

H̄ =
4∑

l=1

ωlIl + O(‖I3/2‖), (22)

5From a technical point of view, these variables are only an approximation
(up to order 0 in mpl) to the actual canonical variables that eliminate the
non-resonant contributions. These would be the primed variables introduced
later on in (36).

which appears as the sum of four decoupled harmonic oscillators
plus higher order terms.

The resulting four frequencies ωl, l = 1, . . . , 4 are shown in
Fig. 2(c) as a function of the planetary mass mpl, and we notice right
away that they all have the same sign. This means that at vanishing
amplitudes of libration, the Hamiltonian has an extremum at the
equilibrium point (a maximum) so that we can use the Hamiltonian
itself as a Lyapunov function to deduce that the equilibrium point
is Lyapunov-stable for all planetary masses. This means also that
if the initial amplitude of libration around the equilibrium point is
small, it has to remain small at all times.

Since it will be useful later on, we also consider here how
the libration frequencies grow with mpl. This is shown in Fig. 2,
panels (e) and (f). We find numerically that ω1,2 ∝ m

2/3
pl at low

eccentricities (e � 0.01, panel e) while ω1,2 ∝ m
1/2
pl at higher

eccentricities (e � 0.1, panel f). Notice that for a pendulum-type
Hamiltonian like

Hpend(�, σ ) = a�2 − mplb cos σ, (23)

the libration frequency would be ∝ m
1/2
pl , so it might be interesting

to ponder analytically why at low eccentricities we get a different
scaling. The reason is that with changing mass, we also change the
corresponding equilibrium point, which means that the parameters
a and b in the pendulum-like Hamiltonian above also depend
on mpl, and the real scaling would therefore be

√
abmpl. The

way the equilibrium points adjust to changes in mpl here is by
following lines of constant specific angular momentum (see above,
and Pichierri et al. 2018). Thus, with changing mass, we also change
the eccentricity of the corresponding equilibrium point, i.e. b in
(23), as m

1/3
pl . We finally remark that Batygin (2015) estimates for

two planets the (highest) libration frequency, at small amplitude
of librations around the resonant equilibrium point and for a value
of the angular momentum at which the separatrix first appears. He
finds that this frequency scales with ((m1 + m2)/M∗)2/3: since the
appearance of the separatrix happens at small eccentricities, this is
consistent with our findings.

4.4 The synodic contribution

In the previous sub-section, we have shown that the purely resonant
system is Lyapunov-stable for all planetary masses. The next natural
step is therefore to introduce non-resonant contribution of the
disturbing function. To the lowest order in e, we introduce the
two synodic terms (12) for the inner and outer pairs that had been
averaged out before, resulting in

Hsyn = mpl [C1 cos(λ1 − λ2) + C2 cos(λ2 − λ3)] = mplHsyn
′, (24)

with coefficients given by (13). The full rescaled Hamiltonian
written in the new variables (14, 15) is now

H∗(x;L, mpl) = Hkepl + Hres + Hsyn. (25)

We have stressed that it depends parametrically on the constant
of motion L and on the mass mpl through Hres = mplHres

′ and
Hsyn = mplHsyn

′.
We integrate this Hamiltonian for the 3:2 – 3:2 chain with

the same numerical scheme described before and the same initial
conditions as in the previous section. This gives the evolution of
the actions displayed in dark green triangles in Fig. 3, which is
matched against the (N + 1)-body integration with the same initial
datum (lighter green circles) and the locations of the equilibria
for H̄ calculated in the previous section for different planetary
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Instability in resonant chains 4959

Figure 2. The purely resonant evolution governed by H̄ in the case of three planets in a 3:2 – 3:2 mean motion resonance chain, with the same initial conditions
as in Fig. 1(b). We show in dark green triangles in panels (a)–(d) the evolution of the actions p̄ = (ψ (1)

1 , ψ
(1)
2 , �γ1,2,�γ2,3) as the planetary mass mpl is

slowly increasing, and we match it to the calculated equilibria p̄eq = (ψ (1)
1,eq, ψ

(1)
2,eq,�γ1,2,eq, �γ2,3,eq) (purple dashed line); we also add the corresponding (N

+ 1)-body integration with the same initial condition (light green circles). A legend for panels (a)–(d) is given in panel (a). We see that the system remains
stable well after the value of mpl/M∗ � 1.28 × 10−3 corresponding to the onset of excitation in Fig. 1(b). Panels (e) and (f) contain the analytical explanation
of the observed stability: We plot with coloured continuous lines all the frequencies of the four degrees of freedom and we notice that they have the same
sign, therefore the Hamiltonian has a maximum at the equilibrium point, and for low amplitude of librations, the system remains Lyapunov-stable even if the
frequencies grow in absolute value. In panel (e), we used the same eccentricities that correspond to the initial conditions of panels (a)–(d), e � 0.01; in panel
(f), we used higher initial eccentricities, e � 0.1. We note that the scaling law for ωl(mpl) changes depending on the eccentricity (see black dotted and dashed
lines).

Figure 3. Panels (a)–(e) show in dark green triangles the evolution of the actions p = (ψ (1)
1 , ψ

(2)
1 ,�γ1,2, �γ2,3, �λ1,2) for the system H∗ = Hkepl + Hres +

Hsyn with the same initial condition as the (N + 1)-body integration of Fig. 1(b) [the evolution of these variables in the (N + 1)-body integration is also
shown here in light green circles for reference]. The system follows on average the purple dashed lines, which correspond to the equilibria peq for the system
H̄ = Hkepl + Hres. With an orange continuous line, we show the evolution of the averaged variables p′ calculated through analytical averaging of the fast
synodic frequencies (equation 37). Note that, for mpl/M∗ < 1.28 × 10−3, p′ has very little oscillation around the peq curve, compared to the p evolution.

Instead, for mpl/M∗ > 1.28 × 10−3, the amplitude of oscillations of p′ and p around peq are almost the same. This reveals that, while the initial oscillation of
p is entirely due to the synodic terms and is effectively removed by passing to the p′ variables, it is then dominated by an increased amplitude of libration in
the resonance. The evolution of the angular momentum L is also shown in panel (f), and it is of course a conserved quantity; panel (f) also contains the legend
for all panels in this figure.
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4960 G. Pichierri and A. Morbidelli

masses (purple dashed lines). The comparison for the eccentricity
evolutions, instead of the canonical variables, has been already
presented in Fig. 1(b). We notice two important aspects of these
plots. The first is that, initially, for all variables the evolution
described by H∗ follows on average that described by H̄ (compare
Fig. 2 with Fig. 3, and the dashed purple lines). This can be
easily understood realizing that H∗ contains fast, non-resonant
angles, which, up to first order in the small parameter mpl, have
simply been averaged out in H̄; therefore, as long as the O(m2

pl)
contributions are unimportant, the only difference between the two
evolutions are the short-periodic,O(mpl) oscillations due to the δλ1,2

synodic angle. We will actually study this effect analytically below.
However, as soon as the O(m2

pl) remainder introduces important
contributions to the dynamics, as in the case of the emergence of
a secondary resonance, the dynamics described by the averaged H̄
approximation is not valid anymore. This is indeed what we see
in Fig. 3, where a phenomenon similar to the one observed in the
(N + 1)-body integrations appears, and at roughly the same value
of mpl/M∗ � 1.28 × 10−3, which was not found in H̄. Notice that
such a secondary resonance cannot be caused by an interaction of the
resonant degrees of freedom x̄ only, as we have shown that these are
stable for all values of mpl. Therefore, these secondary resonances
must come from an interaction between some (combination) of
the four resonant degrees of freedom and the synodic degree of
freedom (�λ1,2, δλ1,2). In the following, we use the analytical tools
of the Lie series perturbation theory in order to pinpoint the relevant
secondary resonances that arise at order 2 in the planetary mass mpl.
We carry out the calculation for the case of three resonant planets
in any resonant chain order to get the general picture, but we will
focus on the case of k(1) = k(2) = k, and k = 3 when needed.

4.4.1 Eliminating the O(mpl) synodic term

In the previous section, we dropped Hsyn out by averaging the
Hamiltonian. But simple averaging or dropping of harmonics is
not a rigorous procedure and, as we have seen, can alter the real
dynamics. Averaging is just the first step of more complex, rigorous,
perturbation approach, as we describe here.

The first step is to find a canonical transformation that, to first
order in mpl, eliminates the synodic contribution mplHsyn

′ from H∗.
This will introduceO(m2

pl) terms that we want to calculate explicitly,
since they contain harmonics mixing q̄ and δλ1,2, potentially asso-
ciated with secondary resonances. In order to eliminate mplHsyn

′ at
O(mpl), we need to find a generating function χ syn that solves the
homological equation

{χsyn,Hkepl} + Hsyn = 0. (26)

In the above equation, we used the Poisson bracket {•, •} that
operates on two dynamical variables f1 and f2, yielding a new
dynamical variable {f1, f2} defined by

{f1, f2} := (∇f1)ᵀJ(∇f2), (27)

where ∇ is the gradient with respect to the canonical variables and
J is the standard symplectic matrix. Clearly, χ syn will be of order
mpl so we can write χ syn = mplχ syn

′
. From the expression for Hsyn

(equation 17c), we see that χ syn will have the form

χsyn = mpl

[
C1

η1
sin(δλ12) + C2

η2
sin

(
1

k(2)

(
(k(1) − 1)δλ12

+ψ
(1)
1 − ψ

(2)
1 − δγ1,2

)) ]
, (28)

where the divisors η1 and η2 are immediately found in terms of the
frequencies (18) of the unperturbed Keplerian Hamiltonian and the
combination of angles appearing in the harmonics inHsyn, yielding

η1 = η�λ1,2 , η2 = 1

k(2)

(
(k(1) − 1)η�λ1,2 + η

�
(1)
1

− η
�

(2)
1

)
. (29)

These divisors are not vanishing nor small, since clearly η1 = n1 −
n2, η2 = n2 − n3 (remember that ni is the mean motion frequency
of planet i and that the harmonics in Hsyn in the modified Delaunay
variables were simply λ1 − λ2 and λ2 − λ3) and the planets are
evidently far from the 1:1 resonance. Therefore, equation (26) can
indeed be solved.

Having calculated χ syn, we can then write out how the Hamilto-
nian H∗ transforms under the Lie series transformation exp(Lχsyn )
generated by χ syn. Here, exp(Lχsyn ) is given by

exp(Lχsyn )f = f + mpl{f , χsyn
′} + m2

pl

2 {{f , χsyn}, χsyn} + . . .

(30)

The new Hamiltonian H′ is given by exp(Lχsyn )H∗, and reads up to
O(m2

pl):

H′ = Hkepl +mpl{Hkepl, χsyn
′} + m2

pl

2 {{Hkepl, χsyn
′}, χsyn

′} + . . .

(31a)

+mplHres
′ + m2

pl{Hres
′, χsyn

′} + . . . (31b)

+ mplHsyn
′ + m2

pl{Hsyn
′, χsyn

′} + . . . ; (31c)

as it is typical in perturbation theory via Lie transform, this
transformed Hamiltonian is written in terms of the new variables
x′ by direct substitution of the old variables x to the new, x → x′.
The change of variable is given by x = exp(Lχsyn )x′ (see equations
36 and 37). We note that the boxed terms are simply[
H0 + mplHres

′]∣∣
x′ =: H̄

∣∣
x′ , (32)

that is, H̄ written in the new variables x′ via direct sub-
stitution. Recall that H̄ does not depend on δλ1,2 and so
�λ1,2 was a first integral; hence, only the ‘averaged variables’

x̄′ = (ψ (1)
1

′
, ψ

(2)
1

′
, �γ1,2

′, �γ ′
2,3, ψ

(1)
1

′
, ψ

(2)
1

′
, δγ ′

1,2, δγ
′
2,3) remain as

evolving variables (as in Section 4.3, we use a barred notation
x̄′ = ( p̄′, q̄ ′) for the purely resonant variables, the subset of x̄′ not
including (�λ′

1,2, δλ
′
1,2)). Concerning the remaining two O(mpl)

terms in (31), these actually cancel out by construction, since χ syn

was chosen to satisfy (26). We can, therefore, write the transformed
Hamiltonian as

H′ = Hkepl

∣∣
x′ + mpl Hres

′∣∣
x′ + O

(
m2

pl

)
. (33)

This equation shows that H̄, which we have studied in the previous
section, approximates H′ only to first order in mpl. As long as the
new termO(m2

pl) does not contain resonant terms, the variables p̄′ =
(ψ (1)

1
′
, ψ

(2)
1

′
,�γ1,2

′, �γ ′
2,3) closely follow the equilibrium points

p̄eq calculated from H̄ in Section 4.3 (i.e. they have oscillations
around p̄eq of order O(m2

pl), while the oscillations of p̄ are O(mpl)),
while �λ′

1,2 undergoes oscillations of O(m2
pl) around the initial

value �λ1,2 (again a conserved quantity in the purely averaged
model H̄). This is what we observe in the numerical simulations;
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Instability in resonant chains 4961

see Fig. 3. We can therefore simplify the calculation by writing

χsyn
′ = χsyn

′( p̄′ = p̄eq;L, �λ′
1,2 = �λ1,2)︸ ︷︷ ︸

χ̄ ′
syn

+O(|( p̄′ − p̄eq, �λ1,2
′ − �λ1,2)|), (34)

(where we called χ̄ ′
syn the first term of the last equation), and drop-

ping the higher order terms, which correspond to small deviations
from p̄′ = p̄eq and from the initial value �λ1,2 of �λ′

1,2. With this
approximation we can eliminate the term m2

pl{Hsyn
′, χ̄ ′

syn} in (31c)

because now ∂Hsyn
′

∂p
= ∂χ̄ ′

syn

∂p
= 0, so {Hsyn

′, χ̄ ′
syn} = ∂Hsyn

′
∂q

∂χ̄ ′
syn

∂p
−

∂Hsyn
′

∂p

∂χ̄ ′
syn

∂q
= 0 (of course, by the same reasoning, also the higher

order terms of the Lie series for exp(Lχ̄syn )Hsyn cancel out). The
resulting Hamiltonian becomes

H′ = Hkepl

∣∣
x′ + mpl Hres

′∣∣
x′

+
[

m2
pl

2
{{Hkepl, χ̄

′
syn}, χ̄ ′

syn}
∣∣∣

x′
+ m2

pl {Hres
′, χ̄ ′

syn}
∣∣∣

x′

]
+ . . . .

(35)

We now explicit the transformation that to O(mpl) eliminates the
fast synodic evolution in the numerical integrations. This is given
by

p = exp(Lχ̄syn ) p′ = p′ + mpl{ p′, χ̄ ′
syn} + O(m2

pl)

q = exp(Lχ̄syn )q ′ = q ′. (36)

Notice that the angles remain unchanged since χ̄syn is independent

of the actions, so
∂χ̄ ′

syn

∂p′ = 0. The transformation for the actions
reads, to first order in mpl:

ψ
(1)
1 = ψ

(1)
1

′ − mpl
1

k(2)

C2

η̄2
cos(δλ2,3),

ψ
(2)
1 = ψ

(2)
1

′ + mpl
1

k(2)

C2

η̄2
cos(δλ2,3),

�γ1,2 = �γ ′
1,2 + mpl

1

k(2)

C2

η̄2
cos(δλ2,3),

�γ2,3 = �γ ′
2,3,

�λ1,2 = �λ′
1,2 − mpl

[
C1

η̄1
cos(δλ1,2) + k(1) − 1

k(2)

C2

η̄2
cos(δλ2,3)

]
,

(37)

where one has to replace δλ2,3 with its expression in terms of the
variables (14), δλ2,3 = 1

k(2)

(
(k(1) − 1)δλ1,2 + ψ

(1)
1 − ψ

(2)
1 − δγ1,2

)
;

moreover, η̄1 and η̄2 are the frequencies (29) evaluated at the
reference values for the actions at each mpl. We can invert these
expressions to obtain p′ from ( p, q), and the evolution of p′

represents that of p where, to first order in mpl, the short periodic
have been averaged out. The evolution of p′ is shown as an orange
continuous line in Fig. 3 in our reference N = 3, k = 3 example,
where we see that, initially, the averaged evolution follows closely
the analytical calculation of the equilibrium points of H̄ for different
planetary masses.

This is however only valid until a point in which the O(m2
pl) con-

tribution, which is still present in (35), has resonant effects (which
happens at mpl/M∗ � 1.28 × 10−3 in Fig. 3). Indeed, as it is typical
in perturbation theory, these terms are expected to contain higher
order harmonics that were not present in the original Hamiltonian
H∗ = Hkepl + Hres + Hsyn: then, if these newly introduced O(m2

pl)

Hamiltonian terms contains angles that, for certain values of mpl,
have a vanishing or small enough frequency, they could not be
eliminated by a further perturbative step because of the problem of
small divisors, and may thus change the dynamics considerably. We
therefore proceed to analyse these terms below.

4.4.2 The O(m2
pl) contribution

In this sub-section, we look closely at the O(m2
pl) terms in

(35). We are specifically interested in the harmonics that they
contain, to find explicitly which combinations of angles q̄ ′ =
(ψ (1)

1
′
, ψ

(2)
1

′
, δγ1,2

′, δγ2,3
′) and δλ′

1,2 can give rise to secondary
resonances at values of the planetary masses close to those where
the increase in amplitude of libration is observed in the numerical
integrations. Since the synodic frequency of δλ′

1,2 is much higher
than the libration frequencies characteristic of the angles q̄ ′, the
most interesting harmonics are the ones where the lowest fraction
of δλ′

1,2 appears next to a combinations of q̄ ′. This is because
these are the harmonic terms that will be linked to the secondary
resonances that appear at lowest resonant libration frequencies, that
is, by Fig. 2 panels (e) and (f), at the lowest planetary mass. The
following calculation is clearly general, but to simplify matters, we
will quickly specialize to the case of a chain of three planets with
both pairs in the same resonance, k(1) = k(2) = k, as well as to the
reference case k = 3 for which the numerical integrations in Fig. 1
were performed.

We start with the main term {{Hkepl, χ̄
′
syn}, χ̄ ′

syn} of order m2
pl

in (35). Since Hkepl does not contain any angles, all secondary
resonance contributions must come from combinations of the
harmonics contained in χ̄ ′

syn. Recall that we defined χ̄ ′
syn containing

both synodic terms with harmonics λ1 − λ2 and λ2 − λ3, which we
wrote in equation (16) in terms of the new variables q. Therefore, the
harmonics that are included in {{Hkepl, χ̄

′
syn}, χ̄ ′

syn} are combinations
of these synodic harmonics; more specifically, they come from
the products of their cosines.6 Using the standard trigonometric
identity cos(a) cos(b) = 1

2 (cos(a − b) + cos(a + b)), the resulting
harmonics are

2δλ′
1,2,(

(k(2) + k(1) − 1)δλ′
1,2 + ψ

(1)
1

′ − ψ
(2)
1

′ − δγ ′
1,2

)
/k(2),(

(k(2) − k(1) + 1)δλ′
1,2 − ψ

(1)
1

′ + ψ
(2)
1

′ + δγ ′
1,2

)
/k(2),

2
(
(k(1) − 1)δλ′

1,2 + ψ
(1)
1

′ − ψ
(2)
1

′ − δγ ′
1,2

)
/k(2),

(38)

so the harmonic with the lowest fraction of δλ′
1,2 is

(
(k(2) − k(1) +

1)δλ′
1,2 − ψ

(1)
1

′ + ψ
(2)
1

′ + δγ ′
1,2

)
/k(2). Specializing now to the case

of a chain with the same resonance index k(1) = k(2) = k, this simply
gives

1

k

(
δλ′

1,2 − ψ
(1)
1

′ + ψ
(2)
1

′ + δγ ′
1,2

)
. (39)

With the aid of an algebraic manipulator, one can compute the full
expression of {{Hkepl, χ̄

′
syn}, χ̄ ′

syn} and select the desired harmonic
term (we used the software package WOLFRAM MATHEMATICA), thus
obtaining its coefficient (actually, one can see that this term emerges

6This can be easily understood noting that if χ = sin (q1) + sin (q2) and f
depends only on the actions pi , then

{{f , χ}, χ} = ∂2f

∂p2
1

cos2 q1 + 2
∂2f

∂p1∂p2
cos q1 cos q2 + ∂2f

∂p2
2

cos2 q2.
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4962 G. Pichierri and A. Morbidelli

solely from the term ∝ {{1/
2
2, χ̄

′
syn}, χ̄ ′

syn}). We avoid writing here
the full expression, which is rather cumbersome; moreover, as in
(35), we evaluate it at the reference values of the actions so the
term multiplying the cosine becomes a numerical coefficient, and
we write this term as

Hscnd.res,kepl = const × m2
pl cos

(
(δλ′

1,2 − ψ
(1)
1

′ + ψ
(2)
1

′ + δγ ′
1,2)/k

)
.

(40)

Since we want to compare the frequency of δλ′
1,2/k to that of

(−ψ
(1)
1

′ + ψ
(2)
1

′ + δγ ′
1,2)/k, we need to consider the resonant Hamil-

tonian H̄ in the x′ variables, expand the ‘barred’ variables x̄′ around
the equilibrium point characterized by the equilibrium actions p̄eq

and the equilibrium angles q̄eq (equation 20) as in Section 4.3, and
then introduce the transformation x̄′ → (Il, φl)l=1,...,4 to the action-
angle variables (I, φ), which transforms H̄ into the sum of decou-
pled harmonic oscillators plus higher order terms (equation 22). It is
also useful to translate the value of �λ′

1,2 around its initial reference
value �λ1,2 introducing �λ′

1,2 = �λ1,2 + δ�λ′
1,2. Therefore, we

write Hscnd.res,kepl in terms of the variables (I, δ�λ′
1,2, φ, δλ′

1,2).
The Hamiltonian Hscnd.res,kepl will now contain harmonic terms of
type{

sin
cos

}
(δλ′

1,2/k + hφ), (41)

where hφ is an integer combination with coefficients h1, . . . , h4 ∈
Z of the angles φ1, . . . , φ4, which we can calculate explicitly. There-
fore, whenever d

dt
(δλ′

1,2/k) = − d
dt

(hφ), a secondary resonance is
crossed. We can rewrite this expression as ˙δλ′

1,2/k + hω = 0. Since
the Hamiltonian has d’Alembert characteristics in each pair (Il,
φl), and the values of the actions I are initially (that is, before
their excitation) small, the strongest secondary resonances will
come from lowest integer combinations hφ, that is, where most
hl are zero. We also note that since ˙δλ′

1,2 > 0 and the frequencies
ωl are all negative, a secondary resonance term can only appear
when hω < 0, which, together with the requirement that |h| be
small, is tantamount to requiring that all non-zero integers hl

are positive. Since we calculated ω(mpl) in Section 4.3, we can
calculate for each h the relative frequency ( ˙δλ′

1,2/k + hω)(mpl)
as a function of mpl, and check if any of these vanish for
some value of mpl, which corresponds to crossing a secondary
resonance.

We carried out the calculation with the aid of the MATHEMATICA

software in the reference case k = 3 and a1 � 0.1, which corresponds
to the evolution shown in Fig. 1(b) (and also Figs 2 and 3). We
found that Hscnd.res,kepl contains, among many others, the following
terms:

1.24 × m2
pl

√
2I1

{
sin
cos

}(
δλ′

1,2/3 + φ1 + phase
)
, (42a)

0.27 × m2
pl(2I2)

{
sin
cos

}(
δλ′

1,2/3 + 2φ2 + phase
)
, (42b)

2.39 × 10−3 × m2
pl

√
2I1

√
2I3

{
sin
cos

}
(
δλ′

1,2/3 + φ1 + φ3 + phase
)
, (42c)

1.6 × m2
pl

√
2I1

√
2I4

{
sin
cos

}(
δλ′

1,2/3 + φ1 + φ4 + phase
)
.

(42d)

The nature of these harmonics is clearly general, while the numerical

Figure 4. Frequencies of the angles δλ′
1,2/3 + hφ as a function of the

planetary mass in the case of the 3:2 – 3:2 mean motion resonance chain
with a1 � 0.1 (the situation depicted in Fig. 1b). Notice that the synodic
frequency ˙δλ′

1,2 varies only slightly due to the change in the equilibrium
point x̄eq for the averaged Hamiltonian H̄, which is followed by the full
system H′ until the second-order effects become significant (cf. equation
35). The main change comes from the resonant frequencies ω, whose
dependence on the planetary mass is depicted in Fig. 2(c). The result is that
the frequencies ( ˙δλ′

1,2/k + hω)(mpl) vanish within a small range of values
of the planetary mass mpl, meaning that a capture into a secondary resonance
becomes possible. By comparing with Fig. 1(b), we see that δλ′

1,2/3 + 2φ2

has vanishing frequency at the same value of mpl/M∗ � 1.28 × 10−3 at
which the excitation of the system occurs.

coefficients are specific to the reference case k = 3 and a1 � 0.1
mentioned above. We then calculated for each of the harmonics in
(42) their frequency ( ˙δλ′

1,2/k + hω)(mpl) as a function of the mass.
The results are presented in Fig. 4.

We immediately remark that in the case of the harmonic δλ′
1,2/3 +

2φ2, the crossing of the secondary resonance happens precisely
at the value of planetary mass mpl/M∗ � 1.28 × 10−3 where the
numerical integrations showed the increase in amplitude of libration
(see Figs 1–3). This is evidence that this phenomenon was indeed
caused by the crossing of this secondary resonance.

Before we continue with an analytical description of the dynamics
caused by this resonance, we should however go back and discuss
a few technical details.

First, if we had used in Hsyn only one synodic term, not all of
the harmonics in (38) would appear.7 In particular, the harmonic
δλ′

1,2/3 + 2φ2 would not appear, so that the observed dynamical
effects linked to the crossing of secondary resonances at mpl/M∗
� 1.28 × 10−3 are not expected. Indeed, we performed similar
numerical integrations with only one of the synodic terms, λ1 − λ2,
and separately λ2 − λ3, which are shown in Fig. 5, and there is no
effect at the right value of mpl. Secondary resonances do occur, but
at larger values of mpl, given that the generated harmonics have a
larger coefficient for δλ′

1,2.
Secondly, so far, we have not considered the O(m2

pl) term
{Hres

′, χ̄ ′
syn}, which is also present in (35). However, with the same

technique as above one can see that this term only yields harmonics

7To see this, as in footnote 6, we calculate for χ = sin (q1) and f, which
depends on the actions only:

{{f , χ}, χ} = ∂2f

∂p2
1

cos2 q1 = 1

2

∂2f

∂p2
1

(1 + cos(2q1)).

Clearly, we do not obtain the needed
(
(k(2) − k(1) + 1)δλ′

1,2 − ψ
(1)
1

′ +
ψ

(2)
1

′ + δγ ′
1,2

)
/k(2) in (38) neither when q1 = λ1 − λ2 = δλ1,2 nor when

q1 = λ2 − λ3 = 1
k(2)

(
(k(1) − 1)δλ1,2 + ψ

(1)
1 − ψ

(2)
1 − δγ1,2

)
.
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Instability in resonant chains 4963

Figure 5. Comparison between the full (N + 1)-body simulation from
Fig. 1(b) (lightest green circles) and two numerical simulations with the same
initial conditions where only one of the two synodic terms λ1 − λ2 and λ2 −
λ3 appears (darker green triangles and diamonds). These two semi-synodic
simulations initially appear identical, which is easily understood from the
fact that they follow in average the evolution of H̄ = Hkepl + Hres, which
is the same for the two (cf. equation 33). The important point is that in
both cases, when only one synodic angle is considered, the system is not
excited at value of mpl/M∗ � 1.28 × 10−3, where it is excited in the (N
+ 1)-body simulation as well as in the numerical simulation that includes
both synodic terms; see Fig. 1(b). This shows that both synodic terms must
be included in order to have a good quantitative agreement with the (N +
1)-body simulations.

of type

δλ′
1,2 ± ψ

(1)
1

′
,

δλ′
1,2 ± ψ

(2)
1

′
,

±δλ′
1,2 − ψ

(1)
1

′ + δγ ′
1,2,(

(k(1)−1)δλ′
1,2−(±k(2) − 1)ψ (1)

1
′−ψ

(2)
1

′ + (±k(2)−1)δγ ′
1,2

)
/k(2),(

(k(1) − 1)δλ′
1,2 + ψ

(1)
1

′ − (±k(2) + 1)ψ (2)
1

′ − δγ ′
1,2

)
/k(2),(

(k(1)−1)δλ′
1,2+ψ

(1)
1

′−(±k(2) + 1)ψ (2)
1

′−δγ ′
1,2 ± k(2)δγ ′

2,3

)
/k(2).

(43)

Whenever k(1) ≥ 3, as in our reference case k(1) = k(2) = k =
3, this does not contribute the needed harmonic (39) with δλ1,2

appearing as a single δλ1,2/k; it will only include multiples of δλ1,2/k
and therefore to lowest order does not contribute to the secondary
resonance harmonics in (42).

Finally, in (35), we used the simplification p̄′ = p̄eq, �λ1,2
′ −

�λ1,2 to define χ̄ ′
syn (cf. equation 34). However, the remaining terms

of O(|( p̄′ − p̄eq,�λ1,2
′ − �λ1,2)|) do not contribute to the dynam-

ics to lowest order. Indeed, concerning mpl{H0, χ}|x′ , this term only
contains the two separate synodic harmonics already contained in χ

and therefore does not yield terms linked to secondary resonances.

Finally, the remaining terms in
m2

pl
2 {{Hkepl,χsyn

′},χsyn
′}|x′ will only yield

higher order terms in the actions I , so we can neglect them (recall
that initially the values of the actions are small since we are close
to the equilibrium point).

With these clarifications, we can proceed with the model of the
secondary resonance linked to the angle δλ′

1,2/3 + 2φ2, which, as
we discussed above, has vanishing frequency exactly at the value
of mpl when the increase in the amplitude of libration is observed in
Fig. 1(b). This realization is further supported by Fig. 6. There, we
plot the evolution of the actions Il, l = 1, . . . , 4 along the simulation,
with the planetary mass mpl on the horizontal axis. We see that
initially only one action is excited, namely I2, and after that the
non-linearities inherent in the system cause an exchange of energy
between the degrees of freedom. This also suggests that the model
that we are about to construct, which is valid only for small Is,
breaks down whenever one of the actions is excited. This however

presents no impediment in the description of the first phase, when
the secondary resonance is encountered. One question that we wish
to answer for example is whether or not there is or can be a capture
in this secondary resonance or rather a jump across resonance. The
integrable, low-order model that we construct below can indeed
answer this question.

4.4.3 Model of the secondary resonance for δλ′
1,2/3 + 2φ2

In the following we detail how we can construct a model for the
resonance associated with the angle δλ′

1,2/3 + 2φ2 since, as we saw
before, it is the one that causes the observed increase in amplitude
of libration. A similar approach can be implemented for the other
resonances in (42).

We start by performing a canonical transformation which selects
δλ′

1,2/3 + 2φ2 as an angle. Notice that, since φ2 appears with a
coefficient 2 and so

√
2I2 appears as a power 2 in (42b), we have

a secondary resonance of order 2; hence, it is useful to define
the resonant angle θ as 2θ = δλ′

1,2/3 + 2φ2 in order to maintain
the d’Alembert characteristics so that the Hamiltonian will not be
singular at the origin. The resulting transformation is

� = I2, θ = δλ′
1,2/6 + φ2,

I ∗
r = Ir , r = 1, 3, 4, φ∗

r = φr, r = 1, 3, 4,

δ�λ∗
1,2 = δ�λ′

1,2 − I2/6 δλ∗
1,2 = δλ′

1,2,

(44)

whose canonicity follows immediately from the preservation of the
Poisson brackets. We can already notice that � = I2 appears as
the conjugated action to the angle θ associated with the secondary
resonance: this explains why in Fig. 6 it is I2, which is initially
excited. The other variables do not feel the resonance, except
δ�λ′

1,2, which must change according to the change in I2 in order
to maintain δ�λ∗

1,2 constant; however, since I2 gets divided by 6,
this change is minute, but nevertheless clearly visible in Fig. 3e.
The pair (�, θ ) is the pair of resonant variables for this specific
secondary resonance, while the others will have a faster evolution,
which can be ‘averaged’ away, in order to yield a 1-dof system that
we write 〈H′〉(φ∗,δλ∗

1,2)(�, θ ; I∗, δ�λ∗
1,2). The notation 〈•〉(φ∗,δλ∗

1,2)

means that we eliminated perturbatively to lowest order the non-
secondary-resonant contributions from the angles (φ∗, δλ∗

1,2), and
we stressed that the variables (I∗, δ�λ∗

1,2) will only play the role
of parameters for 〈H′〉(φ∗,δλ∗

1,2). Ultimately, the functional form
of 〈H′〉(φ∗,δλ∗

1,2)(�, θ ) will be that of a Andoyer Hamiltonian,
that is

〈H′〉(φ∗,δλ∗
1,2)(�, θ ) = δ� + β

2
�2 + O(�3) + c(

√
2�)

2
cos(2θ );

(45)

the coefficient c will be of order m2
pl, while δ and β will be of order

mpl. Since the system is initially close to the resonant equilibrium
point, � is small and we can drop the O(�3) terms. However, as
we will see below, the parameter β (the second derivative at � =
0) plays a crucial role in determining if there can be capture into
the secondary resonance or not, so we must keep track of all O(�2)
terms of the θ -independent part, that is, the first two terms in (45).
The main contribution to the θ -independent part comes from the

H̄ term [the O(mpl) term in (35)], while c
√

2�
2

cos(2θ ) comes
from (42b) and is O(m2

pl). Concerning the first part deriving from
H̄, we should stress that even if δ�λ′

1,2 appeared as a constant of
motion when this Hamiltonian was treated alone, when the O(m2

pl)
is taken into account, the transformation (44) transforms δ�λ′

1,2
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4964 G. Pichierri and A. Morbidelli

Figure 6. Evolution around mpl/M∗ � 1.28 × 10−3 of the actions Il, l = 1, . . . , 4 along the reference numerical simulation shown in Fig. 1(b). We see that

the actions are initially relatively constant, and the system is well approximated by a Hamiltonian of the form
∑4

l=1 ωlIl (cf. equation 22). Then, I2 increases
steadily, which is a symptom of an interaction with a secondary resonance that involves � = I2 as a resonant action; this is confirmed by the canonical change
of coordinates (44). Soon after I2 is large enough, the degrees of freedom start interacting and exchanging energy, due to the non-linear effects.

into δ�λ∗
1,2 + �/6, where δ�λ∗

1,2 is the new constant of motion.
Therefore, we must keep δ�λ′

1,2 as a variable in H̄ and apply (44)
to it.

With these considerations in mind, we can obtain analytical
insights on the dynamics, at least as long as the actions remain
small (recall that before any secondary resonance is encountered, the
system is very close to the equilibrium point at vanishing amplitude
of libration). It is interesting, for example, to explore analytically if
there can be a capture in this secondary resonance or not. Capture
into resonance is possible (but not guaranteed) only if δ̇β < 0.
Intuitively, this is because near the origin one has θ̇ � δ + β� and
the resonance condition imposes that (on average) this quantity
vanishes; therefore, at the centre of the resonance � = −δ/β, which
only makes sense when β and δ have opposite signs. Thus, since β

remains relatively constant (see below), only when δ̇β is negative
does the resonance centre appear from the origin and move at higher
values of �, while if δ̇β is positive, the resonance centre approaches
the origin from far away, the orbit is invested by a separatrix, and
then the resonance disappears leaving behind an excited orbit. We
already know from Fig. 4 that, as the planetary mass increases, θ̇

goes from positive values to negative values, that is, δ̇ < 0: this
means a capture into this secondary resonance is possible only if
β > 0.

To obtain the sign of β in (45), we need to compute its value
explicitly. We do this in steps as follows. First, we fix a value of mpl

right before the observed increase of amplitude of libration, mpl/M∗
� 1.28 × 10−3, we calculate the equilibrium point x̄eq = x̄eq(mpl)
and we apply the canonical diagonalization procedure as explained
in Section 4.3. This yields four pairs of Cartesian canonical variables
(ξ , η) which replace the x̄: x̄ = T (ξ , η), with T being the diagonal-
izing matrix. Secondly, as in Section 4.3, we introduce canoni-
cal polar coordinates (Il, φl)l = 1, . . . , 4 by (ξl = √

2Il cos φl, ηl =√
2Il sin φl). The Hamiltonian H̄ will then depend on the variables

(I1, . . . , I4, δ�λ′
1,2, φ1, . . . , φ4, δλ

′
1,2). Thirdly, we write H̄ in the

variables (44); H̄ contains a term in �2 independent of the angles,
but its coefficient is not β. To obtain the value of β we need
to perform a fourth step, and calculate 〈H̄〉(φ∗,δλ∗

1,2), which is the

perturbative elimination in H̄ of all the non-secondary-resonant
contributions from the angles (φ∗, δλ∗

1,2), up to order 2 in �. This
is because, as detailed below, the elimination of these harmonics
can generate terms in �2 independent of the angles, which need
to be added to the original term to obtain β. To this end, we take
H̄(I1, . . . , I4, δ�λ′

1,2, φ1, . . . , φ4, δλ
′
1,2) and expand it to order 2

with respect to the actions. Since these terms satisfy the d’Alembert

characteristics in (I, φ), we only obtain terms like

cα(δ�λ′
1,2) ×

√
2I

α
cos(mφ),

mj = −αj , −αj + 2, . . . , αj − 2, αj , |α| = 1, 2, 3, 4, (46)

where α ∈ N4
0, |α| = α1 + · · · + α4 is restricted to |α|/2 ≤ 2, and

cα(δ�λ′
1,2) is a coefficient that depends on δ�λ′

1,2 only. These
coefficients are expanded around δ�λ′

1,2 = 0 to an optimal order
which can be obtained in the following manner. Note that, from
δ�λ′

1,2 = δ�λ∗
1,2 + �/6 (equation 44) each term of order d in

δ�λ′
1,2 contributes a term of order d in �, so for each term of order

|α|/2 in I , we must obtain cα(δ�λ′
1,2) only up to order �2 − |α|/2�

in δ�λ′
1,2 (where �•� is the floor function) to achieve the desired

second order with respect to all the actions. We can then organize
all terms with respect to the order of expansion in I and δ�λ′

1,2,

and write for each addend H̄j

s/2 = O(I s/2) × O(δ�λ′
1,2

j ). To get a
sense of what these terms look like, we write the terms only up to
order s = 2 in

√
I :

H̄0
1/2 ∝ √

2Il cos(φl), H̄1
1/2 ∝ δ�λ′

1,2

√
2Il cos(φl),

H̄0
1 ∝ Il, H̄1

1 ∝ δ�λ′
1,2

√
2Il1

√
2Il2 cos(φl1 ± φl2 ).

(47)

The subsequent terms of higher order in
√

I follow this structure
but the possible combinations of the angles get substantially more
numerous and we avoid writing them all here in the interest of
brevity. Among them, there are of course also the terms ∝ I 2

l

appearing without angles, as well as the term ∝ δ�λ′
1,2

2, which
contribute directly to the �2 term in (45). We note that the first
terms H̄0

1/2 ∝ √
2Il cos(φl) (corresponding to |α| = 1 and constant

in δ�λ′
1,2) are actually zero by the definition of equilibrium point

calculated at the reference value δ�λ′
1,2 = 0. Also, the coefficients

in H̄0
1 in front of the Ils are just the frequencies ωl, since these are

the ones calculated in (22). Therefore, in this case, the role of the
integrable part of the Hamiltonian for a perturbation theory step is
naturally played by H̄0

1 = ∑4
l=1 ωlIl .

To understand how the perturbative elimination of the non-
resonant harmonics involving (φ∗, δλ∗

1,2) can generate terms in �2

independent of the angles, consider that if fn = O(In) and χm =
O(Im), then {fn, χm} = O(In+m−1), and so on for all the other terms
of the Lie series: {{fn, χm}, χm} = O(In+2m−2), etc. When we elim-
inate a H̄j

n,pert = O(In) term by solving the homological equation

{H̄0
1, χm} + H̄j

n,pert = 0, we must naturally use a χn = O(In). This

introduces new terms {{H̄0
1, χn}, χn} and {H̄j

n,pert, χn}, which are
O(I2n−1) (given that H̄0

1 is O(I)). Thus, terms of order 2 can be
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Instability in resonant chains 4965

Figure 7. Evolution around mpl/M∗ � 1.28 × 10−3 of the angle θ , the
resonant angle for the secondary resonance encountered (we plot 2θ instead
of θ , as explained in the main text), in panel (a). This figure should be
compared to Fig. 6: the action conjugated to θ is � = I2 (equation 44), and
we see that when θ start librating, I2 increases, indicating that the system
has captured into this secondary resonance. As in Fig. 6, after the actions get
excited the integrable approximation to the dynamics is not valid anymore.
The colour of the dots in this figure only serve as a legend for the value of
the planetary mass: we use the same colour-coding in Fig. 8, where we take
snapshots of the evolution of the pair (�, θ ) at different values of mpl.

generated, for example, if n = 3/2. We actually need to calculate
explicitly only those terms that yield a �2 independent of the angles,
as the others would be eliminated further. Such terms derive from
H̄0

3/2 (which governs the non-linear interactions between the four
resonant degrees of freedom around the equilibrium point that Fig. 6
proves to be strong) and H̄1

1/2 (which describes the fact that the
equilibrium point p̄eq of H̄ shifts as δ�λ′

1,2 changes under the
effects of the O(m2

pl) terms).
We implemented this procedure with the aid of the algebraic

manipulator MATHEMATICA. In our reference case k = 3 and a1 �
0.1 at a mass mpl/M∗ � 1.28 × 10−3, right before the development
of the excitation of the resonant degrees of freedom (Fig. 6), this
yields

〈H̄〉(φ∗,δλ∗
1,2)(�) = δ� + β

2
�2, δ � 7.74 × 10−3, β � 101.

(48)

The fact that δ is positive and small is consistent with the fact that
we put ourselves right before the development of the excitation
(cf. Fig. 4). The fact that β ∼ 100 is positive yields an analytical
confirmation that there can be capture into this secondary resonance.

After we have obtained 〈H̄〉(φ∗,δλ∗
1,2) (cf. equation 48), we can

easily complete the determination of the model (45) for this
secondary resonance. To do this, with the help of the algebraic
manipulator MATHEMATICA, we use the canonical transformation
(44) applied to the term (42b) that contains the resonant harmonic
2θ , and we obtain

〈H′〉(φ∗,δλ∗
1,2)(�, θ ) = δ� + β

2
�2 + c(

√
2�)

2
cos(2θ + 2π/6),

δ � 7.74 × 10−3, β � 101, c � −7.8 × 10−4.

(49)

A phase is introduced which does not change the dynamics and
could easily be eliminated by a simple rotation. We can now
compare the evolution predicted by this model to the numerical
integration of H∗ = Hkepl + Hres + Hsyn. The evolution of the
action � = I2 is already shown in Fig. 6. We plot in Fig. 7 the
evolution of the angle 2θ (which produces a numerical evolution
that is graphically more legible than that of θ ). One can see that the
angle starts librating at the same value of mpl where the conjugated

action � = I2 starts increasing in Fig. 6: this shows that there is
a passage across the resonance. Note that in such dynamic, the
orbit finds itself close to the separatrix after the passage through the
resonance, the adiabatic principle is not applicable and the orbit can
end up in the inner circulation region (in any case, when the higher
order interaction terms between the actions become too strong, a
simple description of the dynamics becomes hopeless). In order to
get a better sense of the dynamical interaction with this secondary
resonance, we can fix different values for δ in (49) and look at the
corresponding phase diagrams. Notice that changing δ essentially
corresponds to changing mpl; we also checked that for different
planetary masses near mpl/M∗ � 1.28 × 10−3 the coefficients β and
c do not change considerably, so we keep them fixed to obtain a
qualitatively correct description of the dynamical portraits.

Fig. 8 shows the level plots of the Hamiltonian (49), for different
values of δ (i.e. of the frequency of δλ′

1,2/3 + 2φ2 at � = 0),

in the variables (X = √
2� cos(2θ ), Y = √

2� sin(2θ )); we also
overplot the evolution of (X, Y) obtained from the simulation (a
combination of Figs 6 and 7), truncated at the value of the planetary
mass corresponding to the same δ used to plot the phase diagrams.
Initially, there is only one stable centre at the origin (panel a) and the
orbit circulates anti-clockwise around it with constant amplitude.
Then, we see that a resonant island bifurcates from the origin in the
bottom right-hand quadrant of the phase diagram (panel b), which
is followed by the dynamical evolution. Almost immediately after,
a second bifurcation occurs at roughly the same δ, so the inner
circulation region starts to grow around the origin and catches up
with the orbit (panels c and d). After crossing the inner separatrix,
the dynamical evolution drops off the resonant island, falls inside
the inner circulation region, and the angle 2θ starts to circulate
in clockwise fashion (panels e and f). This missed capture into
resonance is one of the two probabilistic fates for a second order
resonance when δ̇β < 0 and when the two bifurcations occur at
close values of δ. However, in this specific case, we checked that
this evolution is actually the result of more complicated interactions
among the variables (Il, φl) themselves, as well as another secondary
resonance involving the variables (Il, φl) and (δ�λ′

1,2, δλ
′
1,2). First,

from Fig. 6, one can see that after the initial increase of I2, I4

also starts increasing, after which there are wide oscillations of I2

and I4 in opposite phase. This is symptomatic of the effect of the
term

√
I2I4 cos(φ2 − 2φ4), which is quasi-resonant because ω2 �

2ω4 (Fig. 2c). To prove this, we plot in Fig. 9 the action I4 + 2I2,
which is the constant of motion relative to this harmonic term: we
see that the aforementioned coupled oscillations undergone by I2

and I4 are completely eliminated. On the other hand, for mpl/M∗
> 1.297 × 10−3, we see a much longer period large oscillation,
which diverges towards the end of the integration. We interpret
this as evidence of a transition of the system into the secondary
resonance with argument δλ′

1,2/3 + φ2 + 2φ4 (which also has a
small frequency, since δλ′

1,2/3 + 2φ2 and −φ2 + 2φ4 are both slow
angles). The reason is that (up to a constant) I4 + 2I2 can also
be seen as a conjugated action of δλ′

1,2/3 + φ2 + 2φ4 through the
canonical change of variables :

(I4 + 2I2)/4, δλ′
1,2/3 + φ2 + 2φ4,

(I4 − 2I2)/4, −δλ′
1,2/3 − φ2 + 2φ4,

δ�λ′
1,2 − I2/3, δλ′

1,2.

(50)

We see that after the angle θ = δλ′
1,2/6 + φ2 leaves the first

resonance (at mass mpl/M∗ � 1.29 × 10−3; see Fig. 7), the
action 2I2 + I4 keeps growing, which indicates a transition to
this new resonance involving δλ′

1,2/3 + φ2 + 2φ4. This analysis
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4966 G. Pichierri and A. Morbidelli

Figure 8. Contour plots of the Hamiltonian of the integrable model (49) for the secondary resonance involving 2θ = δλ′
1,2/3 + 2φ2 and � = I2, shown

in panels (a)–(f) in canonical Cartesian coordinates at different values of the parameter δ. The change in δ represents the change in the planetary mass mpl

implemented along the integration. The dots represent the evolution of the system along the numerical integration, and their colour indicates the value of mpl

using the same colour scheme as in Fig. 7.

Figure 9. Evolution of the action I4 + 2I2, which is a constant of motion
relative to the harmonic term φ2 − 2φ4, as well as the resonant action
conjugated to the slow angle δλ′

1,2/3 + φ2 + 2φ4 (cf. equation 50).

shows that the evolution presented above is very rich, and does
not allow any simple description of it. In any case, Fig. 8 does
not leave any doubt that the initial growth of I2 is due to the
interaction with the secondary resonance associated with the angle
δλ′

1,2/3 + 2φ2, and that the simple model we have derived yields
an effective understanding of the evolution, at least at a qualitative
level.

The takeaway is the following. We showed that the numerical
integration of the system H∗ = Hkepl + Hres + Hsyn presents an
evolution that is similar to that obtained in the full (N + 1)-body
simulations where the resonant degrees of freedom get excited; we
checked that the purely resonant system instead does not undergo
the same evolution, and gave an analytical explanation to this fact.
We then showed analytically that a set of secondary resonances are
present in the H∗ system, which involve a fraction of the synodic
frequency and combination of the resonant frequencies, and which
appear at order 2 in the planetary mass. Then, we found the specific
secondary resonance that is encountered in the numerical integration
of H∗; we built an integrable model for this resonance valid as
long as the actions remain small, and confirmed analytically that
there can be capture into this resonance. Finally, we verified that
the numerical evolution we obtained in the numerical integration

corresponds to a temporary capture into the considered secondary
resonance, followed by a rich and fascinating series of interactions
with additional secondary resonances.

5 MASS LI MI T FOR STA BI LI TY AS A
F U N C T I O N O F N U M B E R O F P L A N E T S A N D
R E S O NA N C E I N D E X

We now have all the information needed to derive the general result
anticipated at the end of Section 3, namely the dependence of the
maximal planetary mass ensuring stability as a function of N and k
(i.e. the planet number and resonant index). We sketch below how
the results found in the previous section can be generalized to the
case of N ≥ 3 equal-mass planets in a given k:k − 1 mean motion
resonance chain.

Following the development presented in Section 4, but for an
arbitrary case of N planets, we start introducing the Hamiltonian
H∗ = Hkepl + Hres + Hsyn, where Hres contains the resonant inter-
actions between all N − 1 pairs of neighbouring planets, and Hsyn

contains terms of type cos (λi − λi + 1), i = 1, . . . , N − 1; for both
Hres andHsyn, we will consider interaction terms up to order 1 in the
eccentricities, as we did in the previous section. We then make use
of a canonical transformation analogous to (14, 15): We introduce
the resonant angles ψ

(i)
1 = kλi+1 − (k − 1)λi + γi and the angles

δγ i, i + 1 = γ i − γ i + 1 for each planet pair, i = 1, . . . , N − 1 (this
gives 2(N − 1) resonant degrees of freedom), then we have the
synodic angle δλ1,2 = λ1 − λ2, and, finally, a γ ′

N = −γN , which
will not appear in the Hamiltonian (its conjugated action will again
be the total orbital angular momentum).

We can immediately generalize the result of Section 4.3 and
state that the 2(N − 1) purely resonant degrees of freedom are
Lyapunov-stable at a low amplitude of libration around the resonant
equilibrium point for any number of planets N. This is because,
when adding an outer resonant pair to the system with the same
resonance index k, the Hamiltonian simply repeats itself, since to
first order in the eccentricities we are only considering the mutual
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planetary perturbations due to immediately neighbouring planets
and the structure of each term is the same, namely (10). So, each
planet is either the inner or outer planet, or a middle planet as in
the case already considered of a three-planets system. Therefore, all
resonant libration frequencies will always have the same sign, and
the reasoning of Section 4.3 stands.

As in the case of three resonant planets, we thus conclude that
the instability must be due to an interaction between the synodic
degree of freedom and the purely resonant degrees of freedom.
Then, it is natural to investigate when a regime of secondary
resonances analogous to (39) and (42) can be encountered. To
answer this question, we proceeded analytically following the
steps of Section 4.4.2. We introduce a generating Hamiltonian
χ syn, which eliminates the synodic contribution Hsyn, so χ syn in
Delaunay variables will have harmonic terms sin (λi − λi + 1),
i = 1, . . . , N − 1. Transforming H∗ = Hkepl + Hres + Hsyn with
the Lie series generated by χ syn eliminates Hsyn to first order
in mpl (the planetary mass for all planets), but introduces new
terms to order 2 in mpl (among which the most important is
{{Hkepl, χsyn}, χsyn}, like in the case N = 3); these newly introduced
terms will contain a fraction of the synodic angle δλ1,2, and we
are interested in the smallest fraction of δλ1,2 that appears. Like
in the case of three planets, the term (m2

pl/2){{Hkepl, χsyn}, χsyn}
combines together all synodic angles λi − λi + 1. Notice that in
the new coordinates ψ

(i)
1 , δγ i,i + 1, and δλ1,2, each λi − λi + 1 can

be written as λi − λi+1 = ( k−1
k

)i−1(λ1 − λ2) = ( k−1
k

)i−1δλ1,2 plus

terms including ψ
(j )
1 and δγ j,j + 1. However, we do not need to

keep track of the ψ
(j )
1 s and δγ j,j + 1s since we are only interested in

the way the angle δλ1,2 appears in the O(m2
pl) terms. The smallest

fraction of δλ1,2 will be generated by combining the synodic angles
relative to the two outermost pairs λN − 2 − λN − 1 and λN − 1 − λN,
since already they contain the smallest fraction of δλ1,2. Multiplying
them together (using cos(a) cos(b) = 1

2 (cos(a − b) + cos(a + b)))
yields a harmonic term of type

cos

(((k − 1

k

)N−3
−

(k − 1

k

)N−2)
δλ1,2 + . . .

)
, (51)

where the +. . . terms represents a combination of ψ
(j )
1 s and

δγ j,j + 1s, in which again we are not interested. Therefore, the lowest
synodic frequency that appears in the O(m2) term is

1

k

(
k − 1

k

)N−3

˙δλ1,2 � 1

k2

(
k − 1

k

)N−3

n1. (52)

This is the fraction of the synodic frequency which can resonate
with the libration frequencies ωl of the resonant degrees of freedom.
Since ωl increase with mpl (as ω ∼ m

1/2
pl or m

2/3
pl according to the

eccentricities), there will be a critical mass after which a regime of
secondary resonances is encountered, which can excite the system
and cause its instability. Since the factor 1

k
( k−1

k
)N−3 multiplying

˙δλ1,2 decreases with increasing N and k, the conclusion is that
the regime of secondary resonances between synodic and resonant
degrees of freedom is encountered at lower masses for increasing
k and/or increasing N, and therefore the critical mass (mpl/M∗)crit

allowed for stability decreases with increasing N and k. This gives
an analytical explanation to the numerical findings of Matsumoto
et al. (2012).

6 C O N C L U S I O N S

In this paper, we have considered the stability of chains of mean
motion resonances, in relation to the observed exoplanet population.

Previous works have demonstrated that the paucity of resonances
in the exoplanets sample is not in contradiction with the scenario of
capture into mean motion resonance during planet migration in the
disc phase, if post-disc instability rates are as high as 90 per cent
(Izidoro et al. 2017, 2019). This motivates a detailed study on the
stability of these chains. Previous numerical investigations pointed
out that there is a critical planetary mass above which the instability
time of resonant systems is comparable to that of non-resonant
ones, and that this limit mass decreases with increasing number
of planets and/or increasing index k of the resonance (Matsumoto
et al. 2012). The dynamical origin of these instabilities was however
not discussed. In this paper, we thus investigated analytically and
numerically the origin of these instabilities.

From the numerical perspective, we used numerical experiments
where we first put low-mass planets deep in resonance (at a low
level of excitation of the resonant modes) and, secondly, we slowly
(and fictitiously) increased the planetary mass to follow the low-
amplitude regime until the onset of instability. We confirmed that
the instability for three resonant planets occurs at smaller masses
than in the two-planet case, and we identified a novel dynamical
mechanism which excites the amplitude of libration of the resonant
degrees of freedom. The excited systems can then become unstable
by suffering close encounters and collisions.

Therefore, we investigated analytically this phenomenon, using a
simplified Hamiltonian that reproduced well the observed excitation
of the system. Carrying out the calculation explicitly in the case
k = 3, we showed that the observed excitation is due to a set
of secondary resonances between a combination of the resonant
libration frequencies and a fraction of the synodic frequency.
We identified the specific secondary resonance that caused the
effect observed in the numerical integrations, and built a simple
integrable model for this resonance that captures qualitatively
the dynamics until the excitation of the system is too severe,
showing, for example, that there can be a capture into this specific
resonance. This technique can be generalized to the other secondary
resonances.

We therefore proposed that in the numerical simulations the
systems become unstable due to a crossing of this type of secondary
resonances, which excites the planets’ orbits and leads to a phase
of close encounters and collisions. This gives a critical mass at
which a regime of secondary resonances is encountered, and after
which the system can be destabilized. This scheme can then be
generalized to an arbitrary number of planets N and/or an arbitrary
index of the first-order mean motion resonance k of the chain. One
can easily calculate for different N’s and ks the lowest fraction
of the synodic frequency that can resonate with the resonant
frequencies, and see that it decreases with increasing values of N and
k (equation 52). Consequently, the regime of secondary resonances
between synodic and resonant degrees of freedom is encountered
when the resonant libration frequencies are slower. Because the
libration frequencies grow with the planetary mass, this implies
that the instability of the resonant chain occurs at lower masses for
increasing k and/or increasing N, and therefore the critical mass
allowed for stability decreases with N and with k. This gives an
analytical explanation to the numerical findings of Matsumoto
et al. (2012).

The takeaway is that we now have a dynamical understanding of
the origin of the instabilities observed in the numerical experiments
of Matsumoto et al. (2012) and Izidoro et al. (2019), which captures
the trend in the dependence of the critical mass allowed for stability
on the index of the resonance k and the number of planets N. Having
understood this mechanism, we will be able to perform a more
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4968 G. Pichierri and A. Morbidelli

focused and quantitative analysis on the threshold of stability of
resonant chains with different N, k, and mpl, and produce an explicit
criterion for the stability against secondary resonances of the type
described here. This will be the subject of future work.
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