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ABSTRACT
‘Hot super-Earths’ (or ‘mini-Neptunes’) between one and four times Earth’s size with period
shorter than 100 d orbit 30–50 per cent of Sun-like stars. Their orbital configuration – measured
as the period ratio distribution of adjacent planets in multiplanet systems – is a strong con-
straint for formation models. Here, we use N-body simulations with synthetic forces from an
underlying evolving gaseous disc to model the formation and long-term dynamical evolution
of super-Earth systems. While the gas disc is present, planetary embryos grow and migrate
inward to form a resonant chain anchored at the inner edge of the disc. These resonant chains
are far more compact than the observed super-Earth systems. Once the gas dissipates, resonant
chains may become dynamically unstable. They undergo a phase of giant impacts that spreads
the systems out. Disc turbulence has no measurable effect on the outcome. Our simulations
match observations if a small fraction of resonant chains remain stable, while most super-
Earths undergo a late dynamical instability. Our statistical analysis restricts the contribution
of stable systems to less than 25 per cent. Our results also suggest that the large fraction of
observed single-planet systems does not necessarily imply any dichotomy in the architecture
of planetary systems. Finally, we use the low abundance of resonances in Kepler data to argue
that, in reality, the survival of resonant chains happens likely only in ∼5 per cent of the cases.
This leads to a mystery: in our simulations only 50–60 per cent of resonant chains became
unstable, whereas at least 75 per cent (and probably 90–95 per cent) must be unstable to match
observations.

Key words: methods: numerical – planets and satellites: dynamical evolution and stability –
planets and satellites: formation – planet–disc interactions – protoplanetary discs.

1 IN T RO D U C T I O N

Among the thousands of confirmed exoplanets, hot super-Earths or
mini-Neptunes – with radii between 1 and 4 R⊕ (1 < M⊕ < 20),
orbiting very close to their host stars – form by far the largest
population (Borucki et al. 2010, 2011; Lissauer et al. 2011b; Mayor
et al. 2011; Schneider et al. 2011; Fabrycky et al. 2012; Howard et al.
2012; Batalha et al. 2013; Dong & Zhu 2013; Fressin et al. 2013;
Howard 2013; Mullally et al. 2015; Petigura, Howard & Marcy
2013). Statistical studies suggest that about one out of three solar-
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type stars (FGK spectral types) host a super-Earth with orbital period
shorter than 100 d (Mayor et al. 2011; Howard et al. 2012; Fressin
et al. 2013; Petigura et al. 2013). Yet, close-in super-Earths are often
found in compact multiplanet systems (e.g. Lissauer et al. 2011a).
Their eccentricities and mutual orbital inclinations are estimated
to statistically concentrate around low and moderate values (e �
0.1–0.2; i � 5◦; Lissauer et al. 2011a; Mayor et al. 2011; Fang &
Margot 2012).

A fundamental open question in planet formation is: where and
how did hot super-Earth systems form and dynamically evolve?

Current models on the formation of systems of close-in super-
Earths can be divided into two main categories (for reviews, see
Raymond, Barnes & Mandell 2008; Raymond & Morbidelli 2014;
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Morbidelli & Raymond 2016): (1) in situ accretion (Raymond et al.
2008; Hansen & Murray 2012, 2013; Chiang & Laughlin 2013;
Hansen 2014; Ogihara, Morbidelli & Guillot 2015a,b) or (2) as-
sembly of planets at moderate or larger distances from the star
followed by inward gas-driven migration (Terquem & Papaloizou
2007; Ida & Lin 2008, 2010; McNeil & Nelson 2010; Hellary &
Nelson 2012; Cossou et al. 2014; Coleman & Nelson 2014, 2016).
In situ accretion models virtually come in two flavours: (a) standard
in situ accretion models that invoke high-mass discs from the begin-
ning to allow multi-Earth masses planets to form in the inner regions
(Hansen & Murray 2012, 2013); and (b) drift-then-assembly model
which proposes that these planets form in the innermost regions of
the disc in consequence of a local concentration of pebbles or small
planetesimals drifting inward due to gas drag (Boley & Ford 2013;
Boley, Morris & Ford 2014; Chatterjee & Tan 2014, 2015; Hu et al.
2016).

The standard in situ accretion model suffers from too many funda-
mental issues to be plausible (see discussions in Raymond & Cossou
2014; Schlaufman 2014; Schlichting 2014; Chatterjee & Tan 2015;
Izidoro et al. 2015; Ogihara et al. 2015a). For example, it ignores
the effects of planet–disc gravitational interaction. Planets forming
in situ grow extremely fast because of short dynamical time-scales
and the required abundant amount of mass in the inner regions
of the disc (Hansen & Murray 2012, 2013). They tend to reach
masses large enough (Hansen & Murray 2013; Hansen 2014) to
sufficiently perturb the surrounding gas in time-scales much shorter
than the expected lifetime of protoplanetary discs around young
stars (Ogihara et al. 2015a). Planet–disc gravitational interaction
leads to angular momentum transfer between the planet and the
disc (see recent review by Baruteau et al. 2014) which typically
causes orbital radial migration (Goldreich & Tremaine 1979, 1980;
Lin & Papaloizou 1979, 1986; Ward 1986; Artymowicz 1993; Ward
1997; Tanaka, Takeuchi & Ward 2002; Sari & Goldreich 2004), as
well as eccentricity and inclination damping of the planets’ orbit
(Papaloizou & Larwood 2000; Goldreich & Sari 2003; Tanaka &
Ward 2004). Ignoring planet–disc gravitational interaction (migra-
tion and orbital tidal damping) in models of in situ formation is
not self-consistent. Moreover, if planets eventually migrate dur-
ing the gas disc phase they would not be forming truly in situ
(Ogihara et al. 2015a).

The drift-then-assembly models (Boley & Ford 2013; Boley et al.
2014; Chatterjee & Tan 2014, 2015; Hu et al. 2016) are quite promis-
ing but what actually happens near the inner edge of the disc, which
is dangerously close to the sublimation line of silicates, is not clear
(Morbidelli et al. 2016). Instead, the formation of massive objects
beyond the snowline within the lifetime of the disc seems to be
generic from theoretical considerations (e.g. Morbidelli et al. 2015).
Migration seems to be a generic process as well. Therefore, we fo-
cus in this paper on the scenario where planets are assembled at
moderate or larger distances from the star and then moved close to
the star by gas-driven migration.

Earth-mass planets typically are not able to open a gap in the
gaseous disc (e.g. Papaloizou & Lin 1984; Crida, Morbidelli &
Masset 2006) and migrate in the type-I regime (e.g. Ward 1997;
Kley & Nelson 2012). Sophisticated hydrodynamical simulations
including thermodynamical effects show that type-I migration is
very sensitive to the disc properties. Planets may either migrate in-
ward or outward depending on the combination of different torques
from the disc (Paardekooper & Mellema 2006, 2008; Baruteau &
Masset 2008; Paardekooper & Papaloizou 2008; Kley, Bitsch &
Klahr 2009). Indeed, the Lindblad torque tends to push the planet
inward (e.g. Ward 1986; Ward 1997) but depending on the planet

mass the gas-flowing in co-orbital motion with the planet may exert
a strong torque capable of stopping or even reversing the direction
of type-I migration (Kley & Crida 2008; Paardekooper et al. 2010;
Paardekooper, Baruteau & Kley 2011). There are locations within
the disc where the net torque is zero (Lyra et al 2010; Horn et al
2012; Bitsch et al. 2013, 2014, 2015; Cossou et al 2013; Pierens
et al 2013). However, as the disc dissipates and cools, thermody-
namics and viscous effects become less important and planets are
released to migrate inward (Lyra, Paardekooper & Mac Low 2010;
Horn et al. 2012; Bitsch et al. 2014). It is hard to imagine planets
completely escaping inward type-I migration, although disc winds
may be a possible explanation of a global suppression of type-I mi-
gration in the inner parts of the disc (Ogihara et al. 2015a; Suzuki
et al. 2016).

One of the main criticisms of the inward-migration model for
the origins of close-in super-Earths comes from the fact that many
planet pairs are near but not exactly in first-order mean-motion
resonances (Lissauer et al. 2011b; Fabrycky et al. 2014). There is
a prominent excess of planet pairs just outside first-order mean-
motion resonances (Fabrycky et al. 2014). Planet migration models
predicts that as the disc dissipates planets should migrate inward
and pile up in long chains of mean-motion resonances (Terquem &
Papaloizou 2007; Raymond et al. 2008; McNeil & Nelson 2010;
Horn et al. 2012; Rein 2012; Rein et al. 2012; Haghighipour
2013; Ogihara & Kobayashi 2013; Cossou et al. 2014; Raymond &
Cossou 2014; Liu et al. 2015; Ogihara et al. 2015a; Liu, Zhang & Lin
2016), in stark contrast to the observations. There are three reasons
not to reject the migration model. First, a fraction of planet pairs
are indeed in first-order mean-motion resonance (Lissauer et al.
2011b; Fabrycky et al. 2014). For example, the recently discovered
Kepler 223 system presents a very peculiar orbital configuration.
Planets in this system are locked in a chain of resonances which
mostly likely could be explained by convergent migration during
the gas disc phase (Mills et al. 2016). The TRAPPIST-1 system is
another example of planetary system with multiple planets in a res-
onant chain (Gillon et al. 2017). Secondly, a number of mechanisms
have been proposed for accounting for the excess of planet pairs
outside mean-motion resonances which could consistently operate
with the inward-migration model. Among them are star–planet tidal
dissipation (Papaloizou & Terquem 2010; Papaloizou 2011; Delisle
et al. 2012; Lithwick & Wu 2012; Batygin & Morbidelli 2013;
Delisle & Laskar 2014; Delisle, Laskar & Correia 2014), planet
scattering of leftover planetesimals (Chatterjee & Ford 2015), tur-
bulence in the gaseous disc (Rein 2012; Rein et al. 2012, but see
Section 4), interaction with wake excited by other planets (Baruteau
& Papaloizou 2013) and the effects of asymmetries in the structure
of the protoplanetary disc (Batygin 2015). Thirdly, and most impor-
tantly, planets that form in resonance may not remain in resonance.
Rather, planets in resonance can become unstable when the gas
disc dissipates (Terquem & Papaloizou 2007; Ogihara & Ida 2009;
Cossou et al. 2014). The systems that survive instabilities are not
in resonance. To summarize, the lack of resonance between planet
pairs should not be taken as evidence against inward migration
(Goldreich & Schlichting 2014).

In this paper, we assume that hot super-Earth systems form by
inward gas-driven migration. Our numerical simulations model the
dynamical evolution of Earth-mass planets in evolving protoplan-
etary discs (Williams & Cieza 2011). Our nominal simulations in-
clude the effects of type-I migration and orbital eccentricity and
inclination damping due to the gravitational interaction with the
gas. We have also tested in our model the effects of stochastic forc-
ing from turbulent fluctuations in the disc of gas. After the gas
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disc’s dissipation, our simulations were continued up to 100 Myr.
The goal of this study is to help elucidating the following question:
is the inward-migration model for the origins of hot super-Earths
systems consistent with observations?

This paper is structured as follows. In Section 2, we describe our
methods and disc model. In Section 3, we present the results of
simulations of our fiducial model. In Section 4, we describe our tur-
bulent model and the results of simulations including these effects.
In Section 5, we discuss about the role of dynamical instabilities
after gas disc dissipation and the final dynamical architecture of
planetary systems produced in our simulations. In Section 6, we
compare the results of our fiducial and turbulent models with ob-
servations. In Section 7, we compare our results with other models
in the literature. In Section 8, we discuss about our main results.
Finally, in Section 9 we summarize our conclusions.

2 M E T H O D S

We use N-body numerical simulations to study the dynamical evo-
lution of multiple Earth-mass planets in evolving protoplanetary
discs. We also follow the subsequent phase of dynamical evolution
of formed planetary systems after gas disc dissipation. During the
gaseous phase, we mimic the effects of the disc of gas on the plan-
ets by applying artificial forces on to the planets (or protoplanetary
embryos). These forces were calibrated from truly hydrodynamical
simulations. In this section we describe our gas disc model, followed
by the details of our prescription for type-I migration, eccentricity
and orbital inclination damping, and finally we explain how we set
the initial distribution of protoplanetary embryos in the system. We
also performed simulations testing the effects of stochastic forcing
from turbulent fluctuations in the disc.

To perform our simulations, we use an adapted version of Mer-
cury (Chambers 1999). In all our simulations, collisions are consid-
ered perfect merging events that conserve linear momentum. During
the gas disc phase, our simulations adapted the global time-step to
reduce the integration time. Every 1000 time-steps, the time-step
was re-evaluated and, if necessary, decreased to be at most 1/25th
of the orbital period at the perihelion of the innermost planet. While
this technique is not strictly symplectic, we saw no difference in
outcome when using it (although it significantly sped up the simu-
lations).

2.1 Disc model

The initial structure of a protoplanetary disc can be derived from
the radial disc temperature, the gas surface density and viscosity
profiles. To model the disc’s structure and evolution, we incorpo-
rated the 1D disc model fits derived by Bitsch et al. (2015) into our
numerical integrator. There are two major advantages in using this
approach rather than calculating the evolution of a viscous disc. The
first one is that these fits have been calibrated from sophisticated 3D
hydrodynamical numerical simulations including effects of viscous
heating, stellar irradiation and radial diffusion. The second one is
that this approach is computationally cheaper – and for the purposes
of this work – more versatile and robust than having to solve a 1D
disc evolution model to account for the disc evolution (e.g. Coleman
& Nelson 2014).

From the standard parametrized accretion rate on the star, given
by

Ṁgas = 3παh2r2�k�gas, (1)

and the hydrostatic equilibrium equation

T = h2 G M�
r

μ

R (2)

it is straightforward to determine the disc surface density �gas us-
ing the disc temperature profile given in Bitsch et al. (2015). In
equation (1) α is the dimensionless α-viscosity (Shakura & Sun-
yaev 1973), h is the disc aspect ratio, r is the heliocentric distance
and �k = √

GM�/r3 is the Keplerian frequency. T is the disc
temperature at the mid-plane, G is the gravitational constant, M�
is the stellar mass and μ is the mean molecular weight. In all our
simulations, the central star is one solar mass and μ = 2.3 g mol−1.
The disc age (or alternatively Ṁgas) is approximated by the follow
equation from Hartmann et al. (1998) and modified by Bitsch et al.
(2015),

log

(
Ṁgas

M� yr−1

)
= −8 − 1.4log

(
tdisc + 105 yr

106 yr

)
. (3)

We do not recalculate the disc structure following the fits in
Bitsch et al. (2015) at every time-step of the numerical integrator.
Instead, we solve the disc structure every 500 yr. Since the disc
structure changes on a longer time-scale, this approach does not af-
fect the validity of our conclusions and allows us to save substantial
computational time.

Using equations (1)–(3), we determine the disc temperature using
the temperature profile fits from the appendix of Bitsch et al. (2015)
which are given for different disc metallicities and different regimes
of accretion on to the star (or ages of the disc). Following Bitsch
et al. (2015), our disc opacity is the same used in Bell & Lin (1994).
In our fiducial simulations, the disc metallicity is set 1 per cent
and the disc α-viscosity is set α = 5.4 × 10−3. In this work, we
do not explore the effects of these parameters. However, our disc
presents all main characteristics expected for a protoplanetary disc,
with an inner edge and temporary outward migration zones. None
of the results that we will obtain will be dependent on specific
characteristics of this disc (e.g. the specific location of an outward
migration zone), so we expect that they are fairly robust. The issue
of the disc’s lifetime will be discussed in Section 5.

The gas disc lifetime in our simulations is set to 5.1 Myr. As
discussed in Bitsch et al. (2015), after the gas accretion rate on to
the star drops below 10−9 the gas density becomes so low that the
disc can be evaporated in very short time-scales. Thus, as stressed in
Bitsch et al. (2015) these fits should not be used to track the disc evo-
lution beyond disc ages corresponding to Ṁgas = 10−9 M� yr−1. In
our simulations, we allow the disc evolve from tdisc = 0 to 5 Myr
(Ṁgas = 10−9 M� yr−1) then we freeze the disc structure at 5 Myr
and we exponentially decrease the surface density using an e-folding
time-scale of 10 Kyr. After 100 Kyr (at tdisc = 5.1 Myr), the disc is
assumed to instantaneously dissipate. This allows a smooth transi-
tion from the gas disc to the gas-free phase.

As the disc gets older and thinner, low-mass planets may even-
tually be able to open a gap in the disc (e.g. Crida et al. 2006). In
our simulations, at the very late stages of the disc the disc’s aspect
ratio is about ∼0.03 near 0.1 au. For a 10 M⊕ planet in the very
inner regions of the disc the gap should not be fully open yet. Thus,
for simplicity we have neglected effects of type-II migration in our
simulations.

Magnetohydrodynamic simulations of disc–star interaction sug-
gest that a young star with sufficiently strong dipole magnetic
field is surrounded by a low-density gas cavity (Romanova et al.
2003; Bouvier et al. 2007; Flock et al. 2017). In this context, the
inner edge of the circumstellar disc typically corresponds to the
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approximate location where the angular velocity of the star equals
to the Keplerian orbital velocity, and migration should not continue
within the cavity except in unusual circumstances (Romanova &
Lovelace 2006). As the stellar spin rate evolves, the location of the
inner edge would evolve as well. The observed stellar spin rate is
between 1 and 10 d (e.g. Bouvier 2013), which suggest that the
corotation radius is 0.01–0.2 au. The orbital period distribution of
the innermost Kepler planets is consistent with this. We have in-
cluded this characteristic of discs in our simulations considering
that fixing the inner edge of the disc at 0.1 au is reasonable. In all
our simulations, the disc extends from 0.1 to 100 au. At the inner
edge of the disc, the surface density is artificially changed to create
a planet trap at about ∼0.1 au. This is done by multiplying the
surface density by the following rescaling factor:

� = tanh

(
r − 0.1

0.005

)
. (4)

2.2 Disc–planet interaction: type-I migration

Based on the underlying disc profile we calculate type-I migration,
eccentricity and orbital eccentricity damping. Our simulations start
with planets that migrate in the type-I regime. The negative of the
surface density profile and temperature gradients are given by

x = −∂ln �gas

∂ln r
, β = −∂ln T

∂ln r
. (5)

Following Paardekooper et al. (2010, 2011) and assuming a grav-
itational smoothing length for the planet potential of b = 0.4h, the
total torque from the gas experienced by a type-I migrating planet
can be expressed by

�tot = �L�L + �C�C, (6)

where �L is the Lindblad torque and �C is the corotation torque
from the gravitational interaction of the planet with the gas flowing
around its orbit. The total torque that a planet feels also depends on
its orbital eccentricity and inclination (Bitsch & Kley 2010, 2011;
Cossou, Raymond & Pierens 2013; Pierens, Cossou & Raymond
2013; Fendyke & Nelson 2014). To account for this, we calcu-
late �tot with two rescaling functions to reduce the Lindblad and
corotation torques according to the planet’s eccentricity and orbital
inclination (Cresswell & Nelson 2008; Coleman & Nelson 2014).
The reduction of the Lindblad torque can be expressed as

�L =
[
Pe + Pe

|Pe| ×
{

0.07

(
i

h

)
+ 0.085

(
i

h

)4

− 0.08
( e

h

) (
i

h

)2
}]−1

, (7)

where

Pe = 1 + (
e

2.25h

)1.2 + (
e

2.84h

)6

1 − (
e

2.02h

)4 . (8)

The reduction factor of the co-orbital torque �C is simply given
by

�C = exp

(
e

ef

) {
1 − tanh

(
i

h

)}
, (9)

where e and i are the planet orbital eccentricity and inclination,
respectively. ef is defined in Fendyke & Nelson (2014) as

ef = 0.5h + 0.01. (10)

Under the effects of thermal and viscous diffusion the co-orbital
torque is written as

�C = �c,hs,baroF (pν)G(pν) + (1 − K(pν))�c,lin,baro

+ �c,hs,entF (pν)F (pχ )
√

G(pν)G(pχ )

+√
(1 − K(pν))(1 − K(pχ )�c,lin,ent. (11)

The formulae for �L, �c, hs, baro, �c, lin, baro, �c, hs, ent and �c, lin, ent

are

�L = (−2.5 − 1.5β + 0.1x)
�0

γeff
, (12)

�c,hs,baro = 1.1

(
3

2
− x

)
�0

γeff
, (13)

�c,lin,baro = 0.7

(
3

2
− x

)
�0

γeff
, (14)

�c,hs,ent = 7.9ξ
�0

γ 2
eff

(15)

and

�c,lin,ent =
(

2.2 − 1.4

γeff

)
ξ

�0

γeff
, (16)

where ξ = β − (γ − 1)x is the negative of the entropy
slope with γ =1.4 being the adiabatic index. The scaling torque
�0 = (q/h)2�gasr

4�2
k is defined at the location of the planet. The

planet–star mass ratio is represented by q, h is the disc aspect ratio,
�gas is the surface density and �k is the planet’s Keplerian orbital
frequency.

Thermal and viscous diffusion effects contribute differently to
the different components of the co-orbital torque. For example, the
barotropic part of the co-orbital torque is not affected by thermal
diffusion while the entropy related part is affected by both thermal
and viscous diffusions. The parameter governing viscous saturation
is defined by

pν = 2

3

√
r2�k

2πν
x3

s , (17)

where xs is the non-dimensional half-width of the horseshoe region,

xs = 1.1

γeff
1/4

√
q

h
. (18)

The effects of thermal saturation at the planet location are con-
trolled by

pχ = 2

3

√
r2�k

2πχ
x3

s , (19)

where χ is the thermal diffusion coefficient that reads as

χ = 16γ (γ − 1)σT 4

3κρ2(hr)2�2
k

, (20)

where ρ is the gas volume density, κ is the opacity and σ is the
Stefan–Boltzmann constant. The other variables are defined before.

Finally, we need to set

Q = 2χ

3h3r2�k

(21)

to define the effective γ , used in equation (18), as

γeff = 2Qγ

γQ + 1
2

√
2
√

(γ 2Q2 + 1)2 − 16Q2(γ − 1) + 2γ 2Q2 − 2
.

(22)
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The functions F, G and K in equation (11) are given by

F (p) = 1

1 + (
p

1.3

)2
,

(23)

G(p) =
⎧⎨
⎩

16
25

(
45π

8

)3/4
p3/2, if p <

√
8

45π

1 − 9
25

(
8

45π

)4/3
p−8/3, otherwise.

, (24)

and

K(p) =
⎧⎨
⎩

16
25

(
45π

8

)3/4
p3/2, if p <

√
28

45π

1 − 9
25

(
28

45π

)4/3
p−8/3, otherwise.

. (25)

Note that the p takes the form of pν (equation 16) or pχ (equation 18)
as defined above.

Following Papaloizou & Larwood (2000) and Cresswell &
Nelson (2008), we define the planet’s migration time-scale as

tm = − L

�tot
. (26)

With this definition of tm, the respective time-scale for a planet on
circular orbit to reach the star is tm/2. In equation (26), the quantity
L is a planet’s orbital angular momentum and �tot is the type-I
torque defined in equation (6).

To account for the effects of eccentricity and inclination damping,
we follow the classical formalism of Papaloizou & Larwood (2000)
and Tanaka & Ward (2004) modified by Cresswell & Nelson (2006,
2008). Eccentricity and inclination damping time-scales are given
by te and ti, respectively. They are defined as

te = twave

0.780

(
1 − 0.14

( e

h

)2
+ 0.06

( e

h

)3

+ 0.18
( e

h

) (
i

h

)2
)

, (27)

and

ti = twave

0.544

(
1 − 0.3

(
i

h

)2

+ 0.24

(
i

h

)3

+ 0.14
( e

h

)2
(

i

h

) )
, (28)

where

twave =
(

M�
mp

) (
M�

�gasa2

)
h4�−1

k , (29)

and M�, ap, mp, i and e are the solar mass and the embryo semimajor
axis, mass, orbital inclination and eccentricity, respectively.

Using the previously defined time-scales, the artificial accelera-
tions to account for type-I migration, eccentricity and inclination
damping included in the equations of motion of the planetary em-
bryos in our simulations are namely

am = − v

tm
, (30)

ae = −2
(v.r)r
r2te

, (31)

and

ai = −vz

ti
k, (32)

where k is the unit vector in the z-direction. Equations (30)–(32)
are given in Papaloizou & Larwood (2000) and Cresswell & Nelson
(2006, 2008).

Figure 1. Evolution of the migration map calculated in a disc with metal-
licity equal to 1 per cent and α = 0.0054 (dimensionless viscosity). The
grey lines in each panel correspond to zero-torque locations and they de-
limit outward migration regions. At tdisc = 0 yr two different regions where
outward migration is possible are shown. The most prominent one extends
from about 5 to 20 au for planets with masses from 10 to more than 40 M⊕.
As the disc evolves these regions move inward, shrink and eventually merge.
The yellow region at about 0.1 au corresponds to the planet trap set at the
disc inner edge.

2.3 A migration map

Combining our disc model and type-I migration recipe, we can
build a migration map showing the migration rate and direction as
a function of a planet’s semimajor axis and mass.

Fig. 1 presents an evolving migration map of our chosen disc.
It shows the direction and relative speed of migration of planets
on circular and coplanar orbits at different locations within the
disc. The direction of migration is represented by the colour. A
negative torque (reddish to black) implies inward migration while
a positive one (orange to light yellow) represents outward migra-
tion. The grey lines represent locations of zero torque. The regions
enclosed by the grey lines are areas of positive torque where plan-
ets migrate outward. The strong positive torque at about 0.1 au is
a consequence of the imposed planet trap at the disc inner edge
(Masset et al. 2006).
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Figure 2. Evolution of a characteristic simulation of our fiducial set during the 5 Myr gas disc phase. Each blue circle corresponds to one embryo and the size
of the point scales as M

1/3
p , where Mp is the planet mass. The vertical axis shows the mass and the horizontal one shows the planet’s semimajor axis. The grey

dashed line delimits regions of outward migration and the disc inner edge. See also animated figure online.

3 FI D U C I A L M O D E L

We performed 120 simulations of our fiducial model. Here we
included the effects of type-I migration, eccentricity and inclination
damping forces as described in Section 2. In later sections, we will
present simulations that test the effects of turbulence.

3.1 Initial conditions

Our simulations start from a population of 20–30 planetary embryos
distributed beyond 5 au. This inner edge was chosen to approxi-
mately correspond to the location of the water snow line at the start
of the simulations, for our chosen disc model (Bitsch et al. 2015).
The embryos’ initial masses are randomly and uniformly selected in
the range from 0.1 to 4.5 M⊕. The total mass in planetary embryos
in each simulation is about 60 M⊕. Adjacent planetary embryos
were initially spaced by ∼5 mutual hill radii RH, m(Kokubo & Ida
2000), where

RH,m = ai + aj

2

(
Mi + Mj

3M�

)1/3

. (33)

In equation (33), ai and aj are the semimajor axes of the planetary
embryos i and j, respectively. Analogously, their masses are given
by Mi and Mj. In all simulations, the time that planetary embryos
start to evolve in the disc corresponds to tdisc= 0 yr.

3.2 Fiducial model: dynamical evolution

Figs 2 and 3 show the dynamical evolution of two characteristic
simulations during the 5 Myr gas phase. The grey lines in each
panel delimit the outward migration regions shown in Fig. 1. The
imposed planet trap at the disc inner edge at ∼0.1 au is also evident.
Embryos migrate inward and converge to form resonant chains.
Resonant planet pairs often become unstable and collide. As plan-
etary embryos collide and grow (and the disc evolves), some enter
the outward migration regions as it is possible to see in the panels
corresponding to 0.6 and 0.75 Myr. Planets inside the outward mi-
gration region slowly migrate inward, once the outward migration
region also moves inward and shrinks (Lyra et al. 2010). Between
1 and 4 Myr, the outward migration regions have evolved such that
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Figure 3. Another example of the dynamical evolution of the planetary embryos during the 5 Myr gas disc phase. The size of each blue circle scales as M
1/3
p ,

where Mp is the planet mass. The vertical axis shows the mass and the horizontal one shows the planet’s semimajor axis. The grey dashed line delimits regions
of outward migration and the disc inner edge. See also animated figure online.

planets larger than 5 M⊕ migrate inward to the inner regions of the
disc. This deposits planets in long resonant chains at the inner edge
of the disc. Small planetary embryos – typically smaller than 1 M⊕
migrate very slowly and stay beyond 1 au. At the end of the gas disc
phase planetary systems exhibits compact resonant configurations
with 5–10 planets inside 0.5 au.

Figs 4 and 5 show the dynamical evolution during and after the
gas disc phase for the simulations shown in Figs 2 and 3. Recall that
the gas lasts 5.1 Myr and the entire simulations last 100 Myr. The
simulations from Figs 4 and 5 behaved in a similar fashion during
the gas disc phase, but their later evolutionary paths are contrasting
examples. The system from Fig. 4 remained stable after the gas disc
dissipated, surviving in a long resonant chain containing six plan-
ets interior to 1 au. The system from Fig. 5 underwent a series of
instabilities that led to collisions and consequently a planetary sys-
tem that is dynamically less compact and more dynamically excited
than the one from Fig. 4. The final orbital eccentricities of planets
shown in Fig. 4 are less than 0.05 and their orbital inclinations are
smaller than 0.◦1. The final eccentricities of planets in Fig. 5 are
as high as 0.1 and their inclinations are as high as 6◦. The most
massive planets were somewhat larger in the unstable simulation as

well (∼18 M⊕ for the simulation from Fig. 5 versus 11 M⊕ for the
simulation from Fig. 4).

4 T U R BU L E N T D I S C S

Hydrodynamical instabilities in gaseous protoplanetary disc gener-
ate turbulence in the disc and transport angular momentum. Insta-
bilities include the Rossby-wave instability (Lovelace et al. 1999),
the global baroclinic instability (Klahr & Bodenheimer 2003),
the Kelvin–Helmholtz instability generated during dust vertical
sedimentation towards the disc mid-plane (Johansen, Henning &
Klahr 2006) and the vertical shear instability (Nelson, Gressel &
Umurhan 2013; Stoll & Kley 2014). Another potentially important
source for the observed gas accretion rate on young stars is turbu-
lence driven by the magnetorotational instability (MRI; Balbus &
Hawley 1998). In a sufficiently ionized and magnetized disc, the
MRI generates magnetohydrodynamic turbulence that leads to
outward angular momentum transport (Brandenburg et al. 1995;
Armitage 1998). MRI turbulence produces large-scale, axisymmet-
ric and long-lived density and pressure perturbations in the disc
(Hawley, Gammie & Balbus 1996). Here, we perform simulations
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Figure 4. Dynamical evolution of planets in one simulation during and after the gas disc dispersal. The panels show the temporal evolution of planets’
semimajor axis, eccentricity, mass and orbital inclination. The same line colour is used to consistently represent an individual planet in all panels. The gas
dissipates at 5.1 Myr and the system is numerically integrated up to 100 Myr. This planetary system is dynamically stable after the gas disc phase for at least
100 Myr. The grey dashed vertical line shows the time of the disc dissipation.

testing the role of this kind of turbulence for the formation of close-
in super-Earths by inward migration. We assume that turbulence
operates at levels consistent with estimates from 3D magnetohy-
drodynamic simulations (e.g. Laughlin, Steinacker & Adams 2004;
Baruteau & Lin 2010). However, one should also note that recent
studies have proposed that a number of non-ideal effects can sup-
press magnetorotational turbulence in a large region of the disc
(Turner et al. 2014).

The effects of stochastic forcing on planet migration have
been studied by several authors (Nelson & Papaloizou 2003;
Papaloizou & Nelson 2003; Winters, Balbus & Hawley 2003;
Laughlin et al. 2004; Nelson 2005; Ogihara, Ida & Morbidelli
2007; Adams, Laughlin & Bloch 2008; Lecoanet, Adams &
Bloch 2009; Rein & Papaloizou 2009; Baruteau & Lin 2010;
Nelson & Gressel 2010; Ketchum, Adams & Bloch 2011; Pierens,
Baruteau & Hersant 2011; Horn et al. 2012; Pierens, Baruteau
& Hersant 2012; Rein 2012). However, the effects of turbu-
lence for the origins of close-in super-Earths remain to be
carefully addressed.

To model the turbulent motion of the gas, which essentially corre-
sponds to density fluctuations in the gaseous disc, we use the model

by Laughlin et al. (2004) as modified by Ogihara et al. (2007) and
Baruteau & Lin (2010). The specific turbulent force is given by

F = −�∇�, (34)

where

� = 103�gasr
2

π2M‹

. (35)

Note that our � is larger than that in Laughlin et al. (2004) by a
factor of ∼20 as found by Baruteau & Lin (2010). The potential
induced by the turbulent perturbations consists of the sum of N
independent, scaled wave-like modes as

� = γ r2�2
N∑

i=1

�c,m, (36)

where a single oscillation mode is defined as

�c,m = ξe
− (r−rc )2

σ2 cos
(
mθ − φc + �ct̃

)
sin

(
π

t̃

�t

)
. (37)
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Figure 5. Dynamical evolution of planets in one simulation during and after the gas disc dispersal. The panels show the temporal evolution of planets’
semimajor axis, eccentricity, mass and orbital inclination. The same line colour is used to consistently represent an individual planet in all panels. The gas
dissipates at 5.1 Myr and the system is numerically integrated up to 100 Myr. This planet system presents a phase of dynamical instability after the gas disc
phase which lead to collisions and, consequently, to a planetary system dynamically less compact but relatively excited. The grey vertical line shows the time
of the disc dissipation.

In equation (35), according to Baruteau & Lin (2010) the strength
of the potential is given by

γ = 0.085h
√

α. (38)

Also, as noted in equation (36), a specific mode is determined by
the azimuthal wavenumber m, which we randomly sort with a loga-
rithmic distribution between 1 and 96, the centre of its initial radial
location rc, and azimuthal phase φc. Only modes with wavenumber
m smaller than 6 are considered (Ogihara et al. 2007). To sample
rc, we use a lognormal distribution to select values between rin and
rout. In our simulations rin = 0.1 au and rout = 25 au. The outer edge
of the turbulent region (rout) roughly corresponds to the initial lo-
cation of the outermost planetary embryo of the system. Thus, our
planet formation/migration region is significantly wider than that in
Baruteau & Lin (2010) and Ogihara et al. (2007). Because of this
we assume the existence of a larger number of wave-like modes N
in the disc than most of previous studies. We set N = 125, similar
to Horn et al. (2012). φc is sorted with a uniform distribution be-
tween 0 and 2π . The dimensionless parameter ξ is sorted according
to a Gaussian distribution with a unitary standard deviation and
mean-value zero. Each mode has a radial extent of σ = πrc/4m.

The planet coordinates are represented by the radial distance r and
its azimuthal coordinate θ . �c is the Keplerian frequency calculated
at rc. Still, turbulent fluctuations appear and disappear in the disc.
To account for this phenomenon in equation (35), the wave mode
lifetime is defined by �t = 0.2πrc/mcs (Baruteau & Lin 2010),
where cs is the local sound speed. Thus, a given mode m may only
exist from its birth time t = t0 to t̃ = t − t0 = �t . If t̃ > �t then a
new mode is created to take the extinguished one’s place.

Finally, according to Ogihara et al. (2007), the radial, azimuthal
and vertical components of the artificial force to account for the
effects of turbulence may be written as

Fturb,r = γ�r�2
N∑

i=1

(
1 + 2r(r − rc)

σ 2

)
�c,m, (39)

Fturb,θ = γ�r�2
N∑

i=1

�c,m, (40)

and

Fturb,z = 0. (41)
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Figure 6. Dynamical evolution of planets in one simulation including the turbulent effects during and after the gas disc dispersal. The panels show the temporal
evolution of planets’ semimajor axis, eccentricity, mass and orbital inclination. The same line colour is used to consistently represent each planet in all panels.
The gas dissipates at 5.1 Myr and the system is numerically integrated up to 100 Myr. This planetary system is dynamically stable after the gas disc phase for
at least 100 Myr. The grey vertical line shows the time of the disc dissipation.

For simplicity, in our model we assume that there is no feedback
from the stochastic density/pressure fluctuations in the disc on our
disc structure model. Basically, we assume the same underlying
disc model than that used for our fiducial simulations.

4.1 Simulations

We performed 120 simulations with initial conditions identical to
those from our 120 fiducial simulations but with the effects of
turbulence. To illustrate the dynamical evolution of the planets in
one characteristic simulation including turbulent effects, we used
the same initial distribution of planetary embryos as in Fig. 4. The
result of this simulation is shown in Fig. 6.

Fig. 6 shows that turbulence is important in the outermost parts
of the disc, visible by the ‘random walks’ in semimajor axis of
planets beyond ∼5 au. Turbulence also tends to increase the or-
bital eccentricity of planets in this region (Ogihara et al. 2007; Rein
2012). However, as planets migrate inward the effects of turbulence
weaken. When planets reach the inner edge of the disc the turbu-
lence is essentially negligible. It is easy to understand this result
by inspecting our turbulent model. In our model, the extent of the

fluctuation mode scales with rc (radial coordinate of the mode). In
addition, assuming an aspect ratio of 3 per cent for the inner re-
gions of the gaseous disc and a given m, the mode lifetime scales as
�t ∼ r3/2

c . Thus, modes in the inner regions of the disc (e.g. inside
1 au) are also short-lived and this implies that they have modest
to negligible contributions in disturbing the orbit of those planets
(see also discussion on the effects of using large wavenumbers in
Ogihara et al. 2007). Modes generated farther out, on the other
hand, may be excessively far from planets already reaching the in-
ner regions of the disc, to be able to strongly interact with them. In
addition, it is also important to recall that the turbulence strength
scales with the local gas surface density. At one given location, as
the disc dissipates, its effects become relatively weaker. There is
thus no significant difference between the results of our fiducial
model and the results from that including effects of turbulence.
Section 7 will discuss in some details why our results are different
from others (Adams et al. 2008; Rein 2012) in this respect.

In the next two sections, we perform a careful statistical analysis
of the results of our fiducial and turbulent models. We will interpret
the origins of their eventual differences and compare these results
with observations and other works in the literature.
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Figure 7. Cumulative distribution of the time of the last collision in our
simulations. Cumulative distributions are separately calculated for the gas
disc phase and after gas disc dissipation phase. Left: computed from col-
lisions happening between 0 and 5 Myr. Right: computed from collisions
happening from 5 to 100 Myr.

5 SI M U L ATI O N O U T C O M E S

Our simulations follow a bifurcated evolutionary path. During the
gas disc phase, planetary embryos grow and migrate inward to
the inner edge of the disc. The planets settle into long chains of
mean-motion resonances. It is important to recall that the resonant
chains are established very early, so a disc with a reduced lifetime
would not help in avoiding these configurations. Resonant chains are
typically established in less than 1.5 Myr (e.g. Figs 4–6). After the
gas disc dissipates, a large fraction of super-Earth systems undergo
a dynamical instability. The planets’ orbits cross, leading to a phase
of collisions that destroys the resonant chain. However, a fraction
of resonant chains remain stable and never undergo a late phase of
collisions.

We now analyse more in detail the evolution and outcome of
simulations. We present both the fiducial and turbulent sets of sim-
ulations.

Fig. 7 shows the cumulative distribution of the time of the last
collision in our simulations during two different epochs: from 0 to
5 Myr and from 5 to 100 Myr. During the gas disc phase, most
systems have their last collisions after 1 Myr (left-hand panel).
This is expected since this corresponds to when most planets are
approaching the disc inner edge (see for example Figs 5 and 6),
and have already reached relatively more compact configurations.
This generates dynamical instabilities and collisions. Fig. 7 also
shows that during the gas disc phase the cumulative distributions
of our fiducial and turbulent models are similar. The cumulative
distributions of the last collision epoch grow broadly at constant
rate from 1 to 4.5 Myr, both in our fiducial and turbulent model
simulations. Thus, from 1.5 to 5 Myr there is no preferential time
for last collision to take place and every forming planetary system
exhibits at least a few collisions during the gas disc phase. Because
the disc is still present, the eccentricities and inclinations are damped
again after each collision and the resonant chain is recovered due
to the effect of residual migration.

After gas dispersal most late collisions occur during the first
20 Myr (right-hand panel of Fig. 7). Dynamical instabilities events
tend to start as soon as the gas goes away (or when the gas
becomes sufficiently rarefied). After about 20 Myr the rate of colli-
sions starts to drop. Also, the cumulative distributions do not reach
1. This indicates that not all planetary systems underwent instabil-

ities after the gas disc phase (or did not experience any collision).
About 60 per cent of the fiducial simulations and 50 per cent of
the turbulent simulations experienced dynamical instabilities and
at least one collision after the gas disc phase. Comparatively, only
20 per cent of the in situ formation simulations of Ogihara et al.
(2015a) were dynamically unstable after gas dispersal. This is prob-
ably a consequence of the very small final number of planets in their
planetary systems. We also recognize that the fraction of simulations
presenting dynamical instabilities may increase if our simulations
were integrated for longer than 100 Myr. We are limited in the
sense of extending the integration time of these simulations to Gyr
time-scales because of the very small time-step necessary to resolve
the orbits of planets that reach the inner orbit of the disc and the
consequent long CPU time demanded. However, we do not expect
a linear growth with time of the number of unstable systems.

Fig. 8 presents representative simulated systems at 5 and 100 Myr.
For reference, we also show selected observed planetary systems.
Lines connect planets belonging to the same planetary system. More
massive planets tend to park preferentially at the inner edge of the
disc (Fig. 8, left-hand panel). This is because more massive planets
simply migrate faster than small ones and just scatter outward or
collide with small ones during their radial excursion to the inner-
most regions of the disc (Izidoro, Morbidelli & Raymond 2014).
However, we stress that there is no dramatic mass ranking in our
model, in contrast with systems of super-Earths produced by in
situ accretion (Ogihara et al. 2015a). This is a strong argument
that favours the migration model over the in situ model. After the
gas dissipates, instabilities largely erase the mass ranking (Fig. 8 –
middle panel).

5.1 Architecture of planetary systems before gas dispersal

Our simulations can be separated into two groups: those that under-
went a late dynamical instability after the gas disc dissipated, and
those that remained dynamically stable. We often refer to these as
stable and unstable systems. It is important to keep in mind that the
unstable systems started out as resonant chains. Thus, it is worth
first to investigate how unstable planetary systems compare to sta-
ble ones before the gas dispersal, namely at 5 Myr. The question
we want to address is the following: Is there any systematic differ-
ence in the architecture of unstable and stable systems before gas
dispersal? To answer this question we now separate the simulations
of our fiducial and turbulent models in stable and unstable groups.
Thus, we are left with four sets of simulations which we naturally
nominate: fiducial stable, fiducial unstable, turbulent stable and tur-
bulent unstable. The results of our analysis for each of these groups
are shown in Fig. 9.

We first focus on the results of our fiducial model. Observing the
period ratio distribution of adjacent planet pairs in Fig. 9 (top-plot)
it is clear that at 5 Myr planetary systems are found in compact first-
order mean-motion resonances (seen as the vertical lines in the plot).
Yet, a more clinical analysis reveals that unstable planetary systems
are slightly more dynamically compact than stable ones (at 5 Myr).
Fig. 9 (middle plot) also shows that at 5 Myr planetary systems
have typically multiple planets. Interestingly, the typical number of
planets of stable chains is smaller than the number of planets of
unstable ones. Fig. 9 also show how the masses of planets in stable
and unstable systems compare to each other at 5 Myr. The mass
cumulative distributions of Fig. 9 (bottom plot) show that planets
in stable systems are predominantly more massive than those in
unstable simulations. Finally, note that these trends are robust since
they are observed also in the turbulent sets of simulations.
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Figure 8. Representative sample of planetary systems produced in our fiducial and turbulent models at 5 and 100 Myr. The vertical axis shows the mass
and the horizontal one represents the planets’ semimajor axis. Left: planetary systems at 5 Myr. Middle: planetary systems at 100 Myr. For each model, we
randomly selected 20 planetary systems that are plotted together. Right: selected observed planetary systems. The line connects planets in the same system.

The results of Fig. 9 are quite intuitive since we expect more
compact systems to be more prone to exhibit dynamical instabili-
ties than more spread out ones. However, it is important to recall
that although there are some quantitative differences, planetary sys-
tems shown in Fig. 9 are qualitatively similar in some key aspects.
The most notable one is that, before gas dispersal, planets pairs
are essentially found in compact resonant configurations. However,
this is about to change for unstable systems. While stable systems
configuration remains essentially unchanged during 100 Myr, in the
next section we show how dynamical instabilities sculpt unstable
planetary systems.

5.2 The importance of dynamical instabilities

In this section, we analyse the architecture of unstable planetary sys-
tems at two epochs: before gas dispersal (at 5 Myr) or, equivalently,
‘before instability’ and at 100 Myr (after instability). Our main goal
is to compare how dynamical instabilities shape the architecture of
planetary systems. Note that the dynamical architectures of stable
systems are essentially identical at 5 and 100 Myr.

Fig. 10 shows the number of planets in unstable planetary systems
before and after gas dispersal, or equivalently before and after the
dynamical instability phase. Given how compact resonant chains
are, they typically contain 6–10 planets inside 0.5 au. However,
given that instabilities spread out the system and reduce the number
of planets (due to collisions), the typical unstable system contains
two to five planets inside 0.5 au.

There is no glaring difference between the populations of reso-
nant chains in the fiducial and turbulent simulations. Yet roughly
10 per cent more fiducial simulations were unstable at later times
(Fig. 7). This difference probably comes from a subtle difference
in some characteristics of the resonant chains (e.g. the number of
planets in the chain, commensurabilities and masses of planet pairs
(Matsumoto, Nagasawa & Ida 2012), amplitude of libration of reso-
nant angles (Adams et al. 2008), etc. Perhaps part of this difference
is also due to the small number of statistics.

Fig. 11 shows the period ratio distribution in systems that under-
went dynamical instabilities after the gas dispersed. We also add the
sample of planet candidates from the Kepler mission (Borucki et al.

2011; Batalha et al. 2013; Rowe et al. 2014). To better compare
our simulations with observations, we applied a simple filter to the
observations and our simulations. We only included planets with
orbital radii smaller than 0.5 au. In the Kepler data, we included
planets with orbital period shorter than 130 d and radii smaller than
4 R⊕. The motivation for choosing these cut-offs comes from
the completeness of Kepler observations (Silburt, Gaidos & Wu
2015). We advance to the reader that to account for the effects of
inclination distribution we will perform simulated observations in
Section 6.

At the end of the gas disc phase at 5 Myr, planets are universally
found in chains of mean-motion resonances, seen as the vertical
jumps in Fig. 11. Resonant chains are far more compact than the
observed systems. These are the ‘before instability’ systems (see
also the stable systems in Fig. 9). There is little difference between
the fiducial and turbulent simulations. Instabilities break the reso-
nant chains created during the gas disc phase, promote collisions
and scattering events that reduce the number of planets in the sys-
tem (Fig. 10). This tends to produce planetary systems with planets
far more apart from each other, and also on orbits with higher ec-
centricities and orbital inclinations (compare Figs 4 and 5). This
same trend is observed in the turbulent simulations. After dynam-
ical instabilities, our planetary systems are less compact than the
observed systems, at least for period ratios smaller than 3.1 This
suggests that dynamical instabilities play a crucial role in sculpting
system of super-Earths. (see also Pu & Wu 2015, who proposed
that the Kepler systems were sculpted by instabilities but without
starting from resonant chains.)

Fig. 12 shows the cumulative distribution of semimajor axis,
mass, orbital eccentricity and mutual inclination of simulated plan-
ets inside 0.5 au. Cumulative distributions of semimajor axis (left-
hand upper panel of Fig. 12) are broadly identical before and after
instabilities. Nevertheless, it should be natural to expect that, before
dynamical instabilities, simulations have a much smaller fraction of
planets far out than afterwards, where planets have been scattered
everywhere. However, this effect is not evident in the cumulative

1 The tail of the period ratio distribution probably suffers from selection bias
effects.
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Figure 9. Cumulative distributions of period ratio of adjacent planets (top),
the number of planets in the resonant chain (middle) and masses of planets
(bottom) at 5 Myr. Only planets inside 0.5 au are considered. The grey line
in the top panel shows the period ratio distribution of adjacent planet pairs
in Kepler systems.

distributions because it is normalized to account for planets only
inside 0.5 au. The only difference is that the, before instability, sys-
tems show a pile-up of planets at about 0.15 au, near the disc inner
edge, whereas this edge has been wiped out in the after instabil-
ity systems. There is no significant difference between fiducial and
turbulent simulations.

The top-right panel of Fig. 12 shows the cumulative mass distribu-
tions. Planets before instability are far less massive than afterwards.

Figure 10. Cumulative distribution of the total number of planets inside
0.5 au produced in our fiducial and turbulent model. The cumulative distri-
butions are shown at 5 and 100 Myr. Only unstable planetary systems are
considered here.

Figure 11. Cumulative period ratio distributions of adjacent planets pro-
duced in our fiducial and turbulent model for dynamically unstable systems,
before and after the dynamical instability. The grey line corresponds to the
observed period ratio of adjacent planets in the Kepler data.

The median planet mass after instability is about three times larger.
This is simply due to the fact that the unstable systems underwent
a late phase of collisions2. There is again no difference between
turbulent and fiducial simulations.

The bottom panels of Fig. 12 show the eccentricity and mutual
inclination distributions of simulated planets. The orbital distribu-
tion of Kepler planets was derived in a series of statistical studies
(Lissauer et al. 2011a; Figueira et al. 2012; Kane et al. 2012;
Tremaine & Dong 2012; Fabrycky et al. 2014; Plavchan, Bilinski
& Currie 2014; Van Eylen & Albrecht 2015; Ballard & Johnson
2016). To represent the eccentricity distribution of observations de-
rived from statistical studies we used a Rayleigh distribution with
σ e = 0.1 (e.g. Moorhead et al. 2011). For the inclination distribution
we used a Rayleigh distribution with σ i = 1.◦5 (e.g. Fang & Margot
2012).

2 Note that, in the inner regions, collisions are much more common than
ejections. It is an issue of Safronov number (Safronov 1972).
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Figure 12. Cumulative distribution of semimajor axis (top-left), mass (top-right), orbital eccentricity (bottom-left) and mutual inclination (bottom-right) of
planets inside 0.5 au in our simulations. The eccentricity and orbital inclination distributions of observed Kepler planets derived from statistical analysis are
shown for comparison in the respective lower panels. The eccentricity distribution shown by the grey line follows a Rayleigh distribution with σ e = 0.1
(Moorhead et al. 2011), while the mutual inclination distribution (grey line) follows a Rayleigh distribution with σ i = 1.◦5 (Fang & Margot 2012). The latter
put more than 85 per cent of the planets with orbital inclination smaller than 3◦.

The eccentricities and inclinations of planets before instability
(or equivalently of planets in stable systems) are extremely low.
These resonant chains have very low eccentricities and are close
to perfectly coplanar. As expected, the eccentricity and inclination
distributions of the planets are strongly affected by dynamical in-
stabilities. Compared to the eccentricity distribution inferred from
statistical analysis, planets after instabilities are in better agree-
ment with the assumed values but the difference is still noticeable
(Fig. 12; bottom-left). Of course, we have used a single distribu-
tion to represent the expected quantities while the real data may
require more than a single distribution to fit the data (Lissauer et al.
2011a). The inclination distribution of planets in our simulations is
also quite different from the suggested by previous studies (Fig. 12;
bottom-right). In Section 6.2, we will discuss how the inclination
distribution of planets in our simulations compares to the distribu-
tion inferred from statistical analysis.

6 MATC H I N G TH E O B S E RV E D K E P L E R
PL ANETS

In our simulations, super-Earth systems follow a typical evolution-
ary path. Planets grow, migrate inward and pile up into resonant
chains far more compact than the observed ones (see Fig. 11). A

substantial fraction of these resonant chains become unstable, caus-
ing their planetary systems to spread out dynamically.

Following the previous section, we divide our simulations into
two batches: those that did not undergo instabilities after the dissi-
pation of the disc and those that did. Stable simulations remain in
compact resonant chains whereas the unstable systems have under-
gone a late phase of accretion and spread out considerably. Note that
for this analysis we are using both the fiducial set of simulations
and the set that included turbulence, given that we could find no
significant difference in outcomes of these simulations (Section 5).

6.1 The period ratio distribution

Fig. 11 shows the period ratio distribution of adjacent planet pairs
in unstable systems before and after dynamical instabilities. Before
instabilities, planetary systems are clearly far more compact than the
observed Kepler systems. Similarly to planet pairs of stable systems,
before instability planet pairs are locked in resonant chains, seen
as vertical lines in Fig. 11 (see Fig. 9 for stable systems). After
instabilities, the unstable systems have spread out compared with
those that remain stable, and are no longer preferentially found in
resonance. In fact, they are modestly more spread out than observed
Kepler systems.
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Figure 13. The separation of planet pairs in unstable simulations as a function of the total mass. The low-mass planet pairs have Mtot = M1 + M2 < 25 M⊕,
the high-mass have Mtot > 34.5 M⊕, and medium-mass pairs are in between. Left: period ratio distribution. Right: separation in units of mutual Hill radii.
Masses for the Kepler systems were ributed using the probabilistic mass–radius relation of Wolfgang et al. (2016).

We now test the effect of planet mass on the planets’ orbital
spacing. We divide our simulations (unstable systems) into three
groups by total mass Mtot = M1 + M2, where M1 and M2 are the
masses of adjacent planets pairs. The low-mass planet pairs have
Mtot < 25 M⊕, the high-mass pairs have Mtot > 34.5 M⊕, and the
medium-mass pairs lie in between. These boundaries were chosen
to put a roughly equal number of planet pairs in each bin.

Fig. 13 (right-hand panel) shows that, after instabilities, planets
are spaced by mutual Hill radii and not by period ratio. Higher
mass planet pairs are systematically more widely spaced than lower
mass pairs in terms of the period ratio of adjacent planets (left-hand
panel). However, pairs of planets with different masses have very
similar distributions when measured in mutual Hill radii. They also
provide a good match to the Kepler systems, for which we assigned
masses using the probabilistic mass–radius relation of Wolfgang,
Rogers & Ford (2016): M = 2.7(R/R⊕)1.3. This fits nicely with
the results of Fang & Margot (2012), who inferred that Kepler
systems are typically spaced by roughly 20 ± 10 mutual Hill radii.
It also emphasizes that the Kepler systems appear to be the result
of dynamical instabilities (see also Cossou et al. 2014; Pu & Wu
2015).

We have shown that the unstable planet pairs are more spread out
than the observed ones, and that the stable planet pairs are more
compact than the observed ones (see Fig. 11). It follows that a
mixture of the two populations may match observations. Indeed,
several chains of three or more resonant planets have been identi-
fied, such as Kepler-223 (Mills et al. 2016), Kepler-80 (MacDonald
et al. 2016), GJ 876 (Rivera et al. 2010) and TRAPPIST-1 (Gillon
et al. 2017). While dynamical instabilities can generate resonances
(Raymond et al. 2008), the delicate architecture of resonant chains
indicates that they are signposts of stable systems. Matching obser-
vations thus requires that a fraction of resonant chains remain stable
after dissipation of the gas disc.

We attempt to match the observed period ratio distribution using a
mixture of stable and unstable systems from our simulations. There
are two challenges in this exercise. First, our simulations provide
planet masses but most Kepler observations only provide planetary
radii. Several studies have used mass constraints to produce mass–
radius relationships for transiting planets (e.g. Lissauer et al. 2011b;
Fang & Margot 2012; Weiss & Marcy 2014). As above, we adopt
the probabilistic study of Wolfgang et al. (2016). We find that most

of our simulated planets are significantly more massive than those
inferred for the Kepler systems. As we impose a cut-off of 4 R⊕ in
the Kepler data, the maximum mass inferred using the Wolfgang
mass–radius relationship is 16.4 M⊕ and the median planet mass
in the sample is 6.3 M⊕. The median mass of unstable planets at
the end of our simulations is 14 M⊕.3

The second challenge in this exercise is understanding obser-
vational bias. The transit probability scales linearly with the or-
bital radius such that close-in planets are far easier to detect (see
Charbonneau et al. 2007; Winn 2011; Wright & Gaudi 2013). For a
perfectly coplanar planetary system aligned with the observer, ev-
ery planet transits, although it remains a higher probability than the
outer planets, will be missed. But for a system with many planets
on strongly inclined orbits relative to the observer, none transits.
In a three planet system, if the middle planet does not transit but
the inner and outer planets do, the inferred period ratio is P3/P1

rather than P2/P1 or P3/P2, and is pushed to a much higher value.
This spreading to higher period ratios is a function of the mutual
inclinations among planets.

We attempt to quantify observational selection effects by per-
forming simulated observations of our planet pairs. We wrote a
simple code to observe each of our simulated systems from a large
number of vantage points evenly spaced on the celestial sphere. For
a given line of sight, we kept track of which planets were detected.
We then assembled the detected planetary systems from all line of
sights.

Fig. 14 (left-hand panel) shows the effect of observational bias
on our simulated systems. The very low inclination resonant stable
systems were barely affected by observational bias. The plane of
these systems is so thin that they are almost always either detected or
not (depending on the line of sight). The higher inclination unstable
systems (e.g. compare Figs 4 and 5) are more strongly affected
by observational bias. Naturally, the orbital configuration of the

3 It is interesting to note that the median mass of the planets trapped in
resonant chains is 5.6 M⊕. This is comparable to the inferred value for
Kepler sample of 6.3 M⊕. One might also speculate that the accretion of
planets during late instabilities is inefficient due to collisional erosion and
mass-loss (see e.g. Leinhardt & Stewart 2012; Stewart & Leinhardt 2012).
That remains an interesting avenue for future study.
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Figure 14. The outcome of our simulated observations. Left-hand panel: the period ratio distribution of the observed Kepler systems (thick grey line), as well
as our stable (solid red line) and unstable (solid blue line) simulations. The dashed lines show the planet pairs retrieved by simulated observations. Right-hand
panel: P values from K-S tests comparing the Kepler systems with a sample of simulated planet pairs with M < 16.4 M⊕, after taking observational bias into
account with simulated observations. The dashed/dotted line is at p =10 per cent/1 per cent.

adjacent planet pairs in these systems are systematically shifted to
larger period ratios, as planets are eventually missed in transit.

We performed a simple experiment to determine the best-fitting
combination of simulations to match observations. We tested the
effect of the mixing ratio of stable and unstable systems on how
well the simulations match observations. We restricted ourselves
to planet pairs in which each planet was less massive than the
Kepler cut-off of 16.4 M⊕, which corresponds to the mass of a
4 R⊕ planet with the Wolfgang et al. (2016) mass–radius relation.
This is our upper size cut-off for Kepler planets. We also restricted
this analysis to systems with P2/P1 ≤ 3, to reduce the contribution
from systems with hard-to-characterize missed planets. We then
generated different samples of simulated planets by varying the
fraction of stable systems F included in the sample. We performed
K-S tests to roughly judge the goodness of fit for each sample.
We note that even though our simulated observations contained
thousands of planet pairs, the effective number of points used to
generate p values was limited by a combination of the number
of simulated planet pairs with appropriate masses and the Kepler
sample.

Fig. 14 (right-hand panel) shows that our simulated observations
roughly match the Kepler sample if less than 25 per cent of planet
pairs come from stable simulations (for a probability p ≥ 10 per cent
that the two samples are consistent with having been drawn from
the same distribution). This can be interpreted as an indicator of the
fraction of observed systems that did not undergo an instability, for
which the planets survived in a resonant chain. The abundance of
resonant chains among known Kepler systems is perhaps 5 per cent
(Fabrycky et al. 2014). We expect this to correspond to the contri-
bution from stable systems. Our simulations are indeed consistent
with that value.

We expect that this analysis was further affected by the fact that
our simulated planets were in general far more massive than the Ke-
pler planets. After an instability, the mutual inclinations between the
planets’ orbits naturally correlate with the strength of the gravita-
tional scattering, i.e. the planets’ masses. Pairs of low-mass planets
in systems with other, high-mass planets, may therefore have higher
mutual inclinations than they otherwise would. This ‘inclination in-
flation’ should have the effect of pushing period ratios to higher

values. We expect that modestly lower mass systems would there-
fore have lower mutual inclinations compared with our simulations.
Lower mass systems would appear more compact and thus require
a smaller contribution of stable systems to match observations.

To test the other extreme, we performed the same exercise as
above without taking observational bias into account. For the same
restrictions as above (M < 16.4 M⊕, P2/P1 ≤ 3), the best match to
observations was for the smallest contribution from stable systems.
However, up to nearly 20 per cent of stable systems were allowed
while maintaining p ≥ 10 per cent.

We conclude that our simulations can indeed provide an adequate
match to the period ratio distribution of Kepler planet pairs. We
can firmly constrain the abundance of stable resonant chains to
contribute less than ∼25 per cent of planet pairs.

6.2 The Kepler dichotomy

The Kepler super-Earth sample is bimodal (Lissauer et al. 2011a;
Fabrycky et al. 2014): stars tend to either have one or many super-
Earths (Fang & Margot 2012; Ballard & Johnson 2016). It has
been proposed that Kepler dichotomy is a signature of planet–
planet scattering (Johansen et al. 2012), in situ growth close-in
(Moriarty & Ballard 2016) or instabilities produced by spin–orbit
(mis-)alignment (Spalding & Batygin 2016).

We performed synthetic observations to determine whether our
simulated planetary systems are consistent with the Kepler di-
chotomy. We considered viewing angles spanning from 30◦ above
the initial i = 0 plane to 30◦ below, with even sampling in azimuth.
For each viewing angle, we determined the number of planets that
transited for each of our stable and unstable simulations.

From viewing angles where at least one transiting planet was
detected, Fig. 15 shows the distribution of the number of transit-
ing planets. The difference between stable and unstable systems is
striking. Stable systems have such low mutual inclinations that it is
common to detect high-N systems. Only 18 per cent of detections
were of a single planet in transit, and 66 per cent of detections had
N ≥ 3. In contrast, for unstable systems 78 per cent of outcomes
were single-planet detections and only 7 per cent of detections had
three or more planets.
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Figure 15. The number of planets detected in synthetic observations of
our simulated planetary systems. The blue/red curves represent the unsta-
ble/stable simulations (combining the fiducial and turbulent sets). The grey
curve is a 90–10 mixture of the unstable and stable simulated systems, re-
spectively. The thick green curve is the Kepler sample, removing single
giant planet systems but keeping systems with giants and super-Earths.

If we combine stable and unstable systems in a 1-to-9 ratio (i.e.
with 90 per cent unstable and 10 per cent stable), we naturally
obtain a ‘dichotomy’ that is almost identical to the observed Ke-
pler dichotomy (Fig. 15). The significant mutual inclinations in the
unstable systems produce a peak at N = 1, while the very low
mutual inclination stable systems provide a long tail to high-N.
Low-multiplicity systems N = 1–2 are dominated by unstable sys-
tems whereas high-multiplicity systems (N ≥ 4) are more often
stable. The Kepler-223 (Mills et al. 2016) and TRAPPIST-1 (Gillon
et al. 2017) multiresonant super-Earth systems appear to be good
examples of high-N stable systems.

This would suggest that the Kepler dichotomy is simply an ob-
servational artefact. Our simulated super-Earth systems naturally
produce a spike of apparent singleton planets. However, each of
those systems contains at least one – and in some cases many more
– additional planets within 0.5 au and beyond. As we showed above
this same sample of simulations matches the observed period ratio
distribution (see Fig. 14). Of course, we do not claim to match all
the details of the Kepler sample, but our results strongly suggest that
there is no need to invoke special evolutionary histories for single
super-Earth systems. If, on the other hand, singleton super-Earth
systems turn out to have a high false positive rate, this analysis
would need to be re-visited.

Previous studies had mixed success in matching the Kepler di-
chotomy. Johansen et al. (2012) drew from the observed period
ratio distribution and varied the width of a Gaussian distribution
of mutual inclinations. Starting from triple-planet systems, they
were unable to reproduce the dichotomy, quantified as the rela-
tive abundance of observed triple-, double- and single-planet sys-
tems. Lissauer et al. (2011a) and Ballard & Johnson (2016) were
equally unable to match the Kepler dichotomy simply because their
single-component model of planetary architectures underestimates
the number of single-planet systems.

Building on the work of Johansen et al. (2012), we tested whether
we could match the dichotomy with a single inclination distribu-
tion (single-component model of system architecture). We gener-
ated synthetic planetary systems as follows. The closest planet was
placed between 0.05 and 0.1 au, and subsequent planets were spaced
by drawing a period ratio evenly between 1.5 and 3. Systems ex-
tended out to 0.5 au, naturally providing a wide range of planet
multiplicities. The planets’ orbital inclinations were drawn from a

Rayleigh distributions with σ varying from 1◦ to 10◦. The results
of this experiment matched qualitatively those of Johansen et al.
(2012). Fig. 16 (left-hand panel) shows that no Rayleigh distribu-
tion matches the Kepler multiplicity distribution. The best result is
for σ = 4◦, which provides an acceptable match for systems with
1, 2 or 3 planets. However, the Rayleigh distribution dramatically
underproduces systems with N > 3.

The reason our simulations match the dichotomy can be in-
ferred from their mutual inclination distribution (Fig. 16, right-hand
panel). The small contribution of near-coplanar stable systems pro-
vides large N systems whereas the broad inclination distribution of
unstable systems creates a peak at low N.

Fang & Margot (2012) were able to match the dichotomy by intro-
ducing an additional parameter: the multiplicity distribution. This
extra parameter renders the problem much simpler. For instance,
consider perfectly co-planar planetary systems. The observed dis-
tribution can be retrieved in a straightforward way if the multiplicity
distribution of these systems matches the observed distribution (to
within a small observational bias). Indeed, assuming certain sta-
tistical distributions for the number of planets and mutual orbital
inclinations of planet pairs, Fang & Margot (2012) were able to
match both the number of multiple- and single-planet Kepler sys-
tems for some combinations of parameters.

Hansen & Murray (2013) performed in situ growth simulations
starting from a set of initial conditions (planetary embryos) re-
flecting a putative radial distribution of mass in solids. Similar to
previous studies, they found that the number of single-planet sys-
tems is more common in the Kepler data than in their simulated
population. In fact, to match the Kepler multiplicity distribution in
situ growth simulations also require a very specific mix of proto-
planetary systems produced from simulations with quite different
initial conditions. Simulations starting with a distribution of proto-
planetary embryos derived from a shallow disc can account for the
observed single-planet population while simulations starting with
sufficiently steep radial mass distributions of solids tend to produce
multiple transiting planets. A mix of planetary systems produced
from steep and shallow discs allows one to build a good match to
the Kepler planet multiplicity (Moriarty & Ballard 2016). Indeed,
the radial distribution of mass in solids in real protoplanetary discs
may vary from disc to disc but in situ accretion simulations also
predict that the radial distribution of planets in multiplanet systems
should be mass ranked. More specifically, they predict that planet
mass should decrease with semimajor axis (Ogihara et al. 2015a;
Moriarty & Ballard 2016). This expected signature seems to be at
odds with the Kepler data.

Our simulations match the observed Kepler dichotomy with no
free parameters or ad hoc assumptions. Even the relative abundance
of stable and unstable systems was chosen to be the one that already
matches the observed period ratio distribution. The mutual inclina-
tion distribution in our simulations is clearly not a simple function
like the ones used in statistical studies. We encourage statistical
studies to connect with dynamical models to include more realistic
inputs.

There is one significant difference between the population of
planets that matches the dichotomy (Fig. 15) and the one that
matches the period ratio distribution (Fig. 14). In constructing our
sample to match the period ratio distribution, we selected the low-
est mass planet pairs from our simulations because those were the
most reasonable match to the observed planets. However, in each
simulated system there is generally a mix of planet pairs of dif-
ferent masses, so we could not select just the lower mass pairs
when performing simulated observations. However, the inclinations
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Figure 16. Comparison of the distribution of the number of planets in our simulations and statistical studies. Left: distribution of the number of planets of the
observed Kepler systems (thick grey line), as well as our unstable simulations (dashed line), and the distribution derived from different statistical distributions
of mutual inclinations of planets. Right: inclination distributions in our stable systems (blue line), as well as in all our unstable systems (red line), the mix of
unstable of unstable systems (90 per cent unstables plus 10 per cent stables; green line), Rayleigh distribution with σ = 1.◦5 (dashed line; see Fang & Margot
2012) and Rayleigh distribution with σ = 4◦ (dash–dotted line).

in unstable systems are generated by dynamical instabilities after
gas dispersal. This is a mass-dependent process, as the degree of
excitation scales with the planets’ escape velocities. We do find
lower mutual inclinations for lower mass planet pairs. For whole
systems of lower mass planets, one might expect systematically
lower mutual inclinations. This would tend to create a smaller peak
at N = 1. While we have not performed this exercise (because a
new set of simulations would be required), we can infer the ex-
pected outcome. We expect our simulations to be able to match the
multiplicity distribution for N ≥ 2 but underestimate the Kepler peak
at N = 1. This would lead us to predict that the observed Kepler
singletons include a certain percentage of planets that we cannot
explain. These might be false positives or perhaps true singletons
generated by another mechanism (see e.g. Izidoro et al. 2015).

Finally, it is also important to note that Kepler planets in single
and multiple planet systems have statistically different orbital eccen-
tricities distributions. Single Kepler planets are prone to have much
higher orbital eccentricities than planets in multiple planet systems
(Xie et al., 2016). Our results are consistent with this finding.

7 C OMMENTS ON DIFFERENT DISC
T U R BU L E N C E E F F E C T S IN D I F F E R E N T
WO R K S

To compare how the effects of turbulence affect the outcome of our
simulations, we calculated a diversity of parameters at two different
ages of our simulations. This was done first at the disappearance of
the disc and then after 100 Myr of integration in a gas-free scenario.
We found that essentially there are no differences between the results
of simulations assuming turbulent or non-turbulent disc, both at the
end of the disc lifetime and in the aftermath of the planet instability.
Here, we compare our results with other previously published in the
literature.

Adams et al. (2008) studied the effects of disc turbulence in the
context of gas giant exoplanets using a stochastic pendulum model.
These authors conclude that resonances should be rare in turbulent
systems. This result is different from what we find here since our
fiducial and turbulent models produced very similar results. So let
us interpret the origin of this difference. First of all, we have to

recall that our study is dedicated to low-mass planets while these
authors have focused on the effects of disc turbulence for gas giant
planets. Yet, we have used quite different approaches. For example,
in stark contrast with our simulations, the model by Adams et al.
(2008) assumes that the planet pairs are initially already locked in
mean-motion resonance. More importantly, they neglect the effects
of planet migration, gas disc dispersal, tidal damping of orbital
eccentricity and inclination while applying the turbulence forces
and checking on whether the rogue resonant pair will survive in
resonance or not.

Rein (2012) numerically studied the effect of stochastic migration
of planets in systems extracted from Kepler data. As transit surveys
provide only the radius but not mass of these planets, he used
the mass–radius relationship of Fabrycky et al. (2012) to estimate
the planetary masses. The stellar mass and planet periods were
also taken from the Kepler objects of interest catalogue. Planets’
eccentricities and orbital inclinations were set to zero. To mimic
type-I migration and eccentricity damping, Rein (2012) used simple
migration time-scales of about 103–104 yr. In his prescription for the
stochastic forcing, he assumed that the turbulent strength is a small
fraction (∼10−5–10−6) of the gravitational force from the central
(Rein & Papaloizou 2009).

The main result in Rein (2012) is that it is possible to reproduce
the period ratio distribution of close-in super-Earths if the effect of
stochastic forcing is included in the simulations during migration.
However, the results of our simulations are very different from his.
We can understand the differences from at least three sources. Let
us first focus on the gas disc phase.

The first great difference between our model and Rein’s is how
synthetic forces were implemented. In the Rein (2012) simulations,
only the outermost planet of the system is allowed to type-I mi-
grate and feel the damping of eccentricity and inclination. Yet, in
his model all planets feel stochastic forcing. The motivation for
this choice is unclear. In our simulations all planets felt stochas-
tic forcing and type-I, eccentricity and inclination damping self-
consistently. Another important issue is that Rein’s simulations
were only integrated for 104 orbital periods of the outermost planet
of the system. This integration time may not guarantee capture in
resonance for a large fraction of the planet pairs in the Kepler
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catalogue (see fig. 1 in Rein 2012). Basically, the approach in Rein
(2012) strongly favours the production of dynamically relaxed plan-
etary systems. While Rein’s simulations had short integration time,
our protoplanetary discs lived for about 5 Myr. Thus, planets in our
simulations had the time to migrate to the inner edge of the disc
and pile up in long chain of resonances before the gas dissipated
(e.g. Fig. 6). In our simulations, the disc surface density decreases
with increasing time according to the disc model derived from hy-
drodynamical simulations (Bitsch et al. 2015). Finally, the third
reason that may explain the difference between the results of these
models comes from the stochastic forcing model. We used a more
sophisticated prescription than Rein (2012) to mimic the effects of
turbulence in the disc of gas. For example, Rein’s simulations scale
the stochastic force using simply a fraction of the relative gravita-
tional force from the central star while our model scales the strength
of the turbulence taking into account the disc surface density, aspect
ratio and the distance between the centre of the gas fluctuation and
the planet (Laughlin et al. 2004; Ogihara et al. 2007). The stochastic
kicks that each planet feels in Rein’s simulations are uncorrelated
because their model is based on a first-order Markov process. This
means that even in the case when planets are very close to each other
they may feel very different stochastic kicks (Rein & Papaloizou
2009). Moreover, the amplitude of the turbulence forcing in his
simulations is purposely chosen to produce results consistent with
observations (Batygin & Adams 2017). The model of Laughlin et al.
(2004) is more robust in this sense.

It may be easier to understand our results if we compare them
with those in Ogihara et al. (2007) where the stochastic forcing
model is similar. In our fiducial simulations we set α = 5.4 × 10−3

(alpha-viscosity parameter), thus the turbulence strength parameter
γ is about ∼2.5 × 10−4 inside 1 au (see equation 38). Recall that
in our model γ comes from Baruteau & Lin (2010), where it is
obtained from calibration with three-dimensional magnetohydro-
dynamics calculations. Still, the typical values of α in MRI active
zones is in the range of 10−3 and 10−1 (Fromang & Papaloizou
2007), which is in great agreement with our chosen value. Curi-
ously, the simulations in Ogihara et al. (2007) show that the effects
of turbulence were only pronounced in cases where γ ≥ 10−1.
Smaller γ produced results very similar to those where turbulence
was not included. We confirm this result with our simulations. How-
ever, it is not clear if γ � 0.1 would be consistent with results from
MHD simulations of very turbulent discs.

It is also interesting to note that our results seem to agree well
with the conclusions from a very recent paper by Batygin & Adams
(2017), where they derived an analytic criterion for turbulent dis-
ruption of mean-motion resonances. According to these authors –
at the inner regions of the disc – only planet pairs with mass ra-
tios smaller than (m1 + m2)/M� � 10−5 should be susceptible to
disruption of resonant configurations. Given that about 90 per cent
(50 per cent) of our planet pairs have combined masses larger than
6 M⊕ (10 M⊕), this fits nicely with our results.

8 W H Y D O S O M A N Y R E S O NA N T C H A I N S G O
UNSTA BLE?

Fig. 14 shows that our simulations can match the sample of Kepler
planets if at least 75 per cent of resonant chains go unstable and
at most 25 per cent remained stable. Among the Kepler multiple-
planet systems, only a handful have been characterized as resonant
chains (e.g. Mills et al. 2016). There is an additional excess of
planet pairs just exterior to the 3:2 and 2:1 resonances (Fabrycky
et al. 2014). All told, it appears that ∼5 per cent of Kepler planet

pairs are in resonance. If we equate that occurrence rate with the
probability of a given system remaining stable in our simulations,
it follows that ∼5 per cent of resonant chains remain stable. This
yields an acceptable match to the Kepler period ratio distribution
(Fig. 14).

Only 50–60 per cent of resonant chains were unstable in our
fiducial and turbulent sets of simulations (Fig. 7). This is a far cry
from the roughly 95 per cent required to match both the period ratio
distribution and abundance of observed resonances in the Kepler
systems.

How can we explain the deficit of unstable systems in our sim-
ulations? Our simulations are idealized and are missing several
physical effects. For instance, we have only used a crude descrip-
tion of the conditions at the inner edge of the disc, which is critical in
anchoring resonant chains. We did not include the effects of general
relativity, which causes close-in orbits to precess. We also did not
include tidal interactions between the planets and the star. As young
stars may dissipate more strongly than previously thought (Mathis
2015), it is possible that tides play an important role (Bolmont et al.
in preparation). For simplicity, in our simulations the inner edge of
the disc remains fixed at ∼0.1 au during all disc lifetime. However,
in reality, the inner edge of the disc should move as gas the disc
and star evolve, due to the balance between the stellar magnetic
pressure and the viscous torque of the disc (e.g. Koenigl 1991).
Liu, Ormel & Lin (2017) showed that under certain conditions two
planets can experience divergent migration as the disc inner edge
moves outward. This mechanism could be also another important
inductor of dynamical instabilities.

We have considered neither gas accretion on to planetary cores
(e.g. Ginzburg, Schlichting & Sari 2016), nor mass-loss during
planetary collisions (e.g. Inamdar & Schlichting 2016) and nor
effects of fast-rotating stars (Spalding & Batygin 2016). Also, we
have not included a reservoir of small planetary bodies, as pebbles
or planetesimals, in the disc. Leftover planetesimals in the disc
could be another potential trigger of later dynamical instabilities in
these systems (Chatterjee & Ford 2015). We also did not explore the
effects of the gas disc viscosity, the initial distribution of planetary
embryos and photoevaporation in the disc. All these are certainly
interesting routes for future studies.

We should also recall that because we overestimate the masses of
the real Kepler super-Earths, our simulations may simply underesti-
mate the rate of instabilities. It is also possible that our simulations
were stopped prematurely. The number of instabilities was still in-
creasing at 100 Myr, even though the rate was decreasing. It is not
out of the question that within 5 Gyr all of our resonant chains would
have become unstable. Indeed, for a similar-aged parent star a sys-
tem of close-in super-Earths is dynamically far older than the Earth
orbiting the Sun, because the super-Earths have completed one to
two orders of magnitude more orbital periods. Of course, if reso-
nant chains simply undergo later instabilities, then the abundance
of resonances should decrease with the stellar age. Kepler-223, the
best-characterized resonant chain to date, is a relatively old star (age
of ∼6 Gyr; Mills et al. 2016). However, more data is needed to test
this idea.

Given the successes of our model, we consider this shortcoming
to be important. We believe that we are missing a trigger to explain
why so many resonant chains go unstable.

9 C O N C L U S I O N S

We have simulated the migration and growth of system of close-
in super-Earths in an evolving gaseous disc model (Bitsch et al.
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2015). We found that stochastic forcing from disc turbulence have
no measurable effect on the growth of close-in super-Earths.

We propose that systems of super-Earths follow a standard evo-
lutionary path. Embryos grow in the outer disc and migrate inward
due to torques from the gaseous disc (Figs 1–3). When the first
embryo reaches the inner edge of the disc, its migration is stopped
by the planet disc–edge interaction (Masset et al. 2006) and other
embryos migrate into a resonant chain with up to 10 or more close-
in planets (Figs 4–6). The configuration of resonant chains are far
more compact than the observed Kepler systems (Fig. 11). As the
gas disc dissipates, about 50–60 per cent of our resonant chains
become unstable and undergo a late phase of giant collisions. This
spreads their orbits out and spaces them by mutual Hill radii rather
than by orbital period ratio (Fig. 13, left-hand panel). Our simu-
lations match the period ratio distribution of the observed Kepler
planet pairs if 75–100 per cent of resonant chains go unstable. Tak-
ing into account the abundance of resonances among Kepler planets
(Fabrycky et al. 2014), we expect that the true instability rate of res-
onant chains is roughly 95 per cent. Our results also suggest that
the large number of detected single-planet systems is simply an
observational effect due to the mutual orbital inclination of plan-
ets in Kepler systems. Thus, although planets have been essentially
observed either in single- or multiple-planet systems our results
suggest that this does not necessarily imply the existence of any
dichotomy in the architecture of planetary systems.

Finally, when comparing our simulations with the Kepler sys-
tems, we are left with a mystery: why does it appear that so many
resonant chains go unstable?
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Figure 2. Evolution of a characteristic simulation of our fiducial set
during the 5 Myr gas disc phase.
Figure 3. Another example of the dynamical evolution of the plan-
etary embryos during the 5 Myr gas disc phase.
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