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ABSTRACT

A number of multiplanet systems are observed to contain planets very close to mean motion
resonances (MMRs), although there is no significant pile-up of precise resonance pairs. We
present theoretical and numerical studies on the outcome of capture into first-order MMRs
using a parametrized planet migration model that takes into account non-linear eccentricity
damping due to planet—disc interaction. This parametrization is based on numerical hydrody-
namical simulations and is more realistic than the simple linear parametrization widely used
in previous analytic studies. We find that non-linear eccentricity damping can significantly
influence the stability and outcome of resonance capture. In particular, the equilibrium eccen-
tricity of the planet captured into MMRs becomes larger, and the captured MMR state tends to
be more stable compared to the prediction based on the simple migration model. In addition,
when the migration is sufficiently fast or/and the planet mass ratio is sufficiently small, we ob-
serve a novel phenomenon of eccentricity overshoot, where the planet’s eccentricity becomes
very large before settling down to the lower equilibrium value. This can lead to the ejection
of the smaller planet if its eccentricity becomes too large during the overshoot. This may help
explain the intra-system mass uniformity observed in compact multiplanet systems and the
lack of a low-mass planet companion of hot Jupiters when compared to warm Jupiters.

Key words: methods: analytical — celestial mechanics — planets and satellites: dynamical evo-
lution and stability — planets and satellites: formation.

migration (Goldreich & Schlichting 2014; Deck & Batygin 2015;

1 INTRODUCTION Delisle, Correia & Laskar 2015; Xu & Lai 2017), tidal dissipation in

The Kepler mission has discovered thousands of exoplanets, many
of which are in multiplanet systems (Batalha et al. 2013; Coughlin
etal. 2016). The period ratio distribution of the Kepler planets shows
a significant excess of planet pairs with period ratio near (predom-
inantly first-order) mean motion resonances (MMRs) (Fabrycky
etal. 2014). This excess of planets near (or in) MMRs, together with
the discovery of several resonant chain systems, such as Kepler-223
(Mills et al. 2016) and TRAPPIST-1 (Luger et al. 2017), suggests
that resonance capture during disc-driven migration can be com-
mon. However, the MMR capture rate predicted using a relatively
‘clean’ migration model is much higher than the observed occur-
rence rate of MMRs. This discrepancy is often explained by the
disruption of MMRs by physical processes after the resonance cap-
ture, including instability of the captured state during disc-driven
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planets (Lithwick & Wu 2012; Batygin & Morbidelli 2013; Delisle,
Laskar & Correia 2014), late-time dynamical instability (Pu & Wu
2015; Izidoro et al. 2017), outward (divergent) migration due to
planetesimal scattering (Chatterjee & Ford 2015), and disc turbu-
lence (Batygin & Adams 2017). Regardless of whether MMRs are
maintained or destroyed by any of these processes, it is important
to recognize that MMRs, even if temporarily maintained, play a
significant role in the early evolution of planetary systems and can
profoundly shape their final architectures.

A majority of the studies on the outcome of MMR capture (such
as the impact of MMR on the orbital parameters of planets and the
stability of the resonance) include the effect of disc-driven migration
using a simple parametrized migration model, the most commonly
used being that given by Goldreich & Tremaine (1980). The choice
of this parametrized migration model makes the equation of mo-
tion of the system relatively simple, which is ideal for long-term
numerical integrations or analytical studies. However, this model
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only works well for small eccentricities (e S H/r, the aspect ratio
of the disc). As we show in this paper, the eccentricities of the
planets near the MMR can often lie in the regime where the Gol-
dreich & Tremaine (1980) result is no longer valid. This can impact
the outcome of the resonance capture. There are also a number of
studies that include more realistic migration models, such as those
using parametrized forcing in N-body integration (e.g. Terquem &
Papaloizou 2007; Migaszewski 2015) or using self-consistent hy-
drodynamics (e.g. Kley et al. 2005; Papaloizou & Szuszkiewicz
2005; Crida, Sandor & Kley 2008; Zhang et al. 2014; André & Pa-
paloizou 2016). However, these studies tend to focus on explaining
the behaviours of particular systems and do not survey a sufficiently
large parameter space to obtain various possible outcomes. The goal
of our paper is to remedy this situation. In particular, we generalize
previous analyses (Goldreich & Schlichting 2014; Deck & Batygin
2015; Delisle et al. 2015; Xu & Lai 2017) by adopting a more re-
alistic parametrization for the migration and eccentricity damping,
and examine how different model parameters affect the outcome of
the MMR capture.

This paper is organized as follows. Section 2 summarizes the
parametrizations for the rates of orbit decay and eccentricity damp-
ing due to planet—disc interactions. In Section 3, we consider the
simple case when one of the planets is massless and study how
different parametrizations can affect the outcome of MMR capture.
We find that using the more realistic migration model can some-
times cause the ejection of the small planet, but otherwise tends
to increase the stability of the resonance. In Section 4, we study
the more realistic case when both planets have finite masses. While
most of the results from Section 3 can be generalized, we also
observe several new phenomena that arise only when both plan-
ets have finite masses. In addition to analytical calculations, we use
3-body integrations to validate our results. We conclude in Section 5
and discuss how our results affect the architecture of multiplanet
systems.

2 PARAMETRIZATIONS OF THE RATES
OF ORBIT DECAY AND ECCENTRICITY
DAMPING

Consider a small planet undergoing type I migration in a gaseous
disc. At low eccentricity, the rates of orbit decay and eccentricity
damping due to planet—disc interaction are approximately given by
(Goldreich & Tremaine 1980)

a 1 2pe’

e (D
e 1

PR (2)

where T, and7, are independent of e and 7,, ~ T.h~2, with h
= H(r)/r (H is the disc’s scale height). Analytic calculations of
Chiang & Goldreich (1997) give h ~ 0.05 at ~1 au, with weak
dependence on a. Here we assume / is constant, for simplicity. The
parameter p characterizes the coupling between orbit decay and
eccentricity damping; here we take p = 1, which corresponds to
eccentricity damping that conserves angular momentum. This is the
parametrized migration model used in most studies of MMR capture
(Goldreich & Schlichting 2014; Deck & Batygin 2015; Delisle et al.
2015; Xu & Lai 2017).

However, this migration model is accurate only for small eccen-
tricities, e < h. For larger eccentricities, hydrodynamic simulations
(Cresswell et al. 2007; Cresswell & Nelson 2008) show that the
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orbit decay rate and eccentricity damping rate both decrease. As an
empirical fit to the numerical results, 7,, and 7, are functions of
e/h given by (based on equations 11 and 13 of Cresswell & Nelson
2008)

1+ (e/2.25m)'2 + (e/2.84h)°

Tm = Tm ’ 3
0 1 — (e/2.02h)* ®)
62 63
T, =T, (1 S rLa 0.06}73) , 4)
With Tpo= — 0 p2 7, = D )
mOT 071 0 0T 078

Here we assume that the disk has a density profile X(r) oc r7;
we adopt 8 = 0 (i.e. a disk with uniform surface density) unless
otherwise specified. The time-scale fy,.e is given by (Tanaka &
Ward 2004)

M? _
Twave = %h49 l, (6)
with €2 being the angular velocity of the unperturbed disk.

In this paper we compare two different migration models/
parametrizations: the ‘simple’ model, with 7, =T, pand T, =T, ¢
independent of e, and the ‘realistic’ model, with 7,,, T, given by
equations (3) and (4). The two models produce identical 7,, T,, for
elh < 1,' but can give very different orbit decay and eccentricity
damping rates when e/h is large. This is illustrated in Fig. 1. In par-
ticular, for the realistic migration model, the eccentricity damping
rate scales as e~ when e/h > 1.

Planet—disc interaction is a very complex problem, and is strongly
influenced by the structure of the protoplanetary disc (see reviews
in Baruteau et al. 2014; Nelson 2018). The migration model we
adopt (based on the simulations of Cresswell et al. 2007; Cresswell
& Nelson 2008) assumes a simple disc profile and includes only
hydrodynamic interactions. Nevertheless, we expect the non-linear
eccentricity damping (i.e. the decrease of damping strength fore > a
few h) to be one of the most important differences between reality
and the simple migration model, and this feature is fully captured
in the ‘realistic’ migration model we use.

3 OUTCOME OF MMR CAPTURE: MASSLESS
INNER PLANET

To gain some analytical understanding of the general problem of
MMR capture with planets of comparable mass, in this section we
consider a simpler case: a planet with negligible mass (m) perturbed
by an outer massive planet (') on a circular orbit near a first-order j:
j+ 1 MMR. To this end, we take 7,,, the orbit decay time-scale of the
outer planet, to be a free parameter. This allows us to explore how the
equilibrium eccentricity (of the inner planet), which is determined
by the net convergent migration rate, affects the outcome of the
MMR capture. In reality, both planets undergo migration. For m <
m' and type I migration, we expect T,,, T,h=2 > T,.. The results
in this section should qualitatively illustrate how the outcomes of
MMR capture are affected when the realistic migration model is
applied (see Section 4).

'However, the derivatives of T, T}, with respect to e/h produced by the two
models are still significantly different for very small e/h, which can cause
some issue when computing the stability of the equilibrium state at small
e/h. See more discussion in Section 3.2.
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Figure 1. Orbit decay and eccentricity damping rates given by the simple
migration model (eccentricity-independent 7,, T,,, black dashed curves)
and the realistic migration model (eccentricity-dependent 7, T, red solid
curves). The difference becomes prominent when e/h 2 3.

In this section, we also assume that the planet—disc interaction
is weak, so 7,,, T,, T,, (note that 7, is irrelevant since the outer
planet’s orbit is always circular) are much greater than the time-
scale of libration, T, given by
Tes 0-8j’4/3(u’)’2/32n£, ™
where n is the mean motion of the inner planet and 1 = m'/M,
the mass ratio between the outer planet and the star. (For the exact
definition of T, see equation B6 in appendix B of Xu & Lai 2017.)
For simplicity, we assume that T, ¢, T,, 0, 7,, remain constant (i.e.
their variations due to the evolution of the planets’ semi-major axes
are ignored).

3.1 Existence of equilibrium

We first study the eccentricity at the equilibrium state (and whether
such an equilibrium state exists). Near a first-order j: j + 1 MMR,
the resonant motion conserves

oo = a(l + je?), (8)

where « = a/a’ < 1 is the semi-major axis ratio. When the system
undergoes convergent migration, the inner planet can be captured
into the resonance. It reaches an equilibrium state when doo/dt = 0,
which corresponds to

Tpte =20 + DT, )

Here T, .+ (which may depend on e) is the effective convergent
migration rate given by 7, \ = T,7! — T,;'. Note that when the
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outer planet is much more massive it should migrate much faster
than the inner planet, so T, et ~ T,,,.

For the simple migration model with constant 7, = 7, and
T, = Tnp, the equilibrium always exists, with the corresponding
eccentricity given by (Goldreich & Schlichting 2014)

T, T,
Ceq0 = || o (10)
2(j + DTy ett.0 2(j + DT,
where T, Yo=T ! =T,

However, for the realistic migration model with eccentricity-
dependent 7, and T,,, the right-hand side of equation (9) has a finite
maximum value because for e > a few h, e*T,”! oc e™! decreases
as e increases. Therefore, the equilibrium may not exist when the
outer planet’s migration is too fast. The maximum value of 7!
occurs at e 2~ 3h; thus the equilibrium ceases to exist when

T, 2 2(j + DT, (3h)*. (11)

Fig. 2 gives an example of the evolution of the system when the equi-
librium of resonance capture does not exist. This result is obtained
by doing 3-body integrations using the MERCURY code (Chambers
1999), witha =1 auand T, 0 = 10T s [T1es is given by equation (7)].
Since the equilibrium does not exist, the planet’s eccentricity grows
unboundedly as the system goes deeper into the resonance.

3.2 Stability of capture

The migration model can also affect the stability of the captured
(equilibrium) state.

For the simple migration model, the stability of the equilibrium
state has been studied by Goldreich & Schlichting (2014). Under
the assumption that planet—disc interaction is weak, the behaviour
of the system depends only on the ratio '/ egq’o, where /' = m'IM,
and eqqp is the previously defined equilibrium eccentricity. The
equilibrium is stable when the outer planet is sufficiently massive
(with u’ 2, ezq’o); in this case the resonant angle librates with small
amplitude. For p’ ~ egqio, the libration amplitude saturates at a
finite value, and the system stays in resonance. For a less massive
outer planet (with u' < e‘gq’o), the equilibrium state is overstable
(i.e. the amplitude of libration increases with time) and the system
eventually escapes from resonance.

For the realistic migration model, however, the stability of the
equilibrium state depends on not only u'/ eg’q,o but also eqqo/h; the
latter parameter characterizes how significantly the system is af-
fected by including the eccentricity dependence in the migration
model.

Fig. 3 plots the regimes of different behaviours in the
eeq,olh—u//eg’q’o parameter space for a 2:3 MMR when the real-
istic migration model is applied. We integrate the equation of mo-
tion derived from the resonance Hamiltonian (see e.g. appendix B
of Xu & Lai 2017), and include the dissipative terms associated
with migration and eccentricity damping.? For each data point, we
choose T, /T, to produce the desired ecq0/h, then choose ;L' to
produce the desired u'/ ezq,o. We integrate the system until it passes
the resonance (the period ratio becomes significantly lower than the
resonant value), its eccentricity blows up (e/h keeps increasing and

2Direct integration of the equation of motion is necessary because the out-
come when the equilibrium state is overstable (whether the libration saturates
at a finite amplitude, or the system eventually escapes the resonance) cannot
be obtained from linear stability analysis of the equilibrium state.
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Figure 2. Evolution of a system near 2:3 MMR with & = 0.05, 7, = 107, o, and the outer planet mass u/ =m IM, = 1073, Left-hand panel: period ratio.
Centre panel: eccentricity of the inner planet. The black dashed line shows e = 3k for reference. Right-hand panel: resonant angle. The equilibrium does
not exist and the planet’s eccentricity grows unboundedly as the system goes deeper into the resonance. This increasing eccentricity should ultimately cause

ejection or collision of the planet.
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Figure 3. Regimes of different behaviours in the ecq0/h—'/ eg’q,o parame-
ter space for a 2:3 MMR. The two dashed lines mark the analytical estimates
for the boundary between libration with small amplitude, libration with fi-
nite amplitude and escape given by Goldreich & Schlichting (2014) for the
simple migration model.

goes beyond 20), the libration amplitude stops changing (change
by <5 per cent for the last half of the simulation), or the libration
amplitude decreases to small values (<0.1 rad). This divides the
parameter space into four possible outcomes/behaviours:

(i) When e, is larger than 2.4h, the equilibrium state of reso-
nance capture does not exist because the eccentricity damping is
too weak to balance the eccentricity excitation due to resonant in-
teraction, and the planet’s eccentricity e grows unboundedly until
the system becomes unstable (red diamonds in Fig. 3).

(ii)—(iv) When ecq0 is small enough to allow the existence of
an equilibrium state, this equilibrium can be stable or overstable.
When it is stable, the system exhibits small libration around the
equilibrium state with the libration amplitude converging to zero
(purple circles in Fig. 3). When it is overstable, the system can
either end up in a stable state with a finite libration amplitude (green

triangles) or exit the resonance with damped eccentricity (orange
squares). Only these three behaviours are possible in the simple
migration model.

Although Fig. 3 refers to the 2:3 MMR, we find that the results
for other first-order MMRs are qualitatively similar.

Three-body simulations (see below) show that the results ob-
tained from the resonant Hamiltonian in Fig. 3 are qualitatively
correct, with tolerable error for the boundaries between different
behaviours. Note that the boundaries between the last three be-
haviours (stable libration with finite and small amplitude, and es-
cape) depend sensitively on the migration model, since the stability
of the equilibrium is affected by the derivatives of 7, and T,.>

Fig. 3 differs from the result based on the simple migration model
(e.g. Goldreich & Schlichting 2014) in several aspects. First, as
noted above, there exists a new regime where the planet’s eccen-
tricity can grow unboundedly because of the decrease of the ec-
centricity damping rate for e 2 h. Secondly, near the boundary of
this ‘eccentricity blowing up’ regime (2.3 < ecqo/h S 2.45), the
stable finite-amplitude libration regime occupies a large parameter
space; in particular, the system can stay in resonance with a finite-
amplitude libration even when p’ /egqv0 is as small as 0.6 (by con-
trast, the simple migration model would predict the system escape
from the resonance due to overstability). Thirdly, the boundaries
between the different regimes, even at ecq /A < 2 (for which T, and
T, deviate little from the simple model), are significantly distorted
due to the use of the more realistic migration model, showing that
these boundaries are indeed sensitive to the migration model (and
disc parameters). Note that for low eccentricity (ecqo/h S 1), the
derivative of T, with respect to e/h for the realistic migration model
converges to the simple migration model very slowly [because of
the (e/h)'? term in the fitting formula of 7,, (equation 3)]. This is
visible in the upper panel of Fig. 1: Even at e/h very close to 0,
the slopes of a/a for the two models are significantly different.
We believe that this difference arises because Cresswell & Nelson
(2008) slightly overfitted their result for small e/h, and in reality
the two models should converge faster. Since the stability of the

30ne can see this by considering how the stability of the equilibrium point
is calculated. The stability is determined by the eigenvalues of a matrix with
entries of the form d,(dy/dr), where x, y can be either a or e. These entries
depend not only on the values of 7, and 7}, but also on their derivatives with
respect to a or e.
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Figure 5. Same as Fig. 4, but with eeqo/h = 2.5 and /*//egq,o = 1. Equi-
librium no longer exists and the planet’s eccentricity grows unboundedly.
The system eventually becomes unstable and the inner planet gets ejected
shortly after e reaches ~0.8.

equilibrium is sensitive to the derivatives of 7, and 7,,, we do not
expect our model using equation (3) to recover the analytical result
of Goldreich & Schlichting (2014) for small e.q, and the result for
eeq/h < 1 is not shown in Fig. 3. In future studies, using a fitting
formula that produces the correct behaviour of both 7,, T, and
their derivatives for small e/h can help improve the accuracy of the
stability prediction for e/h < 1.

Figs 4-7 show the behaviour of the system in each regime de-
picted in Fig. 3. Similar to Fig. 2, these results are obtained by doing
3-body integrations using the MERCURY code, with s =0.025,a = 1
au, and T,y = 107,. The other parameters of the system can be
solved to match the given e.qo/h and ' /egqyo values. In practice,
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to avoid having the planets migrate too far inward during the in-
tegration (which will make it necessary to choose a much smaller
time-step to account for the planet’s short orbital period), we fix the
outer planet and let the inner planet’s semi-major axis increase at the
rate a/a = —1/T,, —2e*/T, + 1/ T,, — note that this parametrized
treatment is necessary because the overstability time-scale of the
equilibrium state can be 2107, in many cases.

4 OUTCOME OF MMR CAPTURE: TWO
MASSIVE PLANETS

To apply our results to realistic systems, it is important to study
the case where both planets have finite masses. As we will show
in this section, the perturbation on the more massive planet from
the smaller planet can qualitatively affect the outcome of resonance
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capture even when the mass ratio is very small. We will also discuss
the effect of a strong eccentricity damping rate and non-adiabatic
evolution due to fast migration.

4.1 Existence and location of equilibrium

Consider two planets near a j: j + 1 MMR, with both planets having
finite masses. Let the inner (outer) planet have mass m; (m;,) and
semi-major axis a; (a»).* The Hamiltonian of the system, to first
order in eccentricity and with all non-resonant terms averaged out,
is given by

H— GM*ml GM*mz
- 2611 2612
Gmim, -
—ail (fis1.27€1€0801 + fii131 e2c0865) . (12)
)

Here o = aj/ay, and f,,,, are functions of « (evaluated at oy =
i/ + 1)]*?) given in appendix B of Murray & Dermott (1999),
with .?J-+|,3| = fij+1.31 — 8;,120. The interaction between the two
planets conserves the total angular momentum

EEAI\/1—€%+A2\/1—€%, (13)

where A; = m;/G M,a;. The Hamiltonian (12) also admits a sec-
ond constant of motion (Michtchenko & Ferraz-Mello 2001),

i+ 1
k=200 10 (14)
J

Combining the two (£ and K) produces a conserved quantity 7,
given by
n=—2ga;" + 1) | = ([')

= - o ——|=

K K a=uq,e;=0

q

—
ja*(qagt + 1)

%

a—ao)—l—a(l)/zqef-i-e%, (15)
where ¢ = m;/mj is the mass ratio, and ato = [j/(j + 1)]?? is the semi-
major axis ratio at resonance. In the second line of equation (15),
we have expanded the result to the lowest order in (¢ — o) and
e?. The parameter 1 characterizes how deep the system is inside the
resonance when captured: For larger 7, the system is deeper inside
the resonance, and the fixed point (libration centre) of the system
corresponds to larger eccentricities.

Consider the evolution of e;, @ | — @, and 1. At the equilibrium
state, @} — @, is constant because the resonant angles 6; = (j +
1)L, — jA; — o ; are constant; 1, which is a function of « and e,
should also be constant because « and ¢; are constant. Therefore,
e; and 0; at the equilibrium state can be solved from the following
equations>:

deg . 3

; = _Mznlaofj+l,27 sin6; — K =0, (16)
dez Froisising — 2= =0 (17
— = —unaf; sinf, — — =0,

a M1 Jj41,31 2 Tos

4The notation is different from Section 3 in order to emphasize the fact that
both planets have finite masses.

5 Another method is to directly solve for the equilibrium state by linking the
evolution of all quantities to that of R = a»/a;, and imposing that R=0,
all the while considering the torques exerted by the disc on the planets that
result from the migration model (Pichierri et al. 2018, in preparation). Our
approach makes it easier to analyse how the equilibrium eccentricities are
affected by using different migration models.
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d(z| — @) ~ 12

— fir127€2c0801 — fir137€19y' " cosh =0, (18)
dn g ( L1 2 2e§)

dr j(qaal +1) Tm,2 Tm,l Te,l Te,2

_ a1/22€% _ 26%
0 Te,l Te.2

Note that since 1 is conserved in the absence of dissipation (planet—
disc interaction), equation (19) only includes contributions from
planet—disc interactions. Equation (19) can be interpreted physi-
cally as convergent migration tending to push the system deeper
into resonance (i.e. increasing 1 and eccentricities) while eccen-
tricity damping (from planet—disc interaction) counters the effect
of migration. Equilibrium is reached (1 ceases to evolve) when
migration and eccentricity damping balance each other.

A caveat of the above method is that the Hamiltonian (equation
12) and the equations for the equilibrium (equation 16—-19) only
include the lowest-order terms in eccentricities; i.e., we have effec-
tively assumed ey, e; < 1. For realistic systems, when ¢; becomes
large, higher-order secular couplings may affect the result. In fact,
as we will see in Section 4.2, the results can be quite different from
the predictions of this Hamiltonian model when e approaches order
unity.

=0. (19)

4.1.1 Weak eccentricity damping

First consider the case when the eccentricity damping is weak,
ie. wony > ei/T,; and pwiny > ex/T,,. In this case, [cos ;| ~ 1,
and equation (18) gives e;/e, at the equilibrium. Note that e¢/e, ~
g~" = my/m; and is independent of T,; and T,,;. With e;/e; known,
and with T,;, T,,; as a function of ¢; (see Section 2), we can solve
equation (19) to obtain e; at the equilibrium.

Fig. 8 shows the equilibrium eccentricities of the two planets cal-
culated using the above method. For the simple migration model,
equations (18) and (19) give €1.eq ~ ¢~"/?h and ey ¢q ~ q'/*h. At
equilibrium, the e} terms and the e terms in equation (19) are com-
parable when ¢ < 1: The eccentricity terms in the first line of (19)
are comparable to or smaller than the corresponding eccentricity
terms in the second line when ¢ < 1, and ge? /T, ~ 3/T..| given
that Te,l/Te,2 ~ qil.

For the realistic migration model, the result is similar to that of
the simple migration model when ¢ is relatively large (¢ = 0.15,
0.04, and 0.03 for the 1:2, 2:3, and 3:4 MMR, respectively). When
q is smaller, however, e; o4 exceeds ~3h and the damping rate Tefll
is reduced. Therefore, the equilibrium eccentricities of the planets
are larger compared to those of the simple migration model in order
to satisfy equation (19). For 1:2 MMR, the equilibrium eccentricity
exhibits a step-like feature in the left-hand panel of Fig. 8. This
is due to a bifurcation where as g decreases, a pair of solutions to
dn/dt = 0 ceases to exist (see Fig. 9). Such bifurcation does not
happen for 2:3 and 3:4 MMR, since d»/dt is monotonic for them.

The equilibrium always exists when both planets have finite
masses, although it may correspond to e; ¢q 2 1, which implies that
the smaller planet can be ejected due to instability before reach-
ing the equilibrium. This is very different from the ‘massless inner
planet’ case considered in Section 3, where the equilibrium state
may not exist. The reason of such a difference is that while the
eccentricity of the smaller planet can exceed 34, the eccentricity of
the more massive planet always remains well below 34, so the ec-
centricity damping from the more massive planet is able to balance
the migration, ensuring the existence of an equilibrium state.

MNRAS 481, 1538-1549 (2018)
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Figure 8. Equilibrium eccentricities versus mass ratio ¢ = mj/my of the two planets captured into a first-order MMR in a disc with uniform surface density
(B=0in X o r#). Note that the ¢;/h value depends only on g and is independent of the total mass of the planets and 4. Only the ¢ < 1 region is plotted since
convergent migration requires ¢ < 1. The blue (red) curve shows the eccentricity of the inner (outer) planet. The solid (dashed) curve shows the eccentricity
for the realistic (simple) migration model. These results are calculated under the assumption that eccentricity damping is weak.
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Figure 9. dn/dt for 1:2 MMR as a function of ej/h at three different ¢
values before, at, and after the bifurcation that creates the step-like feature
in Fig. 8. For each ¢, the equilibrium is marked by a dot. The parameters
and assumptions are the same as those in Fig. 8, and e; is chosen such that
equation (18) is satisfied.

The equilibrium eccentricities also depend on the density profile
of the disc, which is characterized by the parameter § [assuming
that the disc has X(r) oc ¥#; note that we adopt 8 = 0 everywhere
else in this paper]. Fig. 10 shows that the equilibrium eccentricities
of the planets depend weakly on f.

4.1.2 Effect of strong eccentricity damping

When ¢ is small, the resonant perturbation from the inner planet
is no longer much stronger than the eccentricity damping of the
outer planet, and the second term in equation (17) can no longer
be ignored. In this regime, the equilibrium eccentricities can be
significantly affected when the realistic migration model is applied.

For a sufficiently small g (which gives a large e, /h), the terms pro-
portional to e} in equation (19) are negligible, 50 €¢q ~ ¢'/*h can
be determined directly from equation (19) and are independent of
the strength of the eccentricity damping. Meanwhile, equations (17)
and (18) suggest that for smaller ; (or larger 1/7,,), [sin6,| in-
creases, |cos 6| decreases, and ej ¢q/€2 ¢q increases. In particular,
when gy is sufficiently small (i.e. 112 ~ e3.eq/Te2 ~ ql/zh/Tgvz),
[cos B2 — 0 and e ¢q/e2.oq diverge. Since e; o4 is finite, this means

MNRAS 481, 1538-1549 (2018)
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Figure 10. Equilibrium eccentricities of the two planets captured into a 1:2
MMR in discs with different 8. The blue (red) curves show the eccentricities
of the inner (outer) planet. The solid, dashed, and dotted curves are the
eccentricities for B = 0, 1, and —1, respectively. The results are similar for
different values of .

that e o diverges (i.e. ejection or collision of the smaller planet
should happen before the equilibrium is reached).

Fig. 11 (based on numerical calculations of the equilibrium ec-
centricities) demonstrates this effect. For given | + u, and ny, ny,
the critical g at which e, o4 diverges is related to the characteristic
eccentricity damping rate by g tl;f), where t,, is a time-scale
characterizing the migration and eccentricity damping defined as
twave (S€€ equation 6) evaluated at m = m; + m, and a = a,. Note
that t,, o is determined by the disc parameters, and is comparable to
T.o of the larger planet. This scaling for g can be explained as
follows: The eccentricity of the smaller planet e .q diverges when
cosf, — 0 according to equation (18). When cos#, — 0 (and
sin@, — 1), equation (17), together with the fact that e; ¢q ~ ¢'/*h,
gives (assuming ¢ is small)

winy ~ ereq/Ten = q(py + paIny ~ q'*h/ty, (20)

which then gives gy t,;%.
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Figure 11. Equilibrium eccentricities of the two planets with p; +
= 1073, M, = 1M®, and a, = 1 au captured into the 1:2 MMR in
a disc with uniform surface density, for different strengths of eccentricity
damping. The eccentricity damping rate is characterized by #,, o, defined as
twave (see equations 3—6) evaluated at m = m; + my and a = ay. The blue
(red) curves show the eccentricity of the inner (outer) planet. Different line
styles correspond to different #,, o, with the solid curves corresponding to
very slow migration (t,, o — 00).

4.2 Three-body simulations: effects of non-linear
eccentricities and non-adiabatic evolution

We now use 3-body simulations to check our semi-analytical results
obtained in the previous subsection. This is necessary since the
Hamiltonian (equation 12) assumes that the eccentricities are small,
which may lead to non-trivial errors when e; attains large values.
In addition, it is useful to use 3-body integrations to investigate
at which point and for what reason(s) the inner planet becomes
dynamically unstable at high eccentricities.

Figs 12 and 13 compare the 3-body integration results for the
1:2 and 2:3 MMRs using MERCURY with our analytical results.
Forcing due to planet—disc interaction is implemented as described
in Cresswell & Nelson (2008) to agree with equations (3) and (4).
Overall, the 3-body integration results agree with our analytical
results, showing the general trend that the equilibrium eccentricities
increase (compared to the simple migration model) for small g.
However, there are several important effects that the semi-anaytical
linear theory fails to capture, and we discuss these effects below.

4.2.1 Effect of high-order coupling at large e;

Fig. 12 and the #,,9 = 100 yr curves® in Fig. 13 show that e; ¢q is
smaller than the analytical prediction when e; oq ~ 1. This is likely
due to the higher-order secular coupling between the planets; such
coupling prevents e; from reaching unity while e, remains finite.
As a result, the divergence of e; due to finite eccentricity damping
(discussed in Section 4.1.2) does not occur in real systems. (The
ejection of the inner planet for small ¢ depicted in Figs 12 and 13 is
due to eccentricity overshoot, a phenomenon we will discuss next.)

The other curves in Fig. 13 will be discussed in Section 4.2.3.
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Figure 12. Equilibrium eccentricities of two planets with j; + o = 10_3,
M, = IMQ, and initial a; = 1 au captured into the 1:2 MMR in a disc with
uniform surface density and 4 = 0.025. The black curves show our analytical
results, as given in Fig. 8. The 3-body integration results for #,,0 = 10 yr
(100 yr) are shown in crosses (saltires). For t,, o = 10 yr, ey (ez) is marked
by the blue (red) curve; for 1,0 = 100 yr, e; (e2) is marked by the green
(yellow) curve. When the inner planet is ejected (or collides with the other
planet or the star), we set e; = oo and e; = 0.
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Figure 13. Same as Fig. 12, but for the 2:3 MMR. The behaviour of the
system is slightly different; see the text for more discussion.

4.2.2 Effect of non-adiabatic evolution: eccentricity overshoot

For sufficiently slow migration, the evolution of the system is adi-
abatic (i.e. the evolution of 7, the ‘resonance depth’ parameter, is
sufficiently slow so that the system stays close to the libration centre
as the libration centre moves in the phase space) and the eccentric-
ities of both planets should slowly increase until they reach the
equilibrium values. In this case, the equilibrium eccentricities are
the maximum eccentricities that the planets can reach. However,
when ¢ is small or when migration is fast (i.e. #,,0 is small), the
growth of e, is too slow, and the initial evolution of e is similar to
the restricted problem studied in Section 3: Due to the inefficient
eccentricity damping, n and e; both keep increasing, and e; can
easily grow beyond the equilibrium value. The growth of e; stops
only when it becomes so large that the secular interaction between
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Figure 14. Anexample where the eccentricity ¢ overshoots to a large value
before reaching equilibrium, for the system in Fig. 12 with #,, o = 10 yr and
g = 0.0125. The different panels show the two planets’ eccentricities (ej,
e7), the period ratio, and the resonant angles (01 =2A, — A — @ 1,02 =2A)
— X1 — @2). In this example, e; reaches a maximum value of 0.935 before
decreasing to the equilibrium value. Note that for a slightly smaller ¢, the
inner planet will have e; — 1 and become unstable during the overshoot.

the planets forces e, to increase. Since eccentricity damping of e,
is still efficient, this stops the system from going deeper into the
resonance (i.e. stops 1 from further increasing). Eventually, the sys-
tem will reach equilibrium, provided that the smaller planet has not
become dynamically unstable during the high-e; phase.

Fig. 14 shows an example. Before the system reaches equilib-
rium, the eccentricity e, first overshoots to a very large value, then
decreases back to the equilibrium value. When ¢ is smaller (or when
the migration is faster), the inner planet will be ejected because it
reaches e; — 1 during this overshooting phase. This is the reason
for the ejection of the smaller planet at low ¢ in Figs 12 and 13.

The condition of significant eccentricity overshoot (which may
lead to planet ejection) can be estimated as follows. In order for
significant eccentricity overshoot to happen, the time it takes for e;
to reach O(1) when e, is small compared to the equilibrium value
should be no larger than the time it takes for e, to reach the equilib-
rium value. The first time-scale is of the order of7}, 5, since for e, to
reach O(1) requires the angular momentum of the system to change
by O(1). Using equation (17) (assuming [sinf,| ~ 1 and ignoring
the second term) and the fact that e ¢q ~ ¢'/*h (see Section 4.1.1),
the second time-scale is of the order of quflql/ 2h, where P, is
the period of the outer planet. Note that these two estimations are
very crude since we dropped too many order unity factors. We can
improve the estimate by including a constant factor (which may de-
pend on B but no other parameter) such that the example in Fig. 14
lies close to the threshold of significant eccentricity overshoot. After
this calibration, the condition of significant eccentricity overshoot
becomes

T S 30Pus " g V20, 2D
This predicts that the critical ¢ below which the planet is ejected
is approximately oc T, 2 (or t;,%) when ¢ is small, in agreement
with Fig. 12. Equation (21) does not assume any specific migration

model for the outer planet. If the outer planet undergoes type I
migration, equation (21) can be rewritten [using equations (5) and
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(6)] as
-2 2 -2
g <361 oz (Lz)“ M.\
~ 0.05 1700 g - cm—2 1 au Mg

This condition can be easily satisfied in typical protoplanetary discs,
since the RHS is often >1 (while convergent migration already
requires ¢ < 1). For type-I migration, the condition of eccentricity
overshoot depends on the mass ratio and disc density, but does not
directly depend on the mass of the planets. Note that in addition to
equation (22), eccentricity overshoot also requires the equilibrium
eccentricity of the less massive planet to be >34, so that eccentricity
damping on it becomes negligible; this corresponds to ¢ < 0.15,
0.04, and 0.03 for 1:2, 2:3, and 3:4 MMR, respectively, when 8 = 0.

It is worth noting that significant eccentricity overshoot is a phe-
nomenon unique to the realistic migration model. For the simple
migration model, since the eccentricity damping of the inner planet
is efficient (i.e. e% /T, 1 always increases as e; increases), the sys-
tem will cease to go deeper into the resonance once the e? terms
in equation (19) can balance the migration; this corresponds to an
insignificant eccentricity overshoot.

(22)

4.2.3 Effect of non-adiabatic evolution: bifurcation
of the equilibrium state

In Fig. 13, we observe that the equilibrium eccentricity of the small
planet increases abruptly when g goes below g =~ 0.02 (0.005)
for #,,0 = 10 yr (20 yr); at a somewhat smaller g the system be-
comes unstable. It is likely that this abrupt change corresponds to
a bifurcation, with the equilibrium states before and after the bi-
furcation corresponding to two different fixed points of the system.
One possible reason for this bifurcation is that the finite migration
rate, together with the more realistic migration model, affects the
stability of the fixed points. This different equilibrium state with
a higher equilibrium eccentricity is not captured by our analytical
result. For this new equilibrium state, we observe less eccentricity
overshoot, and the scaling relation (21) for overshoot condition no
longer holds.

As t, increases, the intermediate region where the system
reaches this different equilibrium state with high eccentricity
shrinks; when 7, o is sufficiently large, the system always becomes
unstable (due to eccentricity overshoot) before the bifurcation hap-
pens and this intermediate region disappears.

4.3 Stability of capture

Similar to the case when the smaller planet is massless (Section 3),
using the realistic migration model affects the stability of MMR
capture. We observe that when the equilibrium eccentricity is 2 a
few h, the system tends to be more stable compared to the prediction
of the simple migration model. Since it is difficult to do a thorough
survey of the parameter space, we illustrate this by an example.
Figs 15 and 16 show the different outcomes of a 1:2 MMR capture
when the simple migration model (eccentricity-independent 7, and
T,,) and the realistic migration model (eccentricity-dependent 7, and
T,,) are used. For the simple migration model, the equilibrium state
is overstable, and the system eventually escapes the resonance. For
the realistic migration model, the equilibrium state becomes stable
(the eccentricity at the equilibrium also increases compared to the
simple migration model).
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Figure 15. Outcome of the 1:2 MMR capture for the system depicted in

Fig. 12 with ¢ = 0.01 and #,, o = 100 yr, using the simple migration model.
We see that the system escapes the resonance at # >~ 60 kyr.
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Figure 16. Same as Fig. 15, except that the realistic migration model is
used. The equilibrium state is stable. Note that the equilibrium eccentricity
is also increased compared to Fig. 15.

Moreover, all numerical examples summarized in Figs 12 and 13
(except those cases where the inner planet is ejected) have stable
equilibrium states. This suggests that for planets undergoing type I
migration, the capture into a first-order MMR is stable for typical
disk configurations if we use the realistic migration model. By
contrast, if we use the simple migration model for the systems in
Figs 12 and 13, the equilibrium state becomes unstable for g < 0.1.

Deck & Batygin (2015) have previously carried out an extensive
study on the stability of the equilibrium state of first-order MMRs
for general planet mass ratios. Their analysis was entirely based on
the simple migration model. They found a region of the parameter
space leading to overstability and proposed a criterion for oversta-
bility of the equilibrium state. Since an overstable system tends to
evolve to an adjacent MMR equilibrium state, they concluded that
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the overstability of the equilibrium state cannot fully explain the
observed paucity of resonant pairs in the Kepler sample.

However, the overstability criterion of Deck & Batygin (2015)
cannot be directly generalized to the realistic migration model (with
eccentricity-dependent 7,,, T,). This is because the stability of the
equilibrium state depends on both a/a, ¢/e at the equilibrium and
their partial derivatives with respect to the eccentricity. Although
it is possible to tune the parameters of the simple migration model
(T,0, Tnp for each planet and p) to obtain a/a, é/e and d(a/a)/de
that locally match the values for the realistic migration model near
the equilibrium, the local value of d(¢/e)/de in general cannot be
matched by tuning the parameters of the simple migration model.
Still, if we oversimplify the problem by plugging the local values
of T,, T,, at the equilibrium into the overstability criterion of Deck
& Batygin (2015), the stability does tend to increase compared
to the simple migration model (with 7, = T,,T,, = T,,0) when
ey 2 afew h. This is mainly because T, of the inner planet for the
realistic migration model is larger than that for the simple migration
model, which pushes the system away from the instability zone (see
figs 2 and 3 of Deck & Batygin 2015). Ultimately, when e, is large
enough so that q2 T, > T,», the equilibrium state should become
stable regardless of the total mass of the planets. For our migration
model, this happens when (e;/h) > ¢~>3. This increased stability
agrees with the trend shown in Fig. 3 around ecq o ~ 2.4h. Note that
this is only an intuitive explanation of our finding of the increased
stability and cannot serve as a rigorous analysis.

5 SUMMARY AND DISCUSSION

5.1 Summary of key results

In this paper, we have carried out theoretical and numerical studies
on the outcomes of first-order MMR capture for planets undergoing
convergent type I migration. Unlike previous works (Goldreich &
Schlichting 2014; Deck & Batygin 2015; Delisle et al. 2015; Xu
& Lai 2017), which adopted a simple migration model where the
eccentricity damping rate and orbit decay rate [7,”! and T, !, re-
spectively; see equations (1) and (2)] are independent of the planet’s
eccentricity, we consider a more realistic model for 7, and 7,, which
captures their non-linear eccentricity dependence when the eccen-
tricity exceeds ~h (where i = H/r is the aspect ratio of the disc). We
find that this more realistic migration model can significantly affect
the outcomes of MMR capture and lead to several new dynamical
behaviours.

First, the equilibrium eccentricities of planets captured into the
MMR can be larger by a factor of a few than those predicted by the
simple migration model (which assumes eccentricity-independent
T., T,,). This arises because when e = 3h, eccentricity damping
becomes weaker and the system migrates deeper into the resonance
before reaching equilibrium. When the inner planet is massless, the
equilibrium state no longer exists if the equilibrium eccentricity
predicted using the simple migration model is 234, and the planet’s
eccentricity grows and eventually becomes unstable (Section 3.1).
For general planet mass ratios (Section 4), the more massive planet’s
eccentricity stays below 3A, and the eccentricity damping of this
more massive planet ensures the existence of the equilibrium state.
However, the equilibrium eccentricity is larger than the prediction
using the simple migration model when the mass ratio g = m;/m is
sufficiently small (Section 4.1). This increase in eccentricity is very
significant for the 1:2 MMR, and less significant for other first-order
MMRs (see Fig. 8). For typical disc parameters, the critical mass
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ratio below which such increase occurs is around 0.03—0.15 (see
Figs 8-9).

Secondly, the stability of the equilibrium state can be strongly
affected by the migration model. Our analytical calculation and
parameter survey for the case when the inner planet is massless
(Section 3) show that the equilibrium state becomes more stable
when the equilibrium eccentricity is e.q 2 2h (Section 3.2; see
Fig. 3). This increased level of stability of the MMR is also seen
when both planets have finite masses (Section 4.3). In particular,
for realistic disc configurations, the simple migration model predicts
that the equilibrium state is unstable for small ¢, while the realistic
migration model predicts that the equilibrium state is virtually al-
ways stable (provided that the small planet does not suffer dynami-
cal ejection at high eccentricities; see below).

Another new phenomenon we have found is that when the migra-
tion is fast and/or the inner planet’s mass is sufficiently small, the
eccentricity growth of the more massive planet (due to the resonant
perturbation from the inner, smaller planet) becomes too slow; this
causes the eccentricity of the smaller planet to overshoot the equi-
librium value before the system reaches the equilibrium state (Sec-
tion 4.2.2; see Fig. 13). Such an overshoot can be very significant
and may cause the smaller planet to be ejected at high eccentricities
even when the equilibrium eccentricity is modest. The condition of
eccentricity overshoot is given in equation (21), and can be simpli-
fied to equation (22) if the outer planet undergoes type I migration
— this condition can be satisfied for typical protoplanetary discs.

Overall, using the more realistic migration model tends to in-
crease the equilibrium eccentricities of planets captured in MMRs
and makes the equilibrium state less prone to overstability. How-
ever, when migration is sufficiently fast (or the small planet has too
small a mass), it also causes the ejection of the smaller planet dur-
ing eccentricity overshoot — this behaviour is much less significant
when the simple migration model is used. All of these can affect
the ways in which MMRs shape planetary system architecture.

5.2 Implications for multiplanet system architecture

5.2.1 Occurrence of MMRs and mass ratio in multiplanet systems

For planets with similar masses (¢ ~ 1), since the equilibrium ec-
centricities of the planets captured into MMRs are usually small,
previous results concerning the stability of MMRs remain valid
(Deck & Batygin 2015; Delisle et al. 2015; Xu & Lai 2017). Obser-
vationally, short-period, compact systems (e.g. Kepler multiplanet
systems) are found to have small eccentricities (Van Eylen et al.
2018) and to exhibit intra-system uniformity in mass and radius
(Millholland, Wang & Laughlin 2017; Weiss et al. 2018). There-
fore, the occurrence of MMR in most observed systems can be
explained without invoking a more realistic migration models.

For a smaller mass ratio (¢ < 0.1), however, the maximum ec-
centricity that the smaller planet can reach is much larger when
the realistic migration model (with eccentricity-dependent T, 7,,)
is applied (compared to the results obtained with eccentricity-
independent 7,, T,,) due to the increased equilibrium eccentricity
and eccentricity overshoot. The large eccentricity can lead to the
ejection of the smaller planet (when its eccentricity approaches
unity) or make it scatter with a third planet in the system (if their
orbits cross). This tends to reduce the multiplicity of the system
when it initially hosts a pair of convergently migrating planets with
a small mass ratio. Therefore, it is possible that the unexpected
intra-system mass and radius uniformity in Kepler multiplanet sys-
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tems (Millholland et al. 2017) is partially caused by the removal of
small planets during MMR encounters.

5.2.2 Loneliness of hot Jupiters

The eccentricity overshoot phenomenon (which occurs when the
mass ratio is small and the migration is sufficiently fast) provides an
efficient way of removing super-Earth companions of fast-migrating
giant planets. This may help explain the loneliness (the lack of low-
mass planet neighbours) of hot Jupiters (Huang, Wu & Triaud 2016)
if they are formed through disc-driven migration.” In this picture, hot
Jupiters arrived at their current locations through fast type Il migra-
tion, with the migration time-scale much less than the disc lifetime.®
If they had any inner low-mass companion (a super-Earth), it could
be removed when captured into an MMR with the Jupiter during its
migration due to the instability caused by eccentricity overshoot. On
the other hand, warm Jupiters do commonly have low-mass-planet
companions (Huang et al. 2016). This may be explained by their
slow migration rates: During such slow migration, their low-mass
companions do not suffer eccentricity overshoot and therefore are
kept in safety upon capture into MMRs. Note that the rate of type 11
migration is sensitive to the property of the disc, especially its vis-
cosity (Ward 1997). Thus, in this scenario, whether a system forms
hot Jupiters (without low-mass companions) or warm Jupiters (with
low-mass companions) simply reflects the different disc properties
and the resulting different migration history of giant planets.

Of course, hot Jupiters may also form by high-eccentricity migra-
tion, in which the eccentricity of a giant planet is excited by distant
stellar or planetary companions, followed by tidal circularization
and orbital decay (e.g. Dawson & Johnson 2018). In this scenario,
the loneliness of hot Jupiters can be naturally explained because
a giant planet undergoing high-amplitude eccentricity oscillations
can easily eject smaller planets interior of its initial orbit.” Our
discussion here does not aim to prove or disprove any particular
formation scenario; we simply argue that one should not rule out
the disc-driven (low-eccentricity) migration scenario using solely
the loneliness of hot Jupiters.
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7Giant planets should undergo type I instead of type I migration. Although
in this paper we have focused on type I migration models, our results should
also be reasonably accurate if the more massive planet undergoes type II
migration, since the eccentricity dependence of the more massive planet’s
migration and eccentricity damping rates does not play an important role in
our analysis.

8Type II migration can be fast enough to push a Jupiter to the disc inner
edge before the gas disperses (Hasegawa & Ida 2013). Some of these hot
Jupiters may not fall into the star probably because their migration stops
when reaching the inner edge of the disc or when the inner part of the disc
induces outward migration (e.g. Lega et al. 2015).

9However, in this scenario, warm J upiters with an inner companion should
be formed through a different channel.
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