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Abstract

A one-dimensional relativistic semi-Lagrangian Vlasov–Maxwell code is here outlined in an application to the simula-
tion of the interaction of relativistically strong laser pulses with overdense plasmas. Algorithmic differences are briefly
recalled with respect to the regimes for which a straightforward time-splitting scheme is applicable. As an example of
the accuracy of the semi-Lagrangian scheme, we present some strictly kinetic features of the penetration process of an
intense laser pulse inside an overdense plasma by self-induced transparency. In particular we show the formation of vor-
tical trapping structures in the electron distribution function, due to the beat-wave process between the incident laser light
and the doppler-shifted reflected wave. These coherent structures are later destroyed due the formation of an electron-cav-
itation, which develops close to the density peak near the propagating front-wave, thus separating the relativistically
underdense and overdense regions.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental investigation of laser–plasma interactions in relativistic regimes is nowadays possible, since
intensities above 1019 W cm�2 are now achievable to short laser pulses. In particular, relativistic effects (i.e.
the relativistic increase of electron inertia) allow laser propagation through an overdense plasma up to length
scales for which the propagation would be classically forbidden. In overdense plasmas, in which the density n

is greater than the critical value nc � 1:1� 1021k2
0 cm�3 (where k0 is the laser wavelength expressed in microns),

the incident electromagnetic radiation is damped over a distance of the order of the electron skin-depth,
de ¼ c=xpe

, with x2
pe
¼ ne2=mee0. In the high laser intensity regime, the quiver velocity of electrons becomes

relativistic and the resulting increase of electron inertia (i.e. me! cme, with c the relativistic Lorentz factor)
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decreases the effective plasma frequency thus modifying the optical properties of the plasma. In particular, the
effective damping scale of the incident light is increased ðd2

e � cmeÞ and intense laser pulses can propagate
through overdense plasmas; this is known as self-induced-transparency (SIT) effect. We do not consider here
other relativistic effects such as laser self-focusing because of the geometry approximation we will next restrict
to. Laser plasma interactions in relativistic regimes thus provide new features for electromagnetic waves’ prop-
agation, which assumes a strongly non-linear character. The modelling and comprehension of these effects are
of fundamental interest for technical applications such as the fast ignition fusion concept [1], photon or ion
accelerators, and X-ray lasers.

In this paper, we discuss a semi-Lagrangian Vlasov scheme, one-dimensional in space (1D) and in velocity
(1V), and we show its first application to the propagation, due to SIT effects, of a circularly polarized light
inside an overdense plasma. Although PIC codes represents an efficient method to investigate laser–plasma
interaction, the corresponding simulation results are of somewhat difficult interpretation, since PIC models
tend to suffer from poor statistical resolution of particles motion, due to numerical noise and limitations in
the number of particles. Semi-Lagrangian schemes provide an opportunity to adequately describe non-linear
particle dynamics in detail, even in the strong relativistic regimes such as in SIT. The paper is structured as it
follows. In Section 2 we outline the architecture of the integration algorithm and we point out the differences
with respect to a time-splitting model applicable to non-relativistic regimes. In Section 3 the algorithm proce-
dure is explicated for the equations of the sample-system we consider here, and in Section 4 the initial condi-
tions and the numerical results are given. A concluding summary follows in Section 5.

2. Semi-Lagrangian integration scheme

The semi-Lagrangian integration scheme has been extensively discussed in Refs. [2,3]. It provides an effi-
cient computational algorithm to solve the Vlasov–Maxwell system equations even if the divergence of the
velocity field in phase-space is not separable between spatial and momentum coordinates. Let us consider
Vlasov equation written in the conservative form:
ofa

ot
þ $Xa � ½UaðXa; tÞfa� ¼ 0 ð1Þ
where Xa = (qa,pa) is the vector of phase-space coordinates for the specie a, and Ua ¼ _Xa is the corresponding
velocity-field, which is divergence-free thanks to Liouville’s theorem; the gradient vector is $Xa ¼
ðo=oqa; o=opaÞ. Explicitly stating the dependence on canonical variable in the most general case, we rewrite
Eq. (1) as:
ofa

ot
þ $qa

� ½ _qaðqa; pa; tÞfa� þ rpa
� ½ _paðqa; pa; tÞfa� ¼ 0 ð2Þ
The solution of Eq. (2) is equivalent to the solution of two separate advection equations with respect to the q

and p coordinate in the phase space, but in the ‘‘most general’’ (mathematically speaking) case, two source
terms would provide the coupling between the canonical variables advecting each equation (r.h.s. terms in
the following equation):
ofa

ot
þ _qa �

ofa

oqa

¼ �fa
o _qa

oqa

;
ofa

ot
þ _pa �

ofa

opa

¼ �fa
o _pa

opa

ð3Þ
It is worth remarking however that whenever particle spatial velocity _qa is not depending on position q itself,
the two source terms are zero (o _qa=oqa ¼ 0 implying o _pa=opa ¼ 0 because of Liouville’s theorem), as it occurs
in most non-relativistic and relativistic regimes, when spatial and velocity variables have the same dimension-
ality. In these cases a straightforward Eulerian time-splitting method can be performed, in which the space-
and the speed-divergence terms are separately advanced in time (Ref. [4]) with respect to the initial coordinate
grid. Nevertheless, while in non-relativistic regimes such as those discussed in Ref. [7] the Eulerian time-split-
ting is usually always applicable, a most interesting case with o _qa=oqa 6¼ 0 is provided by relativistic, spatially
inhomogeneous Vlasov systems in which some exact invariants exist, e.g. in relativistic 1D + 2V, 1D + 3V, or
2D + 3V problems. In these configurations the translational invariance along some spatial coordinate implies
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the conservation of the related conjugated momentum, which so becomes a constant, generally depending on
space through fields’ spatial dependence; this dependence enters in _qa through the relativistic c-factor (e.g. in
cartesian coordinates: _qa ¼ pa=ðmacaÞ), which becomes ca = ca(qa,pa). Due to this, the presence of r.h.s. terms
in Eq. (3) invalidates the time-splitting approach by making the two l.h.s. advection equations of Eq. (3) not
separately solvable. As shown in Ref. [3], indeed, the application of the traditional time-splitting method to the
non-separable case would lead to cumulative numerical error at each time step, which would waste the density
conservation beyond the accuracy needed for the consistency of the scheme. This because the source terms in
Eq. (3) would not be solved at equal times, and therefore they would not cancel out as it is mathematically
required by Liouville’s condition.

An alternative computational method applicable to this non-separable case is provided by the backward
semi-Lagrangian scheme [2], which uses a direct multi-dimensional advection. The semi-Lagrangian scheme
computes the value of the function f at time tn + Dt, by shifting it in time from tn along the Lagrangian char-
acteristics of the system. Notice that the position in the phase-space, of f at time tn along a characteristic, is in
general not corresponding to a mesh-point. This scheme is however called just ‘‘semi’’-Lagrangian because it
uses in fact an Eulerian grid, and the value of fa at the point on the characteristic at time tn + Dt is computed
by interpolation from the value which fa assumes at the mesh-points at tn. We now briefly recall the algorithm
outline, by remanding to the master references (Refs. [2,3]) for further details.

By defining the characteristics of Eq. (1) as dX/dt = U(X(t), t), from the advective form of Eq. (1) it is found
that f is constant along the characteristics:
f ½x; tn þ Dt� ¼ f ½Xðtn; x; tn þ DtÞ; tn� ð4Þ

With the notation X(t;x, s) we indicate the solution of the characteristics equation whose value is x at time s; in
Eq. (4) we have taken s = tn + Dt. The advection algorithm consists of two steps. First, we find the starting
point (at time tn) of the characteristic ending in x (at time tn + Dt). The characteristic equation is solved by
finite-difference approximation with a two time-step scheme (so to maintain second order accuracy) since
no explicit analytic expression is a priori given about U. The resulting relation,
XðtnÞ ¼ x� DtUðXðtn þ Dt=2Þ; tn þ Dt=2Þ ð5Þ

leads to an iterative expression for an appropriate vector d in phase-space, which is defined so to satisfy
X(tn + Dt/2) = x � d. By using the relation X(tn + Dt/2) = [X(tn + Dt) + X(tn)]/2, which is still valid to the sec-
ond order, it is found X(tn) = x � 2d and thus d = (Dt/2)U(x � d, tn + Dt/2). This latter expression is solved
iteratively to evaluate d. The second step of the Lagrangian scheme consists in the computation of
f[X(tn;x, tn + Dt), tn] = f[x � 2d, tn] by interpolating with cubic B-splines the value of f in the mesh-points at
time tn. Cubic spline-interpolation represents a good compromise; linear interpolation for f would be too dis-
sipative, whereas it is sufficient for U while using cubic splines for f (see e.g. Refs. [2,5]). The values of f at the
tn + Dt time are then found by using Eq. (4).

3. Application to an interaction between a circularly polarized laser and a plasma in one-dimensional geometry

We consider an application to the semi-Lagrangian 1D–1V integration scheme to the 1D–3V model for a
laser–plasma interaction in the case of circularly polarized light (see Ref. [3]). This technique of direct 2D-
advection (i.e. without time-splitting) is required for the study of laser plasma interaction in the relativistic
regime in which SIT occurs. By assuming 1D spatial geometry (i.e. dependence on the x variable only), the
orthogonal components of particles’ canonical momentum Pa = pa + qaA is conserved (dðPa;?Þ=dt ¼
$qa;?Ha ¼ 0) so that explicit dependence on px only can be considered and a 1D–1V integration scheme
can be used. Here and thereafter A is the usual electromagnetic potential vector, and Ha ¼ mac2ðca � 1Þþ
qa/ðx; tÞ is the Hamiltonian of an a-specie particle. By assuming for simplicity and no loss of generality the
case of a plasma prepared so that Pa = 0, with one-time ionized atoms (i.e. qi = e), Lorentz’ factor is written

as ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x;a=ðmacÞ2 þ e2A2
?ðx; tÞ=ðmacÞ2

q
. The corresponding Vlasov equation is
ofa

ot
þ

px;a

maca

ofa

ox
þ qaEx �

e2mac2

2ca

oA2
?

ox

� �
ofa

opx;a

¼ 0 ð6Þ
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With the notation introduced in Section 2 (Eq. (1)) we have Xa = (x,px,a) and
Ua ¼
px;a

maca

; qaEx �
e2mac2

2ca

oA2
?

ox

� �
ð7Þ
However, in order to perform the time-shift along the characteristic it is necessary to evaluate Ua (see Eq. (5)),
and thus the electromagnetic fields Ex and A?, at the time tn + Dt/2. This task is accomplished by solving also
Maxwell equations along the characteristics, following the standard approach as described e.g. in Ref. [3].
We remand to the reference for some explicit example; here we just recall the definitions
ne ¼
Z

f dpx;e; J x ¼
Z

fe

ce

px;edpx;e; J? ¼
e2A?

me

Z
fe

ce

px;edpx;e ð8Þ
and the fact that the transverse component of the electric field obeys E? = �oA?/ot. Its longitudinal part is
indeed purely electrostatic, Ex = �o//ox, with /(x) expressing the electrostatic potential. We finally remark
that in this integration scheme the longitudinal electric field is obtained through Ampere’s equation (i.e.
oEx/ot = �Jx), which is integrated in place of Poisson’s equation (oEx/ox = e(ne � ni)) because of algorithmic
convenience: to compute the longitudinal electric field at tn + Dt/2 with Poisson’s equation, the value of f at
the same time would be necessary, but it is unknown. The solution to the second order accuracy of Ampere’s
equation is instead Ex(x,tn + Dt/2) = Ex(x,tn � Dt/2) � Dt Jx(x,tn).
4. Generation of an electron density cavitation by SIT effect

We now show some results of a simulation run of a laser–plasma interaction described by the equations
introduced in Section 3, in which the SIT effect takes place. It is found that an electron cavitation arises
because of Coulomb explosion on scales of the pump wavelength k0.

The following parameters characterizing the plasma have been chosen: n0/nc = 1.6, Ik2
0 ’ 5:45�

1018 W cm�2 lm2 (I being the laser-light intensity), and Te = 100 keV, Ti = 20 keV (electron and ion tempera-
ture, respectively). Results similar to the ones presented in the text that follows have been found also at lower
electron temperature, Te = 3 keV. The laser incident wavelength is such that k0de ’ 0.586, and the pump fre-
quency is x0 ¼ 0:79xpe

. The geometry of the system consists of a plasma slab of length Lplas = 130de (which
is approximatively equal to 12k0), surrounded by a vacuum region of Lvac = 160de. The total number of grid-
points is Nx = 12800 in space and N px

¼ 512 in both pe and pi momentum space. Since we have hc�1i ’ 0.28,
the dispersion relation of electromagnetic waves inside this plasma reads: x0 ¼ ðx2

pe
hc�1i þ k2

0c2Þ1=2 ¼ 0:789xpe
.

In Fig. 1 (top) the behavior of the electron distribution function is shown at the beginning of the interac-
tion, as vortices form due to the beat-wave effect between the pump light and the wave reflected by the over-
dense region. Because of the SIT effect, the pump wave-front of the light penetrating in the overdense plasma
represents a discontinuity in the plasma refractive index, and so acts as a relativistically moving mirror for the
incident light. This causes a Doppler-shift in the frequency of the wave reflected by the discontinuity associ-
ated with the wave-front (see Ref. [8]). The penetration of the pump wave gives rise to a three-wave parametric
instability, with the matching conditions x0 = xr + xe and k0 = �kr + ke (subscripts 0, r and e respectively
refer to the incident laser light, to the reflected and to the excited electron wave). For the reflected wave
xr ¼ ðx2

pe
hc�1i þ k2

r c2Þ1=2. With our numerical parameters: xr ¼ 0:675xpe
, xe ¼ 0:115xpe

, krde ¼ 0:42,
kede ¼ 1:006. These numerical values are in good agreement with those provided by analytical calculation,
which are xr ¼ 0:675xpe

and krde = 0.42. The low-frequency acoustic-like electron wave is responsible of
the plasma coherent ‘‘heating’’ through the generation of vortical trapping structures; it obeys
xe=xpe

¼ ðkedeÞðvF=cÞ ¼ 1:006� 0:115 ’ 0:12, where vF is the wave-front velocity. The velocity of propaga-
tion of the wave-front influences the rate of generation of new vortices, created by the beat-wave process
between the incident and the reflected light waves. The plasma gets progressively more turbulent, and at
txpe
¼ 1114 the beat-wave process seams to disappear, so as the progression of the vortices (Fig. 1, center).

Correspondingly, the growth of a peak in electron density located near x = 260de is observed, together with
the creation of an intense electric field (both these features are not shown here). The pump-wave’s propagation
stops because of the strong increase of ion’s (and electron’s) density near the wave-front, which reaches peaks



Fig. 1. Patterns of the electron distribution function inside the plasma slab, taken at different times (txpe
¼ 911; 1114; 1822). The laser

beam enters from the left along the x-axis; spatial distances are measured in de units. The colour-panel follows the standard colour
spectrum ranging from maximum value of density (red) to minimum value (blue). The colour representation has to be taken as a
qualitative indication of the relative density, since due to the ongoing wave-breaking process the reference peak-value of density is different
in the three figures. E.g., the relative electron density peak (in red) just right to the density well grows from n/nc ’ 1.3 (at t = 1114) to
n/nc ’ 1.5 (at t = 1822). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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up to 1.8nc, thus making the plasma overdense for the incident laser light. An electron density cavitation is
then formed (at x ’ 270de) due to a Coulomb explosion occurring on the k0 scale length, and its growth
destroys the vortices (Fig. 1, bottom). The plasma slab is then cut in two distinct regions: on the left side
of such electron cavity the plasma keeps underdense for the pump wave, whereas on the right it does not.
Because of this, hot particles are forbidden to cross from the left into the right domain, and the resulting
return current is responsible of a second step of the plasma heating in this region.

5. Conclusions

In this paper, we have recalled the algorithm and computational features of a 1D–1V semi-Lagrangian
Vlasov–Maxwell scheme (Section 2), and we have shown an application of it to the interaction of a strong
electromagnetic wave with a moderately overdense plasma slab, in 1D-spatial geometry and in case of normal
incidence, in condition suitable for the laser light propagation inside the plasma by SIT effect (Section 3). A
resonant three-wave parametric instability develops between the incident pump and the Doppler-shifted
reflected wave and generates an electron acoustic-like (low-frequency) mode. The plasma is then ‘‘heated’’
in a coherent way by the generation of trapping structures (vortices). A second stage of the process is achieved
when electron cavitation arises; it induces a second turbulent electron heating because of a return current,
which compensates the impediment of hot electrons to pass from the underdense to the overdense region
by crossing the density cavitation (Section 4). In a forthcoming paper (Ref. [6]) it will be presented a more
detailed study, performed over a wider range of values of plasma density, of the physics of the SIT wave pen-
etration and of the related phenomena of cavitation.

We finally remark that a phenomenon analogous to the one here discussed has been recently observed in
Ref. [9], in PIC simulations of the Stimulated Brillouin Scattering (SBS) in an underdense plasma. In that case,
an electron cavity formation has been observed in the asymptotic regime on the time scales at which the ini-
tially cold electron population separates from ions’ dynamics; solitons trapped inside those cavities have been
indicated as a possible saturation scenario of the SBS. A more detailed discussion of the kinetic features of this
cavity-formation and soliton-trapping process and its possible connections to the SBS saturation must be
investigated. The numerical problem addressed here (and in Ref. [7]) is one of the type for which the argu-
ments based on the compromise between phase-space resolution and computational cost suggested in Ref.
[10], would indicate a slight preferability for PIC codes (in particular for ions’ treatment) because of the
dimensionality of the phase space (a NVlas/NPIC � 1–10 would be obtained). Some more accurate comparisons
between the two computational modelling may then be useful as a possible discriminating test for the pre-
sumed higher reliability of the Vlasov numerical approach in some kinetic regimes.
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