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Abstract

Predicting turbulent transport in nearly collisionless fusion plasmas requires to solve kinetic (or more precisely gyroki-

netic) equations. In spite of considerable progress, several pending issues remain; although more accurate, the kinetic cal-
culation of turbulent transport is much more demanding in computer resources than fluid simulations. An alternative
approach is based on a water bag representation of the distribution function which is not an approximation but rather
a special class of initial conditions allowing to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations
while keeping its kinetic character. This model has been applied to gyrokinetic modelling with very encouraging results.
The instability threshold for ITG instability is found to be very close to the results obtained from continuous Maxwellian
distribution, even for only 10 bags.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Low frequency ion-temperature-gradient driven (ITG) instabilities are now commonly held responsible for
turbulence giving rise to anomalous radial energy transport in the core of tokamaks. The computation of tur-
bulent thermal diffusivities in fusion plasmas is of prime importance since the energy confinement time is deter-
mined by these transport coefficients. During recent years, ion turbulence in tokamaks has been intensively
studied both with fluid (see for instance [1–3]) and gyrokinetic simulations using PIC codes [4–6] or Vlasov
codes [7–10]. Although more accurate, the kinetic calculation of turbulent transport is much more demanding
in computer resources than fluid simulations.

Introduced initially by DePackh [11], Hohl, Feix and Bertrand [12–14] the water bag model was shown to
bring the bridge between fluid and kinetic description of a collisionless plasma, allowing to keep the kinetic
aspect of the problem with the same complexity as the fluid model. It is the aim of this paper to revisit the
water bag model and its possible application to gyrokinetic modelling.
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2. The water bag

Vlasov equation is a difficult one mainly because of its high dimensionality. For each particle species the
distribution function f ðr; v; tÞ is defined in a 6D phase space (r,v). The simplest (one spatial dimension, one
velocity dimension) implies a 2D (x,v) phase space. Can it be reduced to the sole real space r as in usual hydro-
dynamics? In that last case the presence of collisions with frequency much greater than the inverse of all char-
acteristic times implies the existence of a local thermodynamic equilibrium characterised by a density nðr; tÞ, an
average velocity u(r, t) and a temperature T ðr; tÞ. A priori in a plasma the distribution function f ðr; v; tÞ is an
arbitrary function of r and v (and t of course) and phase space is unavoidable.

But consider a 1D plasma (2D phase space) in which at initial time the situation is as depicted in Fig. 1.
Between the two curves v+ and v- we impose f ðx; v; 0Þ ¼ A (A is a constant). For velocities bigger than v+

and smaller than v� we have f ðx; v; 0Þ ¼ 0.
According to phase space conservation property of the Vlasov equation, as long as v+ and v� remain single

valued function, f ðx; v; tÞ remains equal to A for values of v such that v�ðx; tÞ < v < vþðx; tÞ. Therefore, the
problem is entirely described by the two functions v+ and v�. Since a hydrodynamic description involves n,
u and P (respectively density, average velocity and pressure) we can predict the possibility of casting the
WB model into the hydrodynamic frame with, in addition, an automatically provided state equation.

Remembering that a particle on the contour v+ (or v�) remains on this contour the equations for v+ and v�
are (for instance for an electron plasma, E being the electric field and e the electron charge)
Dv�
Dt
¼ ov�ðx; tÞ

ot
þ v�

ov�
ox
¼ e

m
Eðx; tÞ: ð1Þ
Now let us introduce the density nðx; tÞ ¼ Aðvþ � v�Þ and the average (fluid) velocity uðx; tÞ ¼ 1
2
ðvþ þ v�Þ

into Eq. (1) by adding and subtracting these two equations. We obtain
on
ot
þ o

ox
ðnuÞ ¼ 0; ð2Þ

ou
ot
þ u

ou
ox
¼ � 1

mn
oP
ox
þ e

m
E; ð3Þ

Pn�3 ¼ m

12A2
: ð4Þ
Eqs. (2)–(4) are respectively the continuity, Euler and state equation. This hydrodynamic description of the
water bag model was pointed out for the first time by Bertrand and Feix [13] but the state equation (4) de-
scribes an invariant both in space and time while in the hydrodynamic model we obtain D

Dt ðPn�cÞ ¼ 0. It must
be noticed that the physics in the two cases is quite different [20].

Linearising Eq. (1) around and homogeneous equilibrium i.e. v�ðx; tÞ ¼ �aþ w�ðx; tÞ for an electronic
plasma (where ±a are the constant values for this equilibrium and w± a small perturbation with jw�j � a)
yields the simple dispersion relation for a harmonic perturbation x2 ¼ x2

p þ k2a2. Furthermore, computing
Fig. 1. The water bag model in phase space.
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the thermal velocity v2
T ¼ 1

n0

Rþ1
�1 v2f0ðvÞdv ¼ a2=3 allows to recover exactly the Bohm–Gross dispersion rela-

tion x2 ¼ x2
p þ 3k2v2

T .
Thus it is very easy to construct the water bag associated to a homogeneous distribution function charac-

terised by a density n0 and a thermal velocity vT: we just have to choose the water bag parameters (a and A) as
follows: a ¼

ffiffiffi
3
p

vT and A ¼ n0=2a. Of course there is no Landau resonance since the phase velocity
vu ¼ ða2 þ x2

p=k2Þ1=2 is greater than a and thus lies in a region of velocity space where there are no particles.
To recover the Landau damping the water bag has to be generalised into the multiple water bag.
3. Multifluids and multiple water bag models (MWB)

This generalisation was straightforward [15–17]; Berk and Roberts [18] and Finzi [19] used a double WB
model to study the two stream instability in a computer simulation including the filamentation of the contours
and their multivalued nature (a highly difficult problem from a programming point of view).

Let us consider 2N contours in phase space labelled vþj and v�j (where j ¼ 1; . . . ;N ). Fig. 2 shows a three-
bag system (N = 3) where the distribution function takes on three different constant values F1, F2 and F3.

Introducing the bag heights A1, A2 and A3 as shown also in Fig. 2 the distribution function writes
Fig
f ðx; v; tÞ ¼
XN

j¼1

Ajð!ðv� v�j ðx; tÞÞ � !ðv� vþj ðx; tÞÞÞ; ð5Þ
where ! is the Heaviside unit step function. Notice that some of the Aj can be negative.
Let us now introduce for each bag j the density nj, average velocity uj and pressure Pj as done above for the

one-bag case i.e. nj ¼ Ajðvþj � v�j Þ, uj ¼ ð1=2Þðvþj þ v�j Þ and P jn�3
j ¼ m=ð12A2

j Þ. For each bag j we recover the
continuity and Euler equation as written in (2) and (3) namely
onj

ot
þ o

ox
ðnjujÞ ¼ 0; ð6Þ

ouj

ot
þ uj

ouj

ox
¼ � 1

mnj

oP j

ox
þ e

m
E: ð7Þ
The coupling between the bags is given by the total density
P

jnj in the Poisson equation
oE
ox
¼ e

e0

XN

j¼1

nj � n0

 !
: ð8Þ
Linearising Eqs. (6)–(8) for an electronic plasma around an homogeneous (density n0) equilibrium i.e.
v�j ðx; tÞ ¼ �aj þ w�j ðx; tÞ with jw�j j � aj yields the dispersion relation
1�
x2

p

n0

XN

j¼1

2ajAj

x2 � k2a2
j

¼ 0: ð9Þ
. 2. Multiple water bag: phase space plot for a three-bag model (left) and corresponding MWB distribution function (right).
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If all Aj’s are positive (single hump distribution function) this equation has 2N real frequencies located
between �aj and �ajþ1. The Landau damping is recovered as a phase mixing process of real frequencies
[15,21] which is reminiscent of the Van Kampen–Case treatment of the electronic plasma oscillations [22,23].

The connection with a multifluid model is more illuminating if we consider the equivalence in the fluid
momentum sense of a multiple water bag distribution and a continuous distribution.

Let us consider an homogeneous equilibrium distribution function f0ðvÞ. For simplicity reason we suppose
f0 is an even function of v (odd momenta are zero). In the water bag formalism it means symmetrical equilib-
rium contours �aj. Let us define the ‘-momentum of f0 (‘ even only):
M‘ðf0Þ ¼
Z 1

�1
v‘f0ðvÞdv ð10Þ
and the ‘-momentum of the corresponding water bag
M‘ðWBÞ ¼ 1

‘þ 1

X
j

2Aja‘þ1
j : ð11Þ
Let us now sample the v-axis with appropriate aj’s. Thus equating Eqs. (10) and (11) for
‘ ¼ 0; 2; . . . ; 2ðN � 1Þ yields a system of N linear equations for the N unknown Aj; j ¼ 1; . . . ;N . Using an inte-
gration by parts we get
X
j

2Aja‘þ1
j ¼ �

Z 1

�1
v‘þ1 df0

dv
dv; ‘ ¼ 0; 2; . . . ; 2ðN � 1Þ: ð12Þ
A water bag model with N bags is equivalent to a continuous distribution function for momenta up to
‘max ¼ 2ðN � 1Þ. Nevertheless Eq. (12) has the form of a Vandermonde system which becomes ill-conditioned
for higher values of the number of bags N (for instance for N = 15) and a cut-off in velocity space aN ¼ 5vT the
matrix elements vary from 1 to 528!

A more convenient solution can be found for a regular sampling aj ¼ j� 1
2

� �
Da and is explained in Fig. 3:

consider Fj at the middle of the interval Da ¼ 2aN
2N�1

and compute F j ¼ f0 aj � Da
2

� �
. An approximate (up to sec-

ond order in Da) solution for Eq. (12) is obtained from
1

Da
f0 aj þ

Da
2

� �
� f0 aj �

Da
2

� �� �
¼ F jþ1 � F j

Da
¼ �Aj

Da
¼ df0

dv
þ OðDa2Þ: ð13Þ
Fig. 3. Constructing the bags from a continuous distribution.



Fig. 4. Threshold in the ðjT ; jnÞ plane (arbitrary units) for N = 3 and N = 10. The dashed and solid lines correspond respectively to
continuous and water bag distribution functions.
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For N larger than 10–15 this approximate solution gives rather good results for a Maxwellian distribution
function in the sense that the MWB-momenta (11) are close to the Maxwellian values (10). Of course for N

smaller than 10 the exact Aj’s can be obtained solving directly the linear system (12).
As a final remark it is important to point out that the use of MWB appears as a reduction of the phase

space dimension (elimination of the velocity variable). Of course the eliminated velocity reappears in the var-
ious bags j (j ¼ 1; . . . ;N ) and if we want a precise description of a continuous distribution we need a large N.
But from a physical point of view, many interesting results can be obtained with a small N, sometimes N = 2
or 3 (see Fig. 4) or even 1 (see Section 2). In the Vlasov phase space ðx; vÞ, the exchange of velocity is described
by a differential operator. From a numerical point of view this operator has to be approximated by finite dif-
ferences, and a minimum size for the mesh in the velocity space has to be required: a too rough mesh would
bring a numerical catastrophe. On the contrary, the MWB is not an approximation but an exact model with a
choice of special initial conditions.
4. Application to gyrokinetic modelling

In principle, one has to solve a 6D kinetic equation to determine the distribution function. However, for
strongly magnetized plasmas, gyrokinetics allows to recast the Vlasov equation into a 5D equation in which
the fast gyroangle does not appear explicitly but in which the particle information is not lost. The physical
model is based on the gyrokinetic equation for the ions with an adiabatic response for the electrons [24]. More-
over, to study slab ion temperature gradients (ITG) instabilities a simplified drift-kinetic model in cylindrical
geometry can be considered [8]: the uniform and constant magnetic field B is along the axis of the column
(z coordinate); electron inertia is ignored (adiabatical response to the low frequency fluctuations) and ion finite
Larmor radius effects are neglected as well so that only the guiding-center trajectories are taken into account.
There is no equilibrium radial electric field. The plasma quasi-neutrality approximation dni ¼ dne is sufficient
for low frequency electrostatic perturbations. With these assumptions the evolution of the ion guiding-center
distribution function f ðr?; z; vk; tÞ is described by the drift-kinetic Vlasov equation (see [8] for more details).

The most important and interesting feature is that f depends only on the velocity component vk parallel to B.
Consequently, a water bag description can be simply obtained of the form (5) where the contours v�j are now
function of ðr; h; z; tÞ and obey equations similar to Eq. (1) with the additional guiding-center term, supple-
mented by the quasi-neutrality equation:
ov�j
ot
� 1

rB

o/
oh

ov�j
or
� o/

or

ov�j
oh

� �
þ v�j

ov�j
oz
þ qi

mi

o/
oz
¼ 0; ð14Þ
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Zi

XM

j¼1

Ajðvþj � v�j Þ � neðrÞ ¼
eneðrÞ
T eðrÞ

/; ð15Þ
where T eðrÞ and neðr) are respectively the electron temperature and density radial profiles.
We call this model the gyro water bag. In order to know how to build such a gyro water bag that is suited

for gyrokinetic purpose, we shall concentrate on the linear analysis, in the same spirit as Section 3. Let us con-
sider the following expansion around an equilibrium depending only on the radial variable r:
/ ¼ 0þ d/ðrÞeiðkkzþmh�xtÞ; ð16Þ
v�j ¼ �ajðrÞ þ w�j ðrÞeiðkkzþmh�xtÞ: ð17Þ
A little algebra yields the dispersion relation �ðx; kkÞ ¼ 0 with the following gyro water bag dispersion
function:
�ðx; kkÞ ¼ 1� Zi

k2
kc

2
S

ni

XM

j¼1

2ajAj

x2 � k2
ka

2
j

þ Zi
khqScS

ni
x
XM

j¼1

2ajAjjj

x2 � k2
ka

2
j

; ð18Þ
where niðrÞ ¼
P

‘2a‘A‘ is the ion density, cSðrÞ is the local ion acoustic velocity defined by c2
S ¼ T eðrÞ=mi,

qSðrÞ ¼ cS=Xc with Xc being the ion cyclotron frequency. The wavenumber kh is defined by kh ¼ m=r. Finally,
jjðrÞ is the radial density gradient of bag j i.e. jjðrÞ ¼ d

dr ln ajðrÞ.
At a given point r = r0 the Aj’s can be computed using the same trick as explained in Section 3, Fig. 3. But

as compared to Eq. (9), new unknown jj appear in Eq. (18) which measure the local density gradient of the
corresponding bag j. To determine these unknowns the knowledge of the equilibrium gradients at r = r0 is
needed:

(i) the ion temperature gradient jT ¼ d
dr ln T i,

(ii) the ion density gradient jn ¼ d
dr ln ni.

Computing the jj’s as a function of jn and jT is done in the following way. We first write the equilibrium
ion distribution function of the form
fiðr; vÞ ¼
niðrÞ
vT iðrÞ

G
v

vT iðrÞ

� �
; ð19Þ
where G is a normalised function
R1
�1 GðxÞdx ¼ 1. Like Section 3, we suppose G an even function so that odd

momenta are zero and we define the ‘-momentum of G by M‘ðGÞ ¼
R1
�1 x‘GðxÞdx. Thus in the momentum

sense we have
XN

j¼1

2Aja‘þ1
j ¼ ð‘þ 1Þniv‘T i

M‘ðGÞ ð20Þ
for ‘ ¼ 0; 2; . . . ; 2ðN � 1Þ. This equation must hold not only at r = r0 (which is equivalent to solve Eq. (12) to
get the Aj’s) but also in the vicinity of r = r0. Taking the derivative of Eq. (20) yields
XN

j¼1

2Aja‘þ1
j jj ¼ jn þ

‘

2
jT

� �
niv‘T i

M‘ðGÞ: ð21Þ
Again Eq. (21) is a linear system of N equations for the N unknown jj providing the aj’s are given. It is con-
venient to look for solutions of Eq. (21) of the form
2ajAjjj ¼ vjjn þ
1

2
ð2ajAj � vjÞjT ð22Þ
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by introducing an auxiliary variable vj. Putting (22) into (21) yields the following system:
XN

j¼1

vja
‘
j ¼

Z 1

�1
v‘fiðvÞdv: ð23Þ
A convenient solution for the vj’s can be found in the case of a regular sampling aj ¼ ðj� 1
2
ÞDa (see Fig. 3).

Computing F j ¼ f0 aj � Da
2

� �
and performing a Taylor expansion yields the very simple approximate solution

(with the same remarks as for Eq. (13))
vj

Da
¼ f0 aj �

Da
2

� �
þ f0 aj þ

Da
2

� �� �
þ OðDa2Þ:
Once the quantities Aj and jj (for j ¼ 1; . . . ;N ) in the gyro water bag dispersion function (18) have been
computed from (13), (22) and (23), the discrete dispersion relation for N bags fits the continuous one in the
momentum sense up to order ‘max ¼ 2ðN � 1Þ. For instance, for N = 3 only a qualitative agreement is
obtained, while for N = 10 the instability threshold for ITG instability is found to be very close to the results
obtained from continuous Maxwellian distribution function [25] (see Fig. 4).

These results are very interesting and tend to prove that the gyro water bag model is able to depicting and
resolving kinetic effects in the nonlinear regime with the numerical cost of a (multi)fluid simulation. Prelimin-
ary results obtained with a 2D code ðr; z; vkÞ based on discontinuous-Galerkin and Lax–Wendroff type meth-
ods are very encouraging. Furthermore, finite Larmor radius effects and toroidal geometry, which have been
neglected in the present paper, are now under consideration without any further difficulties, and will be pub-
lished in a forthcoming paper.
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