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Abstract

This paper addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence
with the GYSELA code. The particularity of GYSELA code is to use a semi-Lagrangian (SL) scheme for the full distribution
function. The 4D non-linear drift-kinetic version of the code already shows the interest in such a SL method which exhibits
good properties of energy conservation. The code has been upgrated to run 5D toroidal simulations. Linear benchmarks
and non-linear results are presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Non-linear gyrokinetic simulations are playing an increasingly important role in understanding anomalous
transport in magnetically confined fusion plasmas. In spite of considerable progress, the choice of the method
for solving the Vlasov equation is still in debate. The most widespread method is the Lagrangian scheme (typ-
ically particle-in-cell codes). An alternative is the Eulerian method. These two approaches have already proved
their efficiency. However the fact that the PIC simulations can be affected by numerical noise is a subject of
controversy [1]. Techniques of ‘‘optimal loading’’ [2] and filtering have been recently developed to improve this
problem. Regarding the Eulerian codes they require numerical schemes of high order to limit numerical dis-
sipation. This paper deals with gyrokinetic simulations performed with a new method based on a semi-
Lagrangian (SL) scheme [3]. In the GYSELA code the full distribution function is evolved on a fixed grid in
the phase space, moving backwards in time along the characteristics. A 4D drift-kinetic slab-ITG version
of the code has already shown good properties of energy conservation in non-linear regime as well as an
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accurate description of fine spatial scales [4,5]. The first results obtained with the new 5D gyrokinetic toroidal
version of GYSELA are presented.

2. A gyrokinetic 5D model in toroidal geometry

The model focuses on the turbulent transport driven by the collisionless ITG instability in a simple toroidal
geometry (the magnetic flux surfaces are taken to be concentric torii with circular poloidal cross-sections).
Since the turbulence frequency x is much smaller than the ion cyclotron frequency xc ¼ eiB0

mi
(ei ¼ Zie is

the ion charge and mi the ion mass), the gyrokinetic description is appropriate. The magnetic configura-
tion is a circular concentric tokamak configuration: B ¼ ðB0R0=RÞb with the unit vector b ¼
ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr=qRÞ2

q
Þðeu þ ðr=qRÞehÞ. B0 and R0 correspond to the magnetic field and the major radius of the

torus computed at the magnetic axis, with R ¼ R0 þ r cos h. eh and eu are the unit vectors in the two periodic
directions, poloidal and toroidal respectively. The safety factor profile qðrÞ ¼ B � ru=B � rh is defined by the
three parameters q0, dq, and aq such that qðrÞ ¼ q0 þ dqðr=aÞaq . The fluctuations of the magnetic field are
neglected. Thus the electrostatic approximation is used to compute the electric field, i.e. E ¼ �r/, where
the scalar / represents the electric potential. Electrons are assumed adiabatic, so that
dne=n0 ¼ eð/� h/iÞ=T e, where n0 is the equilibrium particle density profile. The brackets hÆi refer to the mag-
netic flux surface average. Taking into account the velocity drifts up to the first order in x=xc � 1 and in the
limit e ¼ r=R� 1, the trajectories of the ion guiding-centers are governed by:
dr
dt
¼ vEr þ vgr

;
dh
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¼ vk
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qðrÞ oh

� �
ð2Þ
vk is the velocity parallel to the magnetic field. The magnetic moment l ¼ miv2
?=ð2BÞ is an adiabatic invariant

with v? the velocity in the plane orthogonal to the magnetic field. The subscripts r and h refer to the radial and
poloidal components, respectively. The electric drift velocity vE is computed with the gyro-average of the
electric potential �/: vE ¼ ðB �r�/Þ=B2. At low b, the curvature drift velocity vg? is given by vg? ¼

B
eB2 � rB

B

� �
ðmiv2

k þ lBÞ which reads, in the large aspect ratio limit, vg? ¼ vg½sin her þ cos heh� with vg ¼
�ðmiv2

k þ lBÞ=ðeB0R0Þ. The time evolution of the guiding-center 5D distribution function �f ðr; h;u; vk; l; tÞ is
governed by the Vlasov equation averaged over the cyclotron motion (so-called gyrokinetic equation):
o�f
ot
þ dr

dt
o�f
or
þ dh

dt
o�f
oh
þ du

dt
o�f
ou
þ dvk

dt
o�f
ovk
¼ 0 ð3Þ
In that form, �f is clearly constant along the characteristics (2). The electric quasi-neutrality provides the
self-consistency condition of the problem. Using the notation r? ¼ ðor;

1
r ohÞ, it reads:
� 1

n0ðrÞ
r? �

n0ðrÞ
B0xc

r?/
� �

þ e
T eðrÞ

/� h/i½ � ¼ 1

n0ðrÞ
nGiðr; h;uÞ � nGieqðr; hÞ
� �

ð4Þ
where nGi is the ion guiding-center density given by nGi ¼ 2p
R

B=mi dl
R

dvkJ 0ðk?qcÞ � �f , qc being the Larmor
radius. The first term on the left hand side is known as the polarization term which corresponds to the dif-
ference between the guiding-center density and that of particles. The correction term nGieq is equal to
nGieq ¼ 2p

R
B=mi dl

R
dvkJ 0ðk?qcÞ � �f eq. The Bessel function J0, corresponds to the gyro-average operator in

Fourier space. The discretization of this quasi-neutrality equation (4) is performed by projecting in Fourier
space along the two periodic directions (h and u) and by using finite differences in the radial direction.

3. Choice of an equilibrium depending on the motion invariants only

The radial profiles of the ion temperature and of the density (respectively T iðrÞ and n0ðrÞ) are fixed in time
and deduced by numerical integration of their gradient profiles given by the two parameters j and
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Dr : d log T iðrÞ=dr ¼ �jT i cosh�2ððr � rpÞ=DrT iÞ with rp corresponding to the middle of the radial box. The dis-
tribution function is periodic along h and u. Vanishing perturbations are imposed at the boundaries in the non-
periodic directions, namely r and vk. Such boundary conditions may be subject to numerical instabilities if
turbulence spreads up to the radial borders. In this case, buffer regions with overdamped fluctuations should
be incorporated. Initial conditions consist of an equilibrium distribution function �f eq perturbed by a sum of
accessible ðm; nÞ Fourier modes (m and n being the poloidal and toroidal wave numbers, respectively). Previ-
ously the equilibrium distribution function was chosen equal to a conventional Maxwellian distribution
function:
Fig. 1.
points.
�f eq ¼ fMðr;EÞ ¼ n0ðrÞ � ½2pT iðrÞ=mi��
3
2 expð�E=T iðrÞÞ ð5Þ
with E ¼ 1
2
miv2

k þ lBðr; hÞ, the energy, which is the second invariant of the system. But it appears that it is cru-
cial to choose �f eq to be a function of the motion invariants, especially for studying zonal flows. Indeed, break-
ing this rule leads to the development of large scale steady flows, which prevent the onset of turbulence (see
following non-linear results), consistently with previous observations [6,7]. Due to the axisymetric magnetic
topology, the third motion invariant is the toroidal kinetic moment Pu; Pu ¼ eiWþ miRvu, W being the toroi-
dal magnetic flux. As a consequence, the equilibrium distribution function can be initialized to a canonical
Maxwellian, as in (5), but where the radius r is replaced by the motion invariant �r defined as [7]:
�r ¼ rp �
qp

rp
½wðrÞ � wðrpÞ� �

mqp

eB0rp
½Rvk � R0�vk� ð6Þ
where wðrÞ ¼ �B0

R r
0

r0dr0

q . The expression of �vk ¼ signðvkÞ
ffiffiffiffiffiffiffiffiffi
2=m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � lBmax

p
HðE � lBmaxÞ has been chosen to

minimize poloidal flows (cf. [8]). With this expression the difference between �r and r is of order q� ¼ qi=a,
qi is the ion Larmor radius and a the minor radius.

4. Linear benchmark with the classical cyclone DIII-D case

The numerical solution is computed using normalized equations. In our case, the temperature is normalized
to T e0, where T e0 is defined by the initial temperature profile such that T eðrpÞ=T e0 ¼ 1. The time is normalized
to the inverse of the ion cyclotron frequency xc ¼ eiB0=mi. Velocities, including the parallel velocity, are
expressed in units of the ion speed vT 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T e0=mi

p
, the electric potential is normalized to T e0=ei and the mag-

netic field is normalized to B0. Consequently, lengths are normalized to the Larmor radius qs ¼ mivT 0=eiB0 and
the magnetic moment l to T e0=B0. In this section, we show the results of the benchmark test with the cyclone
base case [9]. The standard dimensionless parameters are: R0=LT ¼ 6:92, R0=Ln ¼ 2:2, e ¼ a=R0 ¼ 0:18, q = 1.4,
s � ðr=qÞðdq=drÞ ¼ 0:8, q� ¼ 1=184:7 and T e=T i ¼ 1 where LT and Ln are the temperature and density gradi-
ent scale lengths, respectively. The difficulty with a global full-f code as GYSELA is that these Cyclone para-
meters can only be satisfied locally. Besides, as the equilibrium distribution function is not initialized by a
classical Maxwellian, the profiles, that really play a role in the simulation, are not n0 and Ti but
neqðrÞ ¼

R
J 0feq dhd3v for the density and T i eqðrÞ ¼

R
J 0feqE dhd3v=neqðrÞ for the temperature. The correction
Linear mode growth rates and frequencies versus khqi for the Cyclone DIII-D base case. The GYSELA results are plotted with circle
The solid line represents a linear interpolation of all the results presented in paper [9].



Fig. 2. Poloidal cross-section of the electric potential for the most unstable mode ðm; nÞ ¼ ð10;�14Þ:
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is a correction of order q* that is such that the contribution at a given position r depends on the contribution
at various values of �r due to the velocity dependence of the latter coordinate. The effective gradients that are
relevant depart from the values selected for the initial conditions. For this reason the cyclone test has been
performed by first calibrating the required profiles to recover the growth rate and the frequency of the most
unstable mode ðm; nÞ ¼ ð10;�14Þ (see its ballooning mode structure in Fig. 2). The corresponding parameters
are the following jn ¼ 2:2, Drn ¼ 5, jT ¼ 6:78, DrT ¼ 0:8 with q� ¼ 0:01. Then the same parameters have been
used to perform the four others simulations for ðm; nÞ ¼ ð4;�3Þ; ð7;�10Þ; ð12;�17Þ and (21,�15). For these
five simulations the radial domain is limited to the region of 0:2 < r=a < 0:8. (16 · 8) grid points are used
for discretization of the velocity space �4vT i 6 vk 6 4vT i and 0 6 l 6 7B0=T e0. The ðr; h;uÞ space is discretized
with ð128� 128� 64Þ points. The safety factor profile is chosen equal to qðrÞ ¼ 1þ 2:78ðr=aÞ2:8 to satisfy
qðrpÞ ¼ 1:4 and sðrpÞ ¼ 0:8. The results reported on Fig. 1 show that GYSELA simulations are in agreement with
the other codes.

5. Collisionless damping of zonal flow and GAM

Rosenbluth and Hinton [10] have shown that linear collisionless processes do not fully damp poloidal flows
driven by ITG. The residual level of the zonal flow after the collisionless damping is considered to affect a
saturation amplitude of the ITG turbulence. These important observations have lead to another classical test-
bed of toroidal gyrokinetic simulations [6,11–13]. In this test an initial electric potential /̂00ðt0; rÞ profile is set in
the code and evolves towards a residual flow [14]. This initial state leads to the development of Geodesic Accou-
stic Modes (GAMs) which are ðm; nÞ ¼ ð0; 0Þ modes coupled to sidebands ðm; nÞ ¼ ð	1; 0Þ due to the toroidal
Fig. 3. Time evolution of the zonal flow potential obtained by the GYSELA code (solid line). The dotted horizontal line represents the
analytical residual given by [10]. Plot of /̂00ðt0Þð1� ARÞ expð�cGtÞ cosðcGtÞ þ AR in dashdot line for the expression of cG given by [15]. This
corresponds in our case to AR = 0.0681 and cG ¼ 4:2e� 4.
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geometry. These GAMS are Landau-damped because of the finite poloidal wavenumber of the sideband. How-
ever there also exist an undamped component ðm; nÞ ¼ ð0; 0Þ which corresponds to the ZF. This residual value

of ZF has been analytically predicted [14] by: /̂00ðt1Þ ¼ /̂00ðt0Þ � AR with AR ¼ 1=ð1þ 1:6q2=
ffiffi
�
p
Þ. As seen in

Fig. 3, the residual zonal flow level obtained by GYSELA agrees with the Rosenbluth–Hinton theory. This
simulation has been performed with a safety factor profile q(r) equal to 1:5þ 1:5ðr=aÞ1:9 which corresponds
to qðrpÞ ¼ 1:9. The frequency xG and the damping rate cG of the GAMS have also been theoretically predicted
[12] and more recently by Sugama and Watanabe [15] where the Finite-Orbit-Width effects are taken into
account. Fig. 3 shows the behavior of the GAMs simulated by GYSELA in agreement with the predicted decrease
/̂00ðtÞ=/̂00ðt ¼ t0Þ ¼ ð1� ARÞ expð�cGtÞ cosðcGtÞ þ AR.

6. Non-linear simulations

The following non-linear simulations have been performed, for a mesh grid of ðr; h;u; vk; lÞ ¼
ð128� 128� 32� 32� 16Þ, with the same parameters as for the previous linear tests, except for the choice
of the density and temperature gradients where the parameters are jn ¼ 2:6;Drn ¼ 1, jT = 12 and DrT ¼ 0:8.
The time step Dt has been chosen equal to 2=xc. A global simulation of 4000 iterations, as presented in the
following, requires around 37 h of CPU time on 32 processors. The turbulence looks fully developed at the
end of the simulations we present here, with a broad Fourier spectrum both in m and n. A forthcoming paper
will detail the convergence properties of the code. Especially, the saturated regime of turbulence will be
explored with regard to the numerical discretization. The first simulation corresponds to a simulation without
zonal flow, i.e. the magnetic flux surface average h/i has been neglected in the quasi-neutrality equation (4).
The time evolution of /2 presented in Fig. 4a exhibits the two expected phases: the linear exponential increase
and the non-linear saturation phase. The turbulence relaxation observed in this non-linear phase is due to the
relaxation of the profiles. It turns out that the normalized temperature gradient R=LT drops by approximately
30% between t ¼ 3000=xc and t ¼ 8000=xc. Only the temperatures at the boundaries are fixed so that the pro-
file in the center of the simulation domain tends to flatten while the gradients increase in the boundary layer.
This point will be improved in the future by developing a flux-driven version of GYSELA namely by driving the
system with a constant source. A 3D prototype already exists and yields an intermittent behavior of the tem-
perature gradient [16]. In the present case, the localization of ballooning mode structures at the low field side
(h = 0) is obtained, as seen on the poloidal cross-sections of / plotted in Fig. 4b and c. Adding the zonal flows
is not a trivial point. A first important point which has been already highlighted is the fact that the choice of
the equilibrium distribution function is crucial. Indeed, as seen on Fig. 5a, taking an equilibrium, which does
not depend on the motion invariants only, leads to the development of large scale flows. The final state is dom-
inated by these zonal flows (Fig. 5b) and this takeover arrives early in the simulation (at t ¼ 500=xc). At the
opposite with an appropriate choice of the equilibrium distribution function the level of ZF is considerably
reduced. The simulation shows three phases: the first one with the linear growth of ballooning mode structures
(Fig. 6a), the second one shows the distorsion of these radially elongated structures due to the self-generated
Fig. 4. Simulation where the zonal flows have been artificially suppressed. Time evolution of /2 in (a). The dotted vertical lines correspond
to the times associated to the two poloidal cross-sections of /� h/ih;u: (b) at the beginning of the saturation phase ðt ¼ 3000=xcÞ and (c)
at the end of the simulation ðt ¼ 8000=xcÞ.



Fig. 5. Simulation with zonal flows and a conventional Maxwellian as initial condition. Time evolution of /2 in (a). As seen on (b) at time
t ¼ 500=xc, the poloidal cross-section of /� h/ih;u exhibits dominant zonal flows.

Fig. 6. Simulation with zonal flows and a canonical initial distribution function. Three steps in the evolution are characterized by the
poloidal cross-sections of /� h/ih;u: (b) ballooning mode structure ðt ¼ 1500=xcÞ, (c) sheared convective cells ðt ¼ 3000=xcÞ and
turbulent state ðt ¼ 8000=xcÞ.
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zonal flows (Fig. 6b) and the last one characterizes the turbulent regime (Fig. 6c). As suggested by Fig. 6b, the
characteristic radial size of the ZF is of the order of a few tens of Larmor radii. In this case, the turbulence
saturation is simultaneously governed (i) by the profile relaxation, inherent to full-f simulations where the
equilibrium gradient are allowed to flatten as a result of the turbulent transport, and (ii) by the non-linear cou-
pling of the unstable modes. The latter mechanism governs energy cascade processes, possibly leading to the
generation of zonal flows.

7. Conclusion

A new 5D global full-f gyrokinetic code, named GYSELA, has been developed to study toroidal ITG driven
turbulence. The particularity of this code is to use a semi-Lagrangian scheme. The linear growth rates and fre-
quencies agree with the values expected for the reference Cyclone test case. The zonal flows behave as expected
in the case of the Rosenbluth–Hinton test. It is found that the decay rate and the oscillation frequency agree
with expressions given recently by Sugama and Watanabe [15]. The choice of an equilibrium function which
depends only on the motion invariants is crucial to prevent the onset of turbulence due to the development of
large scale flows. This problem is solved by defining the initial conditions in terms of a motion invariant, that
is chosen so as to depart from the actual minor radius by a small term of order q*.
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