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Abstract. The present paper addresses the gyrokinetic water-bag model in toroidal geometry. The previous
works were focused on the water-bag concept in magnetized cylindrical plasmas. Here we report on the
possibility to improve the water-bag model by taking into account the curvature and gradient drifts. After
a presentation of the model, a local linear analysis with some approximations is performed. Interchange
and ion temperature gradient instabilities are examined with this new gyro-water-bag model in order to
show its ability and its theoretical interest in describing kinetic instabilities in toroidal geometry.

1 Introduction

Micro-instabilities are now commonly held responsible for
turbulence giving rise to anomalous radial energy trans-
port in tokamak plasmas [1,2]. Such a turbulent transport
governs the energy confinement time in controlled fusion
devices. In this framework, the quest for performant dis-
charges with good confinement properties relies crucially
on the ability to accurately predict the level of turbulent
transport.

Among these instabilities, ion temperature gradient
(ITG), interchange instabilities, and trapped electron
modes (TEM) may play an important role in explain-
ing the anomalous heat and particle transport observed
in tokamaks [2–4]. These instabilities are driven by ion
and electron equilibrium gradients.

Numerical simulations can contribute to a better un-
derstanding of plasma instabilities. Fluid models are
widely used. Solving three-dimensional 3D fluid equations
is the most convenient way to compute the plasma re-
sponse to the perturbed electromagnetic field when there
is no wave-particle interaction and is all the more justi-
fied when Coulomb collisions are dominant. Moreover us-
ing fluid equations with an appropriate fluid closure [5,6]
for nearly collisionless fusion plasmas in order to describe
plasma turbulence is useful.

On the other hand, predicting turbulent transport in
nearly collisionless fusion plasmas can be solved by using
gyrokinetic equations [7] but is still a nontrivial task be-
cause of its demand of computer resources. This motivated
us to revisit an alternative approach based on the water-
bag (WB) representation of the distribution function [8]
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which can be viewed as a useful tool to bring the bridge
between fluid and kinetic models.

Introduced initially by DePackh [9], and Feix and
co-workers [10–12], this model was extended into a dou-
ble water-bag by Berk and Roberts [13], and Finzi [14],
and generalized to the multiple water-bag [15–17]. It was
shown to bring the bridge between fluid and kinetic de-
scriptions of a collisionless and unmagnetized plasma, al-
lowing one to keep the kinetic aspect of the problem with
the same complexity as a multifluid model.

In recent work, we used the water bag model for mag-
netized plasmas in the framework of gyrokinetic modeling
(gyro-water-bag, i.e. GWB model) in cylindrical geometry
with a uniform and static magnetic field pointing in the
axis direction. First, a linear study of the ITG instability
in cylindrical geometry has been performed in the case
of the drift-kinetic approximation without taking into ac-
count finite larmor radius (FLR) effects [8], polarization
and gyroaveraging. It has been shown that the water-bag
model converges rather rapidly towards that of the contin-
uous distribution function (bag number � 5) when ITG
instability linear growth rates are compared. Nonlinear
numerical simulation has also been carried out in cylin-
drical geometry [18]. Next, a precise study of FLR effects
on ITG instability has been performed [19]. Finally, a lin-
ear study of both collisional drift waves and ITG instabili-
ties has been performed in the case of a linear magnetized
plasma device [20]. This present work aims to report first
linear results in toroidal geometry to show the capability
of this GWB model in describing instabilities in toroidal
geometry.

A gyro-water-bag model in toroidal geometry could be
useful of course for non-linear simulations but also for lin-
ear studies. Indeed a comprehensive theoretical model for
anomalous transport does not yet exist which can explain
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the heat conductivity found in experiments. Most exist-
ing transport models are based on a mixing length rule
based on quasi-linear theory [21]. In a number of cases
the quasilinear approach exhibits a rather good agreement
with experiments and recently nonlinear gyrokinetic sim-
ulations have been shown to scale almost as quasilinear
predictions [22,23]. QuaLiKiz [21] is based on a fast linear
gyrokinetic code, Kinezero [24]. In this code the fluctu-
ating electrostatic potential frequency and wave-number
spectra are chosen based on turbulence measurements and
nonlinear simulations results. For Kinezero, the eigenfunc-
tion of the electrostatic potential is a trial function chosen
to be a Gaussian with a width that has been benchmarked
against nonlinear gyrokinetic codes. Such fluid or kinetic
codes are useful for the integrated tokamak modeling. The
purpose is to build a set of validated simulation tools, ac-
cessible and useful for ITER prediction and interpretation
activity. In this frame the gyro-water-bag model could be
an interesting linear tool, giving linear instability growth
rates and exact eigenfunctions.

In this paper we address the problem of defining a
gyro-water-bag model in toroidal axisymmetric geometry.
In order to progress towards the description of tokamak
plasmas, the present paper aims to demonstrate the rele-
vance of the GWB model describing a strongly magnetized
plasma in toroidal axisymmetric geometry. But here the
eigenfunctions are not exactly solved but approximated in
order to show in a first step the capability of the GWB
model to describe instabilities and turbulence in toroidal
geometry, namely by considering the toroidal curvature of
the magnetic field lines and its consequences on the in-
stabilities. Solving the exact problem is beyond the scope
of this paper, and here the goal is not to know if the
WB model could allow or not less costly numerical sim-
ulations. The main theoretical interest of the WB model
in this toroidal geometry is to allow an easy local linear
analysis without any constraint on the shape of the distri-
bution function which can be very far from a Maxwellian,
by taking into account energetic particles for instance.

The paper is organized as follows. In Section 2 the
gyrokinetic model is described and the water-bag equa-
tions in toroidal geometry are introduced. The linear
analysis of the new model is presented in Section 3.
where the equilibrium and the first order dynamic are dis-
cussed. Next dispersion equation and results are given in
Section 4. Interchange and ITG instabilities are investi-
gated in toroidal axisymmetric geometry using this new
gyro-water-bag model.

2 Gyrokinetic equations and water-bag
modeling

2.1 The gyrokinetic model

Electromagnetic fluctuations in magnetized plasma fusion
devices occur on time scales much longer than charged
particle gyromotion period (ω/Ωc � 1, where ω is the
fluctuation frequency and Ωc the cyclotron frequency).

Fig. 1. Toroidal coordinates.

Moreover, the wavelength of these fluctuations is much
smaller than the characteristic scale length of magnetic
field B/|∇B|, density n/|∇n|, and temperature T/|∇T |
gradients. This gyrokinetic ordering [7] allows separation
between fast gyromotion and slow dynamics in the perpen-
dicular direction to the magnetic field. The phase space
reduces to three dimensions in real space and two dimen-
sions in velocity space. The particles are then described
by a statistical distribution function f(r, v‖, μ, t) of their
guiding-center (GC) position. The variable v‖ is the ve-
locity in the parallel direction to the magnetic field and
μ = mv2

⊥/2B is the first adiabatic invariant, which is
linked to the perpendicular dynamic.

In this paper, a toroidal geometry is considered (see
Fig. 1 for notations), and Coulomb collisions are neglected.

The magnetic field is of the form:

B(r, θ) = Bθuθ + Bϕuϕ (1)

where ϕ and θ are respectively the toroidal and poloidal
coordinates. We assume Bθ smaller than Bϕ and the mag-
netic field lines to be curved with a radius of curvature
Rc ∼ R, with R = (R0 + r cos θ)(cos θur − sin θuθ), R0

being the major radius of the tore. The plasma parameters
are supposed to be in the low-β limit, i.e. the plasma pres-
sure and volume currents are low. Therefore it is possible
to write ∇B/B � −Rc/R2

c .
The gyrokinetic equations for ions then write [7,25,26]:

∂tf + vD · ∇f + v̇‖∂v‖f = 0 (2)

with

vD = v‖b + vE×B + vc + v∇ (3)

vE×B = −∇Jμφ × b
B

(4)

vc + v∇ =

(
μ

q
+

v2
‖

Ωc

)
R × b

R2
(5)

v̇‖ =−
(

q

mi
∇Jμφ+

μ

mi
∇B

)
·
(
b+

v‖
Ωc

R × b
R2

)
(6)



R. Klein et al.: The gyrokinetic water-bag modeling in toroidal geometry 3

Fig. 2. Water-bag distribution function for M = 3 plotted
against the parallel velocity.

where f is the ion distribution function of the guiding
centers for a given μ, Jμ is the gyroaverage operator [27].
The terms q and mi are the ion charge and mass, μ is the
first adiabatic invariant, and φ is the plasma potential.
b = B/B is the unit vector along the magnetic field.

The quasi-neutrality equation writes:

ne = Zi

[
Jμni + ∇⊥ ·

(
ni0

ΩcB
∇⊥φ

)]
(7)

where the second term on the right-hand side corresponds
to the polarization density. ni is the ion density, and ni0 is
the ion density at the equilibrium. This equation is valid
in the long wavelength approximation [28].

2.2 The water-bag model

The reader can refer to references [8,18–20] for a de-
tailed presentation of the gyro-water-bag model, espe-
cially the method for choosing water-bag parameters. As
seen above, gyrokinetic modeling makes full use of the
μ-invariance to eliminate perpendicular kinetic variables
in the Vlasov equation. In the same way, the WB concept
uses Liouville’s invariance to reduce again the phase space
dimension.

Using the same method that that of used in refer-
ence [8], an ion distribution function of the following form
(Fig. 2) is chosen:

fMWB(r, v‖, t) =
M∑

j=1

Aj

{
H [v‖ − v−j (r, t)] − H [v‖ − v+

j (r, t)]
}

(8)

where M is the bag number, and H is the Heaviside
step-function.

The most interesting property of the WB distribu-
tion is the absolute time invariance of the different bag
heights Aj . Consequently, the evolution of the system is
entirely determined by the dynamical equations of the fi-
nite set of contours v+

j (r, t) and v−j (r, t) (Fig. 3). Indeed,
introducing this distribution function in the gyrokinetic

Fig. 3. Bag contours in the phase space x, v for a three-bag
system. Between two contours, the distribution function f re-
mains equal to a constant Fj . The properties of the system are
completely described by the knowledge of the contours.

equations leads to the following set of equations, called
contour equations [8]:

∂tv
±
j +

[
vE×B + v(c+∇)j

] · ∇⊥v±j + v±j ∇‖v±j = v̇±j (9)

where

v(c+∇)j
=

(
μ

q
+

v±2
j

Ωc

)
R × b

R2
. (10)

Thus the properties of the system are completely de-
scribed by the knowledge of the contours v±j , which obey
the motion equations. The right-hand side of the equa-
tion (9) is the same as the parallel acceleration in equa-
tion (6) except for the subscript ‖ replaced by j. It can
be seen like the acceleration of an ion placed in the
contour v±j . These contours are coupled by the quasi-
neutrality equation:

ne = Zi

[
Jμ

M∑
j=1

Aj

(
v+

j −v−j
)
+∇⊥ ·

(
nio

ΩcB
∇⊥φ

)]
. (11)

In these equations, j is nothing but a label since no dif-
ferential operation is carried on v. What we actually do is
to bunch together particles within the same bag j, and let
each bag evolves using contour equations (9). The kinetic
equation is reduced into a set of hydrodynamic equations
while keeping its kinetic character, the system behaves
as M fluids coupled together by the quasi-neutrality equa-
tion. There are as many hydrodynamic equations as bags,
and no differential equation is carried out on the vari-
able v‖. To sum up, introducing both magnetic moment
and Liouville invariance appears as an exact reduction in
the phase space dimension elimination of v⊥ and v‖. Of
course these eliminated velocities reappear as parameters
in the various magnetic moments and bags. Since there
is no mathematical lower bound on the bag number M ,
from a physical point of view, many interesting results
can be obtained even with reasonably small numbers for
M [8]. Although this fact is commonly used in gyrokinetic
theory, the further WB reduction should afford more ana-
lytical approaches, which are not restricted to Maxwellian
distribution functions. The sampling j allows to consider
any arbitrary distribution along the parallel velocity v‖.
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3 Linear analysis of the ion population

The goal of this section is to perform a local linear analy-
sis of the GWB equations in toroidal geometry. Water-bag
equations can be solved by the procedure of linearization.
As emphasized before the goal of this paper is not to solve
exactly the equations but to show the capability of the
water-bag model to describe ITG and Interchange insta-
bilities in toroidal geometry. Consequently, the equations
are simplified to point out this property. In this way the
gyroaverage operator is taken to be equal to 1, and the
polarization term in the quasi-neutrality equation is ne-
glected (both terms are of second order in the gyrokinetic
parameter ω/Ωc).

We first separate the dependent variables into two
parts: an equilibrium part and a perturbation part. The
potential and the velocities write:

v±j = ±aj(r, θ) + W±
j (r, θ)ei(nϕ−ωt) (12)

φtot = φ(r, θ)ei(nϕ−ωt) (13)

where the Fourier toroidal mode n is such that n =
Rkϕ, aj is the velocity of the jth bag at the equilib-
rium, W±

j exp[i(nϕ − ωt)] the velocity pertubation, and
φ(r, θ) exp[i(nϕ−ωt)] the potential perturbation (there is
no electric field at the equilibrium).

The GWB description is used for the ion popula-
tion. This population is then described by equations (9)
and (10).

3.1 Equilibrium

The equilibrium quantities express the state of the un-
perturbed plasma. By using equations (12) and (13) and
retaining only terms at the zeroth order in perturbation
the equation (9) writes:

aj

r

∂aj

∂θ︸ ︷︷ ︸
(1)

∓bϕ

bθ

sin θ

RΩc

∂aj

∂r

(
a2

j +
μB

mi

)
︸ ︷︷ ︸

(2)

∓bϕ

bθ

cos θ

RΩc

1
r

∂aj

∂θ

(
a2

j +
μB

mi

)
︸ ︷︷ ︸

(3)

+
μB

mi

sin θ

R︸ ︷︷ ︸
(4)

= 0 (14)

where bϕ = Bϕ/B and bθ = Bθ/B.
Assuming that the ion particle velocity in the par-

allel and perpendicular directions is close to vTi =√
kBTio/mi, the following ordering can be used:

– bϕ

bθ

r
R � 1

– aj � vTi

– μ = miv
2
⊥

2B � qv2
Ti/Ωc and rLi = vTi/Ωc

– 1
r

∂aj

∂θ � vT i

lθ
with lθ � r

– ∂aj

∂r � vT i

lT
with lT � r

and considering the ratio of each term to other terms:

– ((2) + (3))/(1) ∼ rLi/R
– (4)/(1) ∼ r/R

it can be deduced that the terms (2) and (3) are smaller
than (4) for a tokamak plasma, so terms (2) and (3) can
be neglected in first approximation. Equation (14) then
reduces to:

aj
∂aj

∂θ
+

μB

mi

r sin θ

R
= 0. (15)

This equation allows one to get the trapped/circulating
particle behaviour and the trapping condition. By assum-
ing B/R ∼ Const. when θ varies, aj writes:

a2
j = a2

j0 −
2μB

mi

r

R
(1 − cos θ) (16)

where aj0 = aj(r, θ = 0). The condition for an ion to be
trapped is a2

j0
< 2μB

mi

r
R .

It can be noted that the approximate analytical solu-
tion by dropping term (2) and (3) of the zero-order wa-
terbag equation (Eq. (14)) leading to equation (15) is very
closed to the numerical solution of the complete zero-order
nonlinear equation (14) – in term of zero-order bags –
which can be seen as a first-order transport equation.

The evolution of aj is shown in Figure 4 for different
values of θ and μ. As a particle moves into a region of
higher field-strength, e.g. towards θ = ±π, its velocity
along the field decreases. And it is well known that in
its back and forth motion from one turning point to the
other, a trapped particle trajectory draws a banana-like
shape when projected in the poloidal cross-section.

3.2 First order dynamic

Using equations (12) and (13) and neglecting the terms at
second order with respect to the perturbation, the equa-
tion (9) writes:

[
ω + δj − βj − (ej − dj)

1
r

∂

∂θ
+ fj

∂

∂r

]
W+

j =[
χ + hj − (ξ − kj)

1
r

∂

∂θ
− rj

∂

∂r

]
φ (17)

and

[
ω − δj − βj − (ej + dj)

1
r

∂

∂θ
+ fj

∂

∂r

]
W−

j =[
χ − hj − (ξ + kj)

1
r

∂

∂θ
+ rj

∂

∂r

]
φ (18)
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(a) (b)

Fig. 4. (Color online) Equilibrium velocity aj plotted against θ. (a) Circulating particule case: aj never cancels. (b) Trapped
particle case: there is a critical value θL for which aj is zero. This value corresponds to the turning back point of particles.

where

δj = i
bθ

r

∂aj

∂θ
− ajbϕkϕ (19)

βj = 2i
mi

qBR
ajbϕ

(
sin θ

∂aj

∂r
+

cos θ

r

∂aj

∂θ

)

+
mi

qBR

(
a2

j +
μB

mi

)
bθ cos θkϕ (20)

dj = iajbθ (21)

ej = i
mi

qBR

(
a2

j +
μB

mi

)
bϕ cos θ (22)

fj = −i
mi

qBR

(
a2

j +
μB

mi

)
bϕ sin θ (23)

χ = kϕbϕ
q

mi
(24)

hj =
kϕ

B
bθ

∂aj

∂r
+

aj

RB
bθ cos θkϕ (25)

kj = i
bϕ

B

∂aj

∂r
+ i

aj

RB
bϕ cos θ (26)

ξ = i
q

mi
bθ (27)

rj = i
bϕ

B

(
1
r

∂aj

∂θ
− aj

R
sin θ

)
. (28)

Here a rough approximation is performed with the aim
of going further. It consists in transforming the differen-
tial operator ∂/∂θ by decomposing poloidal fluctuations
into Fourier modes (this approximation is justified pro-
vided RC is large) and using a local approximation (only
one poloidal mode is considered). The differential opera-
tor ∂/∂r is transformed by assuming an exponential ra-
dial profile of the amplitude of the fluctuations instead of

solving the full differential equation:

W±
j (r, θ) = W±

j0e
g(r)eimθ (29)

φ(r, θ) = φ0e
g(r)eimθ. (30)

The ballooning representation makes use of the anistropy
of instabilities (k⊥ � k‖) to reduce the problem to one
dimension only. At the lowest order of ballooning expan-
sion the radial dependence can be neglected. In this paper
the θ-envelope is also neglected. This assumption can be
seen as the ballooning calculation at the zeroth-order. Of
course the local growth rate is an approximation of the
global growth rate which is obtained by solving the global
eigenvalues problem (2D − r, θ) and particularly by solv-
ing the mode envelope. This task will be the matter for
further studies.

Thanks to these assumptions (W+
j −W−

j ) can be fac-
torized and the density perturbation δni0 can be deduced
from it because:

ni = ni0 + (δni0)e
g(r)ei(mθ+nϕ−ωt) (31)

and:

ni =
M∑

j=1

Aj(v+
j − v−j )

=
M∑

j=1

2ajAj +
M∑

j=1

Aj(W+
j0 − W−

j0)e
g(r)ei(mθ+nϕ−ωt)

(32)

hence:

δni0 =
M∑

j=1

Aj(W+
j0 − W−

j0) (33)
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and the amplitude of the ion perturbation can be written
as a function of the amplitude of the plasma potential:

δni0 = ni0

φ0

B

M∑
j=1

αj
N1cj − N2j(ω − ω1j)

(ω − ω1j)2 − c2
ja

2
j

(34)

where
αj = 2ajAj/ni0 (35)

is the relative bag density and

N1 = Ωc(kθbθ + kϕbϕ) (36)

N2j = (kθbϕ − kϕbθ)
(

cos θ

R
+ κj

)

+ibϕ
∂g

∂r

(
1

raj

∂aj

∂θ
− sin θ

R

)
(37)

cj = kθbθ + kϕbϕ − i
bθ

r

1
aj

∂aj

∂θ
(38)

ω1j =
1

RΩc

[
(kϕbθ − kθbϕ)

(
a2

j +
μB

mi

)
cos θ

]

+i
bϕ

RΩc

[
2a2

j

(
κj sin θ +

cos θ

r

1
aj

∂aj

∂θ

)

+
∂g

∂r

(
a2

j +
μB

mi

)
sin θ

]
. (39)

4 Dispersion relation and results

Electrons are assumed to be very mobile and would be
accelerated very quickly if there was a net force on them
along the magnetic field lines. It applies to each magnetic
field line separately, different lines may be charged to dif-
ferent potentials, so the electron response is taken adia-
batic and satisfies the Boltzmann relation:

ne = neo exp

[
eφtot

kBTe

]
. (40)

Using the procedure of linearization for this equation and
using the quasi-neutrality equation (11) in which the po-
larisation term is neglected, the dispersion relation then
writes:

1 − kBTe

eB

M∑
j=1

αj
N1cj − N2j(ω − ω1j)

(ω − ω1j)2 − c2
ja

2
j

= 0. (41)

It can be noted that the magnetic drift resonance is not
depending on the water-bag distribution function, and is
well captured by the dispersion relation through w1j which
takes into account both curvature and magnetic gradient
drifts.

As emphasized previously the goal of the paper is to
show the ability of the GWB model to describe a large
number of instabilities in toroidal geometry. Consequently
we stress the effect due to the curvature and gradient

Fig. 5. (Color online) Linear stability diagram of the inter-
change instability in toroidal geometry in the (κn, κT ) plane.
The following parameters are used: M = 50 in θ = 0, and
Ti = 15 keV, Te = 15 keV, kθ = 500 m−1, R0 = 6.2 m,
r = 2 × 10−1 m, B = 5 T, μ = 0 JT−1, kϕ = 0 m−1.

drifts, making the following hypothesis to ensure our state-
ment to be clear: from this point we specialize our general
results to the particular case bθ = 0, bϕ = 1, the radial
profile is assumed to be constant (g(r) = 0), ∂aj/∂θ = 0
and μ = 0 (ions are assumed to be highly circulating
so that ∂aj/∂θ can be neglected). Indeed in this case a
charged particle can not explore the poloidal cross section
and consequently can not be trapped. According to this
assumption and with the aim of studying the simplest case
μ = 0 is chosen for the following numerical examples.

4.1 Flute mode – interchange instability

In this section, the behavior of the pure electrostatic in-
terchange instability in toroidal geometry [29–31] is in-
vestigated. With respect to the previous assumptions, a
flute mode approximation is considered if kϕ = 0. Physi-
cal quantities do not depend on the toroidal coordinate ϕ.

The dispersion relation (41) then writes:

1 +
kBTe

eB
kθ

M∑
j=1

αj

( cos θ
R + κj)(ω − ω1j)

(ω − ω1j)2
= 0 (42)

where

ω1j =
a2

j

RΩC
(−kθ cos θ + 2iκj sin θ). (43)

With respect to radial dependencies κT = ∂r ln Ti0 and
κn = ∂r ln ni0 , the dispersion equation (42) may admit
complex roots. The linear instability threshold is obtained
by using a parametric approach relative to ω, when Im(ω)
becomes zero.

In Figure 5 the instability threshold is plotted for M =
50 in θ = 0, and where Ti = 15 keV, Te = 15 keV, kθ =
500 m−1, Ro = 6.2 m, r = 2 × 10−1 m, B = 5 T, μ =
0 JT−1 (ions are assumed to be circulating) and kϕ = 0.
The threshold is very closed to that of computed with
a gyrokinetic model [30]. There are two distinct stable
and unstable regions for negative temperature gradients.
As expected, as the radial derivative of the equilibrium
density becomes much negative the stability improves.

4.2 Ion temperature gradient (ITG) instability

We now consider the case of an ITG instability for which
k‖ = kϕ 	= 0 (bθ is chosen to be equal to zero with respect
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Fig. 6. ITG (k‖ �= 0) and interchange (k‖ = 0) instability
growth rates plotted against θ in toroidal geometry, and for
comparison ITG instability growth rate in cylindrical geometry
(R going to ∞ [8]).

to the previous assumption). The described modes corre-
sponds to ITG instability.

The dispersion relation (41) then writes:

1 − kBTe

eB

M∑
j=1

αj

k2
ϕΩC − kθ( cos θ

R + κj)(ω − ω1j)
(ω − ω1j)2 − k2

ϕa2
j

= 0

(44)
where ω1j is given by (43).

The ITG instability growth rate can be deduced
from (44) and is plotted against θ (Fig. 6) for κN =
−1 m−1, κT = −20 m−1, M = 5, Ti = 15 keV, Te =
15 keV, kθ = 500 m−1, Ro = 6.2 m, r = 2 × 10−1 m,
B = 5 T, μ = 0 JT−1 and kϕ = 5 × 10−1 m−1. For com-
parison the growth rate observed for ITG in cylindrical
geometry, obtained by the GWB model in toroidal geom-
etry when RC is going to infinity, is superposed. In these
conditions the result is in total agreement with that of
given by the GWB model in cylindrical geometry [8]. The
instability growth rate in the case of interchange insta-
bility (kϕ = 0) in toroidal axisymmetric geometry is also
superposed.

As one can see in Figure 6, as expected the distur-
bances are all the more unstable that the gradient of the
plasma pressure and that of the magnetic field are of the
same sign (low field side of the tokamak). This property
is very well recovered in the case of the interchange in-
stability, for which the growth rate is very close to zero
at the strong field side of the torus. Nevertheless distur-
bances remain unstable at the strong field side, where the
opposite sign of pressure and B gradients strongly weak-
ens the instability. This is where the Rayleigh-Taylor or
interchange instability type is not superimposed on the
cylindrical ITG instability.

Moreover the toroidal geometry has an important
effect on instability growth rate: the growth rate is
about 80% smaller in θ = π and 20% greater in θ = 0
than that of given by the cylindrical model.

5 Conclusion

In this paper we have investigated the effects of the
toroidal geometry (i.e curvature of the magnetic field
lines) on the interchange and ITG instabilities using the
new gyro-water-bag model. After some assumptions a lin-
ear eigenvalue equation has been derived and easily solved
in the case of a local analysis. Using the water-bag model
for the linear analysis allows interesting analytical stud-
ies and do not impose any constraint on the shape of the
distribution function. The present results have to be ex-
tended in a forthcoming paper to include a complete anal-
ysis in poloidal direction and radial profiles not arbitrary
estimated. Finite Larmor radius effects (polarization and
gyroaveraging) and geodesic curvature also have to be in-
cluded in the same way as in the cylindrical case to achieve
a complete linear analysis. But these last aspects of the
work are less difficult to handle than solving the com-
plete (r, θ) differential equation without using the bal-
looning representation.
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