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Abstract. A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized
cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water
Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary
number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the
study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons
on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas
micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010);
J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid
descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented
and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R.
Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14,
112109 (2007)].

1 Introduction

A serious difficulty in the modeling of the instabilities and
the turbulence in plasmas lies in the large mass ratio be-
tween ions and electrons. Consequently, a complete de-
scription of a plasma requires a large amount of space
and time scales to describe ion and electron dynamics si-
multaneously, which can make the simulation costs ex-
plose [1,2,4]. A widely used hypothesis to circumvent this
problem consists in assuming adiabatic electrons, where
electron inertia is set to zero due to the smallness of the
electron mass. But this approach neglects electron scale
physics that can play an important role, for instance by
leading to a residual radial heat transport in the case of
the micro-turbulence in magnetic fusion plasmas. Taking
into account electrons mainly leads to two different types
of micro-instabilities in Tokamaks: the electron temper-
ature gradient (ETG) modes and the trapped electron
modes (TEM), that take place at space and time scales
located in between ion and electron larmor radii and cy-
clotron frequencies. It should also be noted, that in the
non-linear regime, ETG (as well as TEM) induced tur-
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bulence is strongly different than the ITG one, since the
latter tend to develop Zonal Flows [5,6], that are known
to regulate the level of turbulence by predator-prey like
behavior [7–9]. On the contrary, ETG and TEM induced
turbulence tends to develop radially elongated structures,
known as streamers that can be detrimental to plasma
confinement [10–19].

In order to describe strongly magnetized plasmas, the
Vlasov Maxwell system can be reduced to the gyroki-
netic equations, where the fast cyclotron gyration is fil-
tered out so that the gyrokinetic phase space reduces to
three space coordinates and the velocity coordinate par-
allel to the magnetic field, the magnetic moment being an
adiabatic invariant [20]. A fundamental property of the
Vlasov equation, inherited from Liouville’s theorem, and
shared with the gyrokinetic Vlasov equation, is that it
conserves the phase space volume. Based on this conser-
vation, the Water Bag model consists in choosing a spe-
cial class of distribution function, taking a multi-step-like
form along the parallel velocity coordinate [21–25]. This
choice allows to reformulate the gyrokinetic equations into
a set of incompressible multi-fluid equations, with an ex-
act closure [26,27].

We consider here the “drift kinetic” limit of the gyroki-
netic equations, where the strong magnetic field allows to
assume that particles are located on their guiding centers.
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This allows to suppress finite Larmor radius (FLR) effects,
by replacing gyroaverage operator by identity. However
the lowest order effect (polarization) can be kept by using
an alternative normalization. This model also corresponds
to the limit of an infinite aspect ratio tokamak, providing
a minimal plasma turbulence model including kinetic ef-
fects. Drift kinetic Multi Water Bag model can be used to
describe the plasma dynamics in various experimental de-
vices such as magnetized plasma columns [28,29]. Another
field of application is the study of space and astrophysical
plasma turbulence, for instance in the solar wind [30].

In Section 2, in the general case of kinetic electrons,
and with an arbitrary number of kinetic ions, a Multi
Water Bag distribution function is introduced for each
species, and the general Multi Water Bag model is de-
rived in a cylindrical geometry. In Section 3, by using a
standard perturbative method, the linearized Multi Water
Bag system is obtained, and the approximation of large
radial and azimuthal extents of the linear modes allows
to simplify the Laplacian operator. A general form of the
Multi Water Bag plasma dielectric function is proposed
(Sect. 3.1). In Section 4, the linear stability analysis of
a Multi Water Bag electron distribution function with a
fixed ion background is then studied in detail, allowing to
characterize the Electron Temperature Gradient modes.

2 The Water Bag model for collisionless
magnetized plasmas

The fundamental equation describing the evolution of a
collisionless plasma is the Vlasov equation:

∂tfs(r,v, t) + ṙ.∂rfs(r,v, t) + v̇.∂vfs(r,v, t) = 0, (1)

where fs(r,v, t) is the distribution function associated
with the species s. All the species contribute to the
self-consistent electromagnetic fields, given by Maxwell
equations:

∇.E =
∑

s

qs

ε0

∫
fs(r,v, t)dv, (2)

∇× E = −∂B
∂t

, (3)

∇× B =
1
c2

∂E
∂t

+ μ0

∑
s

qs

∫
vfs(r,v, t)dv, (4)

∇.B = 0, (5)

and consequently to other species dynamics via the char-
acteristics: ṙ = v, msv̇ = qs (E + v × B). This last re-
mark illustrates the fact that the collisionless character of
the Vlasov equation stands for a purely collective interac-
tion between the particles and the waves.

2.1 The Water Bag model

As a consequence of the obvious Hamiltonian structure of
the Vlasov equation, the conservation of the phase space

volume described by any distribution function fs is in-
herited from the Liouville theorem. A special class of dis-
tribution function can be chosen, taking the form of a
multi-step-like function along the velocity coordinate. The
Water Bag model [21–24] and its generalization, the Multi
Water Bag model [25–27,31–36], consist in choosing such
a class of distribution, where the heights (noted Aj) of
the different steps are conserved quantities, as an inheri-
tence of the Liouville theorem. The velocity contours of
the Multi Water Bag remain unknown, but are only func-
tions of space and time (noted v±j (r, t)), allowing a reduc-
tion of one dimension of the problem. In a reduced two
dimension phase space x, vx, the Multi Water Bag distri-
bution function accordingly reads:

fMWB(x, vx) =
N∑

j=1

Aj

[
Υ
(
vx − v+

j (x, t)
)

−Υ
(
vx − v+

j (v, t)
)]

.

This choice is especially suited for cases with only one ve-
locity coordinate, such as gyrokinetic or drift kinetic equa-
tions. These equations indeed allow simpler description of
magnetized plasmas than the full Vlasov equation, by fil-
tering out the rapid gyromotion of the particles around
the magnetic field lines [1,2,20,37–48].

fs = fs(R, v‖, μ, t) being the guiding-centers distribu-
tion function of species s, with R the guiding-centers co-
ordinates, v‖ the velocity coordinate along the magnetic
field and μ the magnetic moment (adiabatic invariant),
the Gyrokinetic Vlasov equation reads:

∂tfs + Ṙ.∂Rfs + v̇‖∂v‖fs = 0, (6)

where Gyro-centers characteristics can be written as
follows:

Ṙ = v‖
B�

B�
‖

+ b ×
qs∇〈φ〉ξ + msv

2
‖b.∇b + μ∇B0

qsB�
‖

, (7)

v̇‖ = −B�

B�
‖
.
μ∇B0 + qs∇〈φ〉ξ

ms
, (8)

with the modified magnetic field B� = B0 + msv‖
qs

∇× b,
b the unit vector along the magnetic field: b = B0/B0,
and B�

‖ = b.B�. In gyrokinetic theory, the gyroaverage
of the electrostatic potential 〈φ〉ξ is required to take into
account the contributions of the real particles located on a
Larmor radius distance r = R+ρL around a given guiding
center R.

In the electrostatic case, the system is closed with the
Poisson equation, written for the electrostatic potential:

−∇2φ −
∑

s

∇⊥.
ω2

ps∇⊥φ

Ω2
cs

=
∑

s

qs

ε0

∫
〈fs〉ξJsdμdv‖, (9)

where the gyroaverage of the guiding-centers distribution
function 〈fs〉ξ allows to sum contribution of a ring of guid-
ing centers.

http://www.epj.org


Eur. Phys. J. D (2014) 68: 220 Page 3 of 11

Fig. 1. Multi Water Bag distribution function in (x, v) plane (left) and step-like dependence along velocity coordinate (right).

It is evident from equation (6), that the gyrokinetic
Vlasov equation only admits the parallel velocity variable
v‖ as an independent coordinate. This result allow the use
of a Multi Water Bag distribution function: the adaptation
of such a model in a gyrokinetic framework including finite
Larmor radius effects and magnetic inhomogeneities has
been described in previous works [26,27], focusing on the
physics of kinetic ions with adiabatic electrons.

However, our aim here is to focus on the description of
an arbitrary number of kinetic species, and the simplest
description retaining kinetic effects for such a problem is
the drift kinetic equation in a cylindrical geometry. In this
limit finite Larmor radius effects related to gyrokinetic
averaging are neglected.

The assumption of a cylindrical geometry with a ho-
mogeneous magnetic field allows to neglect curvature and
gradient of the magnetic field as well, the resulting reduced
model reads:

∂tfsμ +
b ×∇φ

B0
.∇⊥fsμ + v‖∇‖fsμ − qs∇‖φ

ms
∂v‖fsμ = 0,

(10)

−∇2φ =
∑

s

qs

ε0

∑
μ

∫
fsμdv‖, (11)

for an arbitrary number of species s. Since we neglect finite
Larmor radius effects, there is no dependence on the mag-
netic moment μ in the resulting equations. μ indices and
summation along μ will also be removed in the following.

At this point it is important to notice that when elec-
tron dynamics is considered, the Laplacian operator in
the Poisson equation can not be neglected, since the elec-
tron gyro radius can be the same order of magnitude as
the electron Debye length: εL = λ2

De/ρ2
e = Ω2

ce/ω2
pe ≈

1019B2
0/ne0

1. This results in a major difference with ITG
linear analysis, where finite Larmor radius effects are im-
portant since they introduce via the polarization term a
perpendicular Laplacian in the quasi-neutrality equation,
while the ETG linear physics already contains a Laplacian
due to the necessity of using Poisson equation. It results
that finite Larmor radius effects does not introduce fun-

1 εL ≈ 10 for a typical cylindrical plasma column (B0 ≈
80 mT, ne0 ≈ 5 × 1015 m−3), εL ≈ 2 for a typical Tore Supra
plasma (B0 ≈ 3 T and ne0 ≈ 4 × 1019 m−3).

damentally new physics regarding linear ETG modes and
can be neglected in the following.

For each species s to be considered, we make the choice
of a Multi Water Bag distribution function along the par-
allel velocity coordinate:

fs(r, v‖, t) =
Ns∑
j=1

Asj

[
Υ
(
v‖ − v−sj(r, t)

)
−Υ
(
v‖ − v+

sj(r, t)
)]

, (12)

with x �→ Υ (x) the Heaviside step function. Each bag j
is defined by the discontinuity Asj and the two velocity
contours v±sj(r, t). The value of each discontinuity Asj re-
mains constant as long as binary interactions (collisions)
can be neglected: this major property is a consequence of
Liouville’s theorem, constraining the distribution function
to be constant along its characteristics. For each species s,
an arbitrary number of bags Ns can be used, which is kept
small, typically few tenth, for convenience. An illustration
of the Multi Water Bag distribution function is given in
Figure 1.

By inserting the Multi Water Bag distribution func-
tion (12) into the drift kinetic Vlasov equation (10), we
obtain for each bag a couple of equations governing the
dynamics of the velocity contours v±sj(r, t):

∂tv
±
sj + vE .∇⊥v±sj + v±sj∇‖v±sj = −qs∇‖φ

ms
, (13)

where the partial derivative of the distribution function
along the parallel velocity is replaced by a source of accel-
eration by the parallel electric field.

All contours are coupled by the Poisson equation,
where the continuous integration along the parallel ve-
locity coordinate is replaced by a discrete sum along the
bags:

−∇2φ =
∑

s

qs

ε0

Ns∑
j=1

Asj

[
v+

sj − v−sj

]
. (14)

2.2 Momentum sense equivalence

As pointed out by Gros et al. [49], an important prop-
erty of the Multi Water Bag model is that it gives a con-
nection between Vlasov and hydrodynamic descriptions.
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It is indeed possible to rewrite the couples of Multi Wa-
ter Bag contours equations (13), as a set of continuity
and Euler equation for each bag j, by defining a bag
density nsj = Asj

[
v+

sj − v−sj

]
and a bag mean velocity

usj =
[
v+

sj + v−sj

]
/2. We obtain:

∂tnsj + ∇⊥. (vEnsj) + ∇‖ (nsjusj) = 0, (15)

∂tusj + vE .∇⊥usj + usj∇‖usj = −∇‖Psj

msnsj
− qs∇‖φ

ms
,

(16)

where the expression of the partial pressure of the jth
bag can be obtained without any other assumption: Psj =
mjn

3
sj/(12Asj).

Going further with the correspondence between the
Multi Water Bag and any continuous distribution func-
tion, the successive moments of the Multi Water Bag can
be defined:

MMWB
�,s =

Ns∑
j=1

αsja
�
sj , (17)

where an equilibrium has been defined, with density ns0

for species s, symetric contours:
(
v±sj

)0
= ±asj , and

the normalized bag density has been introduced: αsj =
2Asjasj/ns0.

The Multi Water Bag equilibrium parameters Asj and
asj being at this point entirely free, we have to use physical
constraints to compare the Multi Water Bag equilibrium
to a given reference distribution function:

fs0 = fs0

(
ns0, Ts0,

msv
2
‖

Ts0

)
. (18)

In the considered case of cylindrical geometry, the equilib-
rium is assumed to depend only on the radial coordinate.
In the reference continuous distribution function (18), this
dependence is contained in the density and temperature
profiles ns0(r) and Ts0(r).

A method allowing to fix the Multi Water Bag free
parameters consists in the momentum sense equivalence:
the MWB moments and their radial gradients are identi-
fied to the corresponding continuous distribution function
moments Ms�(fs0) =

∫ +∞
−∞ v�

‖fs0dv‖, up to an order fixed
by the number of bags Ns chosen [50]. We then obtain a
Vandermonde system:

Vsj�αsj = (� + 1)Ms�, (19)
Vsj�βsj = �Ms�, (20)
Vsj�γsj = Ms�, (21)

with the Vandermonde matrix: Vsj� ≡ a�
sj , where the

equilibrium bag contours asj are given, and the unknowns
are the parameters αsj , βsj and γsj , defined so that the
Multi Water Bag equilibrium radial gradients:

κsj = dr ln asj (22)

Fig. 2. Comparison between the Multi Water Bag distribu-
tion function and a reference continuous one (Maxwellian), as
functions of the parallel velocity v‖.

are a linear combination of the ones prescribed by the
density (κns = dr ln ns0) and temperature profiles (κTs =
dr ln Ts0):

αsjκsj ≡ βsj

2
κTs + γsjκns. (23)

The inversion of a Vandermonde system can be done ana-
lytically for a moderate number of bags, typically lower
than 10. Beyond this value, the inverse matrix coeffi-
cients become numerically unstable, and an approximate
method is chosen [50]. An illustration of the Multi Wa-
ter Bag distribution function superimposed with a ref-
erence Maxwellian distribution function is given in Fig-
ure 2, where the Multi Water Bag parameters have been
obtained by inverting the Vandermonde system (19)−(21).

3 Linear stability of drift kinetic
electron plasma

In this section, we focus on the problem of the linear sta-
bility of a kinetic electron population. As a first step, we
derive the expression of the plasma dielectric function with
a Multi Water Bag representation, in the general case of
an arbitrary number of ion species. We then examinate
the case of Multi Water Bag kinetic electrons with adia-
batic ion response, in order to study the linear stability
properties of the cylindrical branch of electron tempera-
ture gradient (ETG) modes.

3.1 The Multi Water Bag dielectric plasma function

Linearization of the cylindrical Multi Water Bag, drift ki-
netic equations can be achieved by choosing a stationary
equilibrium depending only on the radial coordinate, with-
out any equilibrium electrostatic potential, and consider-
ing small perturbations, expressed in a Fourier basis for

http://www.epj.org
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the time, poloidal and azimuthal coordinates:

v±sj(r, θ, z, t) = ±asj(r) + δ̃v
±
sj(r)e

i(mθ+k‖z−ωt), (24)

φ(r, θ, z, t) = 0 + δ̃φ(r)ei(mθ+k‖z−ωt). (25)

Inserting these expressions into the nonlinear Multi Water
Bag equations, we obtain, at zeroth order in perturbation,
a characterization of the equilibrium:

asj∇‖asj = 0, (26)∑
s

qs

∑
j

2Asjasj = 0, (27)

where the second equation is nothing but the Multi Water
Bag version of the quasi-neutrality condition.

At first order in perturbation, we obtain:

δ̃v
±
sj =

qs

ms

k‖ ∓ kθdrasj/Ωcs

ω ∓ k‖asj
δ̃φ, (28)

−
φ =
∑

s

qs

ε0

∑
j

Asj

(
δ̃v

+

sj − δ̃v
−
sj

)
, (29)

where the poloidal wave vector kθ ≡ m/r as well as the
cyclotron pulsations Ωcs ≡ qsB0/ms appear.

Finally, by substituting velocities of the perturbed con-
tours (28) into the perturbed Poisson equation (29), we
obtain the Multi Water Bag dispersion relation:


φ +

⎧⎨⎩∑
s

ω2
ps

∑
j

αsj

k2
‖ − ωkθκsj/Ωcs

ω2 − k2
‖a

2
sj

⎫⎬⎭φ = 0, (30)

where ω2
ps ≡ q2

sns0/(ε0ms) is the plasma pulsation for each
species s.

At this point, the presence of the Laplacian operator
left us with a second order differential equation. We can
however simplify this strongly by assuming that radial and
azimuthal eigenmodes are very elongated compared to the
Debye length. Such an assumption is motivated by the
fact that ETG modes are known to lead to the forma-
tion of streamers. By writting schematically the cylindri-
cal Laplacian as a sum of some squared wave vectors kr,
kθ and k‖, this leads to the assumption:

λ2
De
φ ∼ −

[
λ2

Dek
2
r + λ2

Dek
2
θ + λ2

Dek
2
‖
]
φ ≈ −λ2

Dek
2
θφ,

where kθ = m/r.
Since the aim of this work is to describe ETG stability,

we choose the following normalizations:

âsj = asj/vTs,

k̂‖ = k‖R0,

ω̂ = ωR0/vTe,

k̂θ = kθvTe/ |Ωce| ,
κ̂sj = R0κsj , (31)

where v2
Ts ≡ Ts0/ms is the thermal velocity, R0 is the

radius of the cylinder assumed to be the same order as the
characteristic parallel length scale, and Ωce = qeB0/me is
the (negative) electron cyclotron pulsation.

For simplicity, the polarization term in the gyrokinetic
Poisson equation (9) has been neglected, along with finite
Larmor radius effects. However taking this effect into ac-
count will not modifiy the results qualitatively, since by
using an alternative normalization:

k̂′
θ =

√
1 +
∑

s

ω2
ps

Ω2
cs

k̂θ (32)

κ̂sj
′ =

1√
1 +
∑

s ω2
ps/Ω2

cs

κ̂sj , (33)

calculations presented in the following remain unchanged.
The aforementionned normalization can be recovered by
replacing the Laplacian in the left hand side of equa-
tion (29) by the sum of the Laplacian and the polarization
term, where we neglect the radial variations of the elec-
trostatic potential. We then obtain the expression:

−
φ−∇⊥

(∑
s

ω2
ps

Ω2
cs

∇⊥φ

)
≈
(

1 +
∑

s

ω2
ps

Ω2
cs

)
k2

θφ, (34)

where the new choice of normalization for kθ becomes
evident.

Using the aforementioned approximation for the
Laplacian of the electrostatic potential, the normalized
plasma dispersion relation can be written as follows:

ε(ω, kθ, k‖) · δ̃φ = 0, (35)

where we have defined the Multi Water Bag dielectric
plasma function:

ε(ω, kθ, k‖) =
Ω2

cek
2
θ

ω2
pe

−
∑

s

Zsns0

ne0

∑
j

αsj

Zsσsk
2
‖ − ωkθκsj

ω2 − σsτsk2
‖a

2
sj

,

(36)
where we have introduced the mass σs = me/ms, charge
Zs = qs/|qe|, and temperature τs = Ts0/Te0 ratios.

Focusing on the electron response (σs = 1, Zs = −1
and τs = 1), the dispersion equation reads:

Ω2
ce

ω2
pe

k2
θ +Ri−

∑
j

αje

k2
‖+ωkθκje

ω2−k2
‖a

2
je

=0, (37)

where Ri symbolizes the ion response, on which approxi-
mations can be made:

– the case of a single ion bag gives the ion response:

Ri =
(
kθκniω − Ziμik

2
‖
)

/
(
ω2 − μiτik

2
‖
)

;

– considering cold ions Ti0 = 0 leads to:

Ri =
(
kθκniω − Ziμik

2
‖
)

/ω2;
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– heavy ion limit can be considered σs −→ 0, and the
associated ion response becomes:

Ri = kθκni/ω;

– adiabatic ions limit is usual in a magnetic fusion study
of ETG modes:

Ri = Zi
Ti

Te
.

In order to study pure ETG stability, we consider in the
following the latest limit of adiabatic Hydrogen isotopes
ions, with Zi = 1 and Ti = Te, the dispersion equation
reduces to:

1 +
Ω2

ce

ω2
pe

k2
θ −
∑

j

αje

k2
‖ + ωkθκje

ω2 − k2
‖a

2
je

= 0. (38)

3.2 Linear Multi Water Bag stability threshold

For an arbitray number of bags Ns, there is no general ex-
pression for the stable and unstable roots of the dielectric
plasma function (38). However, a general criterion for the
stability frontier can be formulated as follows:

ε(ω, kθ, k‖) = 0,

∂ωε(ω, kθ, k‖) = 0. (39)

By using the assumed link (23) between the MWB param-
eters (βje and γje) on one side, and the equilibrium density
(κne) and temperature (κTe) profiles on the other side, we
can rewrite the dielectric plasma function as follows:

ε(ω, kθ, k‖) =
(

1 +
Ω2

ce

ω2
pe

k2
θ

)
−
∑

j

k2
‖αje

ω2 − k2
‖a

2
je

−
∑

j

ωkθβje

ω2 − k2
‖a

2
je

κne − ωkθγje

ω2 − k2
‖a

2
je

κTe

2
. (40)

The marginal stability system (39) can be interpreted as
a system of unknowns κne, κTe defining the stability fron-
tier, parametrized by ω, for a fixed couple (kθ, k‖). It
is then possible to solve numerically this system and to
obtain a Multi Water Bag stability threshold for ETG
modes.

In Figure 3, the linear stability threshold obtained by
solving the system (39) parametrized by ω is given in
the plane of density and temperature logarithmic gradi-
ents (κne, κTe). Parameters used are as simple as possi-
ble: Ne = 20 bags, aNe = 6vTe, kθ = 1, k‖ = 1 and
Ωce = ωpe. Superimposed is the analytical result ob-
tained with a Maxwellian distribution function, according
to references [27,51]:

κ±
Te = κne ±

√
κ2

ne + 4
X(X + 1)k2

‖
k2

θ

, (41)

where X = 1 + Ω2
cek

2
θ/ω2

pe.

Fig. 3. Illustration of the MWB linear stability threshold ob-
tained with a MWB model for Electron Temperature Gradient
instability, in the plane of the electron density and temperature
gradients (κne and κTe). Ne = 20 bags, aNe = 6vTe, kθ = 1,
k‖ = 1 and Ωce = ωpe.

The overall agreement between the Multi Water Bag
and Maxwellian linear stability threshold is excellent, with
discrepancies due to the discrete nature of the MWB de-
scription: the lobe-like structure of the MWB linear sta-
bility threshold has indeed already been observed in previ-
ous studies [3]. In the same reference, authors have found
that for N = 10 bags and amax = 5vTi, the linear growth
rate reaches 98.5% of the value obtained in the continu-
ous limit N −→ ∞, so that we can consider that for the
values Ne = 20 bags and amax = 6vTe chosen here, the
results can be interpreted with good confidence.

The unstable domain is characterized by a slope ηe =
κTe/κne −→ 2 for the large values of the logarithmic gra-
dients κne, κTe: this is a known result in the case of cylin-
drical temperature gradient modes [3,51]. In the regions
close to the center, the stability frontier departs from this
slope and tends to zero in the second and fourth quadrants
of the stability diagram. This is also the region where the
MWB and maxwellian thresholds differ significantly but
this region, corresponding to opposite peaking of density
and temperature profiles, is physically irrelevant.

4 A Multi Water Bag analysis of cylindrical
ETG modes

In this section, the linear properties of the cylindrical Elec-
tron Temperature Gradient modes are studied into details:
– analytical results concerning the linear growth rate and

pulsation of ETG are derived in the limit of pulsations
far from resonances ω  k‖aje, corresponding to a
fluid model;

– the dependence of the linear growth rate and the asso-
ciated pulsation on the electron density and tempera-
ture gradients is analyzed first;

– the spectral repartition of the unstable modes is stud-
ied in the plane of poloidal and azimuthal wave vectors.

http://www.epj.org
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4.1 Fluid limit

The limit k‖vTe/ω −→ 0 corresponds to considering a
plasma far from the resonances ω � k‖aje, i.e. a fluid
limit. In this limit, the MWB dielectric plasma function
can be simplified, using the approximation:

1
ω2 − k2

‖a
2
je

≈ 1
ω2

[
1 +

k2
‖a

2
je

ω2
+ O
(

k4
‖a

4
je

ω4

)]
, (42)

we obtain the following fourth order polynomial as an ap-
proximation of the dielectric plasma function:

ε(ω, kθ, k‖) �
(

1 +
Ω2

cek
2
θ

ω2
pe

)
ω4 − kθ

∑
j

αjeκjeω
3

− k2
‖
∑

j

αjeω
2 − k2

‖kθ

∑
j

αjea
2
jeκjeω

− k4
‖
∑

j

αjea
2
je.

For consistency purpose with (42), we have to neglect the
last term in the previous equation, since it is fourth order
in k‖/ω. By using the momentum sense equivalence, we
get:

ε(ω, kθ, k‖) �
(

1 +
Ω2

cek
2
θ

ω2
pe

)
ω4 − kθκneω

3 − k2
‖ω

2

− k2
‖kθ (κne + κTe)ω. (43)

The stability condition for a third order polynomial can be
expressed, as well as the expression of the complex roots if
they exist. The detailed expression of the linear stability
threshold in the fluid limit reads:

κ±
Te =

2k4
θκ3

nek
2
‖ + 9ξ (1 + 3ξ)k2

θκnek
4
‖

27ξ2k2
θk4

‖
. . .

± 4

√
27ξ3k2

θk10
‖ − 27ξ2k4

θκ2
nek

8
‖ + 9ξk6

θκ4
nek

6
‖ − 2k8

θκ
6
nek

4
‖

27ξ2k2
θk4

‖
,

(44)

where we used the definition: ξ = 1 + k2
θΩ2

ce/ω2
pe.

In the unstable domain, the expression of the linear
growth rate and the associated pulsation take the compli-
cated following forms:

γ =
√

3
2

∣∣∣∣∣∣ 3

√
−q

2
+

√
q2

4
+

p3

27
− 3

√
−q

2
−
√

q2

4
+

p3

27

∣∣∣∣∣∣ ,
(45)

ω = −1
2

⎡⎣ 3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27

⎤⎦ ,

(46)

Fig. 4. Linear growth rate γ as a function of the logarithmic
density gradient κTe for a flat density profile κne = 0, as com-
puted from the complete MWB dispersion relation (38), or as
given in the fluid limit (49).

where we used the notations:

q = −
2k3

θκ
3
ne + 9ξkθκnek

2
‖ + 27ξ2kθ(κne + κTe)k2

‖
27ξ3

, (47)

p =
k2

θκ2
ne − 3ξk2

‖
3ξ2

. (48)

In the special case of a flat density profile, κne = 0, a
simple expression can be obtained for the linear growth
rate:

γ �
√

3
2

3

√
k2
‖kθ |κTe|

2ξ
, (49)

with this formula, a comparison is possible with the values
obtained by solving the complete dispersion relation, i.e.
taking into account resonances. The result is given in Fig-
ure 4, where the growth rates are compared in the case of
a flat density profile. It is clear that the fluid limit overes-
timates, approximately doubles, the growth rate, and we
recover a known issue that fluid models fail to capture
correctly even the linear physics, whenever kinetic effects
such as resonances are important.

4.2 Linear stability in the plane of electron density
and temperature gradients

By solving the roots of the dielectric MWB plasma func-
tion (38), we have an access to the linear growth rate and
the associated frequency in the unstable domain given in
Figure 3.

In Figure 5, the normalized growth rate γR0/vTe and
in Figure 6 the associated frequency ωR0vTe are given as
functions of the normalized electron density R0κne and
temperature R0κTe gradients, corresponding to a zoom of
the linear stability threshold given previously (Fig. 3).

It can be observed in Figure 5 that the marginal stabil-
ity threshold coincides with the values of the linear growth
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Fig. 5. Linear growth rate γ as a function of the electron
density and temperature gradients (κne and κTe). Parameters
are those of Figure 3.

Fig. 6. Pulsation of the unstable mode ω, as a function of
the electron density and temperature gradients (κne and κTe).
Parameters are those of Figure 3.

rate γ. The typical MWB lobe-like structure of the sta-
bility threshold penetrates moderately into the unstable
region and also affects the vicinity of the stability frontier.
A global increase of the linear growth rate is observed as
increasing the distance from the linear stability threshold.

In Figure 6, the repartition of the values of the pul-
sations associated to the unstable ETG mode is totally
different than the trend observed for the associated growth
rates: a structure of roughly vertical bands of iso-pulsation
contours can be observed.

This allows to illustrate the fact that the pulsations
of the unstable modes are associated to increasing phase
velocities, roughly proportional to the normalized density
gradient, and without a strong dependence on the normal-
ized temperature gradient. The link with the Multi Water
Bag description and the associated equilibrium velocities
±aje and parallel resonances ±k‖aje makes clear the fact
that the ETG modes are excited from the very core of

the distribution function, associated to the fluid limit, for
the large negative values of the density gradients, up to
the tail of the distribution function, associated to kinetic
effects, by increasing the value of the density gradient.

4.3 Linear stability in the plane of the poloidal
and parallel wave vectors

An important property of the dielectric plasma func-
tion (38) derived for the study of ETG modes, lies in the
remniscence of the Laplacian operator, that introduces a
poloidal mode selection (term ∝ λ2

Dek
2
θ). In the case of

ITG modes in cylindrical geometry, if the polarization ef-
fect are neglected, the linear properties would have been in
turn scale invariant with respect to kθ, that is just acting
as a prefactor in the characteristic length of the logarith-
mic gradients κ̃je = kθκje. This is the main reason why
the polarization term plays a more important role for ITG
linear physics.

In the present case, the plasma dielectric function can
be strongly affected by a change of the value of the poloidal
wave vector kθ, since it not only appear as a prefactor of
the gradients, but also in the constant term inherited from
the Laplacian.

On the other hand, the dielectric plasma function is
left invariant by rescaling the parallel wave vector: this
property can be illustrated by considering the new vari-
ables: ω̃ = ω/k‖ and κ̃je = κje/k‖. Under this change
of variables, it appears clearly that the plasma dielectric
function:

ε(ω̃, kθ) = 1 +
k2

θΩ2
ce

ω2
pe

−
∑

j

αje
1 + kθκ̃jeω̃

ω̃2 − a2
je

, (50)

will not be affected by a change in k‖, and that the only
changes will concern the frequencies ω as well as the gra-
dients κje in order to keep ω̃ and κ̃je constant.

In Figure 7, the linear growth rate γ has been com-
puted as a function of the normalized poloidal and az-
imuthal wave vectors (kθvTe/Ωce, R0k‖), for three cou-
ples of the logarithmic density and temperature profiles
(κne, κne), corresponding to the fluid branch close to lin-
ear stability threshold (R0κne = −10, R0κTe = −25), to
the kinetic branch close to marginal stability (R0κne = 0,
R0κTe = −10), and to a case in the core of the unstable
domain (R0κne = 0, R0κTe = −25).

The spectral location of the maximum growth rate is
not affected by the distance to the threshold, or the type
of branch considered, and the peak remains approximately
located around (kθvTe/ωce ≈ 1, R0k‖ ≈ 1).

On the contrary, the values of the maximum growth
rate, are strongly affected by the distance to the threshold.
As well, the spectral extension of the unstable region in-
creases with the distance to the threshold.

To conclude this section, the main result concerning
the dependence of the ETG instability on the parallel and
poloidal wave vectors, lies in the fact that the ETG modes
present a finite poloidal extent, while their radial extent
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Fig. 7. Linear growth rate γ as a function of the parallel and poloidal wave-vectors (resp. k‖ and kθ), for three different points
in the (κne, κTe) plane.

is assumed be much larger, leading to streamer struc-
tures [16,17]. ETG linear stability presented here shows
a mode structure very similar to ITG modes, the main
difference being that the ion length scales allow to ne-
glect the Laplacian operator in Poisson equation and also
makes very important to include finite Larmor radius ef-
fects. Without FLR effects, the ITG linear stability leads
to very different results, since by neglecting the Poisson
Laplacian, there is no mechanism for a selection of a most
unstable growth rate along kθ [3]. On the contrary, by tak-
ing into account finite Larmor radius in linear ITG sta-
bility study, the mode structure becomes localized with
respect to kθ and a structure similar to the one presented
in Figure 7 is found, as has for instance been shown with
a Multi Water Bag model [26,27].

It should finally be noted that a fundamental differ-
ence between ITG and ETG modes lies in the difference
between the adiabatic electrons and respectively ions re-
sponses: the electrostatic potential experienced by the
electrons has indeed to be corrected by its average on each
flux surface of interest:

δne, ad. ∝ φ − 〈φ〉FS,

while it is not the case for the adiabatic ion response:

δni, ad. ∝ φ.

These different responses play a fundamental role in the
non-linear physics of the ITG and ETG driven turbulence,
by changing significantly the dynamics of Zonal Flow [6].

5 Discussion

The Multi Water Bag model has been adapted to kinetic
electrons, for studying the linear stability of the drift ki-
netic equation in cylindrical geometry. The Multi Water
Bag model offers an interesting connection between ki-
netic and hydrodynamic equations. Despite the model de-
veloped and the dielectric plasma function obtained are
valid for a multi species case, including electrons and an
arbitrary number of ions, we limit our analysis to pure
electron temperature gradient modes.

The electron Larmor radius being approximately the
same order as the Debye length in a tokamak, the usual
assumption of quasi-neutrality is not appropriate. How-
ever, under the assumption of large radial and azimuthal
extents of the linear modes, the Laplacian operator inher-
ited from Poisson equation can be reduced to its poloidal
component λ2

De
φ ≈ −λ2
Dek

2
θφ. The linear properties of

the electron temperature gradient modes have been ex-
haustively analyzed.

Similarities between the ion temperature gradient and
the electron temperature gradient modes are found, espe-
cially, the global structure of the linear stability threshold
is observed almost identical. In the case of a flat density
profile, the fluid limit estimate of the linear growth rate
exhibits the same dependence on the logarithmic temper-
ature gradient γ ∝ κ

1/3
Te , and the fluid limit is shown to

overestimate the linear growth rate by a factor 2. The
ETG linear growth rate is shown to admit a maximum
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along the parallel and poloidal wave vectors, recovering
the tendency of ETG modes to develop a streamer struc-
ture. Taking into account polarization effect can be done
simply by using an aternative choice of normalization for
the poloidal wave vector kθ as well as for the bag gradients
κsj . Similarities are found with the mode structure of the
linear ITG modes, with the important difference that fi-
nite Larmor radius effects play an impotant role for ITG.
This similarity with previous observations has however to
be taken with care, since our model is not including mag-
netic curvature and gradient drifts, and consequently does
not allow to describe trapped electron modes (TEM) nor
magnetic shearing effects, that are known to be important
in the properties of the electron induced transport [18].

A next step consists in the study of the linear proper-
ties of kinetic ions and electrons in the same framework:
the large values of the mass ratios will require special at-
tention. The choice made in normalizing the equilibrium
bag velocities ±asj to the associated thermal velocities vTs

allows to manipulate comparable numbers, and will facil-
itate this enrichment. The linear stability properties of a
plasma including kinetic ions and electrons is especially
interesting when considering trapped particles.

Neglected in this paper, finite Larmor radius effects,
as well as toroidal geometry are important steps for the
future works, allowing for comparisons with existing gy-
rokinetic linear solvers, as well as with experiments.

The toroidal geometry is a key ingredient for includ-
ing trapped particles (electrons as well as ions), that are
known to play an important role in the linear proper-
ties of the plasma, for instance Trapped Electron Modes
are known to develop streamers at scales close to the ion
gyro radius. This overlap between ion and electron lin-
ear scales motivates also the extension of the model to a
multi species one, allowing to study the linear properties
of ion as well as electron scales. Moreover, the toroidal
geometry introduces a radial dependence in the parallel
wave number, so that toroidal mode coupling, as well as
magnetic shear can affect strongly the linear properties
of ETG modes and allow to reduce the electron trans-
port [52]. It should finally be noted, regarding the geome-
try, that the magnetic shear effect can be already included
in a cylindrical geometry, by considering a radial profile
for the background magnetic field.

Neglecting finite Larmor radius effects has allowed to
reduce significantly the complexity of the problem. Finite
Larmor radius effects are however known to be important
in introducing the polarization term in the Poisson equa-
tion and gyroaveraging operators in gyrokinetic Vlasov
and Poisson equations (6)−(9). At second order, these
FLR terms can be expressed as Laplacian operators re-
stricted to the plane perpendicular to the magnetic field.
Regarding our model, taking into account FLR effects
consists then in adding new complicated terms under the
Laplacian, but does not fundamentally changes the struc-
ture of the dielectric plasma function and the different
assumptions made.

An adaptation of the existing quasi-linear and non-
linear Multi Water Bag codes [53,54] to the study of ETG

induced turbulence is also a promising work under consid-
eration. This should allow to access to a global description
of micro-turbulence in a cylindrical plasma column, that
can be of interest for comparisons with experiments, as
well as in giving insights for reduced models of plasma
micro-turbulence.

Authors would like to thank P. Bertrand and E. Gravier for
helpful discussions.
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