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Abstract

A new scheme for solving the Vlasov equation using an unstructured mesh for the phase space is proposed. The

algorithm is based on the semi-Lagrangian method which exploits the fact that the distribution function is constant

along the characteristic curves. We use different local interpolation operators to reconstruct the distribution function f ,
some of which need the knowledge of the gradient of f . We can use limiter coefficients to maintain the positivity and the

L1 bound of f and optimize these coefficients to ensure the conservation of the L1 norm, that is to say the mass by

solving a linear programming problem. Several numerical results are presented in two and three (axisymmetric case)

dimensional phase space. The local interpolation technique is well suited for parallel computation.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent
and applied electromagnetic fields. The unknown f ðt; x; vÞ, where t stands for time, x for position and v for
velocity, represents the distribution function of particles (ions, electrons, etc.) in phase space. The Vlasov

equation is used to study collisionless plasma and the propagation of charged particle beams.

The numerical resolution of the Vlasov equation is most of the time performed by Lagrangian

methods like particle in cell methods (PIC) which consist of approximating the plasma by a finite

number of macro-particles. The trajectories of these particles are computed from characteristic curves

given by the Vlasov equation, whereas self-consistent fields are computed by gathering the charge and
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current densities of the the particles on a mesh of the physical space (see [6] for more details). Although

this method allows to obtain satisfying results with a small number of particles, it is well known that

the numerical noise inherent to the particle method becomes too significant to allow a precise de-

scription of the tail of the distribution function which plays an important role in charged particle

beams. This numerical noise decreases in 1=
ffiffiffiffi
N

p
, when N , the number of particles increases. Note that

the accuracy of PIC methods can be improved by averaging the results obtained from several runs with

a reasonable computational cost. As another option, Eulerian methods, which consist in discretizing the

Vlasov equation on a mesh of phase space have been proposed. For example a finite element method
has been proposed in [33]. Although this method takes into account complicated boundaries, it is not a

conservative method and it requires to solve a global linear system which makes it hard to use in high

dimension as global resolution is too long. Another method called Fourier–Fourier transform, based on

the Fourier transform of the distribution function in phase space, works for periodic boundaries

condition, but for nonperiodic problems Gibbs oscillations become a source of spurious oscillations

which propagate into the distribution function (see [21]). Other methods like the flux balance method

(FBM) [15,26] are based on the computation of the average of the Vlasov equation on each cell of

the grid by a conservative method like the finite volume method. The techniques used to reconstruct the
distribution function do not preserve the positivity which is an inconvenience for large simulations. The

Piecewise Parabolic Method (PPM) [12] and the Van-Leer-Limited scheme (VL) [1] use limiters (slope

limiter for VL) on the geometrical reconstruction of the distribution function to maintain monotonicity

and positivity whereas the flux corrected transport (FCT) [7] achieves this by flux limiter. The recon-

struction is linear for VL and parabolic for PPM. A similar geometrical reconstruction of third order

which leads to the positive flux conservative method (PFC) is used in [16] but the scheme imposes

positivity and not monotonicity. These methods are first order and dissipative in areas where the limiter

acts (near extrema) and formally high order elsewhere. A comparison of Eulerian-grid-based Vlasov
solvers can be found in [1,17]. An other kind of Eulerian method is the semi-Lagrangian method (see

[32]) consisting in computing directly the distribution function on a Cartesian grid of phase space. This

computation is done by integrating the characteristic curves backward at each time step and interpo-

lating the value at the feet of the characteristics by a cubic spline method or a Lagrange interpolation

scheme. Nakamura and Yabe proposed the cubic interpolated propagation (CIP) [27] method based on

the approximation of the gradients of the distribution function in order to use the one-dimensional

Hermite interpolation. These methods are high order and preserve the global mass but they are not

positive and monotone.
In this paper, we propose a new method based on the semi-Lagrangian principle for solving the Vlasov

equation on an unstructured mesh in phase space. This method works with different kinds of high order

local interpolation operators requiring the knowledge of the gradients which are obtained by advecting

them. Moreover we use ideas developed in numerical weather prediction codes by Priestley [29] and Gravel

and Staniforth [31] to get a positive and conservative method by introducing a local linear combination of

low order solution and high order solution.

This paper is organized as follows. In the first part we recall the Vlasov equation and some properties of

the solution. Then we present the numerical method based on semi-Lagrangian ideas. In Section 4, we
present numerical results in two and three-dimensional phase space in the field of collisionless plasma and

charged particle beams.
2. The Vlasov equation

The evolution of the distribution function of particles f ðt; x; vÞ in phase space ðx; vÞ 2 Rd � Rd ,

d ¼ 1; . . . ; 3, is given by the Vlasov equation
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of
ot

þ v � rxf þ F ðt; x; vÞ � rvf ¼ 0; ð1Þ

where the force field F ðt; x; vÞ is coupled with the distribution function f giving a nonlinear system. We

recall two well-known models, Vlasov–Poisson (VP) and Vlasov–Maxwell (VM) which describes the evo-

lution of charged particles under the effects of self-consistent electromagnetic fields.

The coupling between f and the force field is done by the source terms q, the charge density, and j, the
current density which are given by

qðt; xÞ ¼ q
Z
Rd

f ðt; x; vÞdv; jðt; xÞ ¼ q
Z
Rd

vf ðt; x; vÞdv:

For the (VP) system the force field is given by

F ðt; x; vÞ ¼ q
m
Eðt; xÞ; Eðt; xÞ ¼ �rx/ðt; xÞ; �e0D/ðt; xÞ ¼ qðt; xÞ;

where q and m are, respectively, the charge and the mass of one particle.

For the (VM) system the force field is the Lorentz force given by

F ðt; x; vÞ ¼ q
m
ðEðt; xÞ þ v ^ Bðt; xÞÞ;

where E and B solve the Maxwell equations.

Now we recall the classical a priori estimates for the (VP) and (VM) system. If f0ðx; vÞ is positive then
f ðt; x; vÞ remains positive for all tP 0. By observing that divvF ðt; x; vÞ ¼ 0, if f is smooth enough, then for

all function b 2 C1ðRþ;RþÞ,Z
Rd�Rd

bðf ðt; x; vÞÞdxdv

is constant for all tP 0. Especially, all Lp norms, 16 p61, are preserved. Moreover if we take

bðrÞ ¼ r ln r, we get the conservation of the kinetic entropy defined by

HðtÞ ¼
Z
Rd�Rd

f ðt; x; vÞ ln f ðt; x; vÞdxdv 8t > 0:

Next, multiplying the Vlasov equation by jvj2, and integrating by parts we find the conservation of energy

which is given by

m
2

Z
Rd�Rd

f ðt; x; vÞjvj2 dxdvþ e0
2

Z
Rd

jEðt; xÞj2 dx 8t > 0

for the (VP) system and

m
2

Z
Rd�Rd

f ðt; x; vÞjvj2 dxdvþ e0

Z
Rd

jEðt; xÞj2 þ c2jBðt; xÞj2

2
dx 8t > 0; e0l0c

2 ¼ 1

for the (VM) system. Finally the total mass and impulsionZ
Rd�Rd

f ðt; x; vÞ 1
v

� �
dvdx

are conserved.
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If aðt; x; vÞ ¼ ðv; F ðt; x; vÞÞT is sufficiently smooth (Lipschitz continuous), then we can define unique

characteristic curves ðX ðs; x; v; tÞ; V ðs; x; v; tÞÞ of the first-order differential operator,

o

ot
þ a � r;

which solve the following system of ordinary differential equations

dX
dt

ðs; x; v; tÞ ¼ V ðs; x; v; tÞ;

dV
dt

ðs; x; v; tÞ ¼ F ðt;X ðs; x; v; tÞ; V ðs; x; v; tÞÞ;

X ðs; x; v; sÞ ¼ x; V ðs; x; v; sÞ ¼ v;

8>>>><
>>>>:

ð2Þ

where ðX ðs; x; v; tÞ; V ðs; x; v; tÞÞ denotes the position in phase space at the time t, of a particle which was at

ðx; vÞ at time s.
Since divðx;vÞa ¼ 0, we can rewrite the Vlasov equation in the conservative form

of
ot

þ divðx;vÞðaf Þ ¼ 0 8ðt; x; vÞ 2 Rþ � Rd � Rd ð3Þ

with the initial condition

f ð0; x; vÞ ¼ f0ðx; vÞ: ð4Þ

In [8] it is proved that the Jacobian Jðs; x; v; tÞ ¼ detðoðx;vÞðX ðs; x; v; tÞ; V ðs; x; v; tÞÞ remains positive,

bounded and verifies the equation

oJ
ot

¼ Jðdivðx;vÞaÞðt;X ðs; x; v; tÞ; V ðs; x; v; tÞÞ:

Then it is also proved that the solution of (3) is given by

f ðt; x; vÞ ¼ f ðs;X ðt; x; v; sÞ; V ðt; x; v; sÞÞJðt; x; v; sÞ: ð5Þ

In the case of Vlasov equation, as divðx;vÞa ¼ 0, we get J ¼ 1, and the flow utðx; vÞ ¼
ðX ðs; :; :; tÞ; V ðs; :; :; tÞÞ preserves the measure of the volume of the phase space so that Eq. (5) becomes

f ðt; x; vÞ ¼ f ðs;X ðt; x; v; sÞ; V ðt; x; v; sÞÞ:

This last equation means that the distribution function f is constant along the characteristic curves and it
will be the starting point for our numerical method. A good review on the Cauchy problem in kinetic theory

can be found in [18]. Especially, it is proven that if f0 is smooth and compactly supported the solution of the

VP system still remains smooth and compactly supported for all the time.
3. The numerical scheme

In this section, we present our numerical scheme, which is not restricted by a CFL (Courant–Friedrichs–
Levy) condition as it is usually the case for the most classical Eulerian algorithms such as finite difference or

finite volume schemes. The VP and the VM models are mixing systems whose evolution can become tre-

mendously complex. Indeed the function remains constant along the trajectories but the characteristic

curves becomes more and more intricate. Then different regions of phase space, where f has different values
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come close together and steep gradients appear. The filamentation development is a problem as we loose

information when the size of the filaments becomes smaller than the size of the cells. An unstructured mesh

can present some advantages. Indeed, an unstructured mesh allows us to consider complicated boundaries,

which arise for example in simulations of the propagation of charged particles beams in an accelerator with

complex geometry. Moreover as the mesh is unstructured there is no privileged direction which could in-

troduce a slant in physical results. Of course in this paper we use the fractional step method which gives

more importance to the directions parallel to the axis but characteristic curves could also be solved by using

classical numerical methods for integrating an ordinary differential equation like Euler or Runge–Kutta
schemes for example. In this case there is no more privileged direction. Since the integration is done

backward this method leads to a fixed point problem for which convergence problems can arise. In some

problems, physical phenomena stay contained in a certain volume of phase space whose boundaries can be

more or less complex. Then an unstructured mesh of phase space allows to compute the solution only on

the useful part of the phase space. For example, we know that a Kapchinsky–Vladirmisky (K–V) beam is

contained in a hyper-ellipsoid. Moreover unstructured meshes like triangulations are very well suited for a

priori local mesh refinement. Indeed, for some physical problems, during the whole time of the simulation

we know the areas where the solution needs to be more precise. In order to get a better description of the
physics, we can build a mesh with local refinement in these regions and put the computation effort only on

judicious areas. For some rectangular grid schemes like PFC if we want to have a better resolution

somewhere we need to add whole lines and therefore useless nodes.

The existence of the reversible Hamiltonian flow ut, solution of particles trajectories (2), implies the

existence of an evolution operator S (which has the properties of a semi-group) acting on sufficiently

smooth function such that

f ðt; x; vÞ ¼ SðtÞf0ðx; vÞ ¼ f0 u�1
t ðx; vÞ

� �
; ut � u�1

t ¼ identity: ð6Þ

Therefore, the discretization in time is based on the Strang splitting scheme which gives an approxi-
mation of order two in time of S. It can be written as follows

SðDtÞ ¼ SxðDt=2ÞsSvðDtÞsSxðDt=2Þ þOðDt2Þ;

where

SxðDtÞf ðx; vÞ ¼ f ðx� vDt; vÞ and SvðDtÞf ðx; vÞ ¼ f ðx; v� F ðxÞDtÞ:

In other words, the Strang splitting scheme consists in solving successively a half advection in physical

space, an advection in velocity space and another half advection in physical space. Depending on the in-

terpolation operator we use, we advect not only the distribution function f but also the gradients of f
because we need them to reconstruct f everywhere. The equations to update the gradients are obtained by

differentiating the solution of the transport equation. In other words the gradients are solution of a

transport problem too. Indeed the transport equations for the gradients are obtained by differentiating the

Vlasov equation, where each equation is solved by a splitting method. The set of equations

otðrxf Þ þ ðv � rxÞrxf þrxErvf þ ðE � rvÞrxf ¼ 0;
otðrvf Þ þ rvvrxf þ ðv � rxÞrvf þ ðE � rvÞrvf ¼ 0

�

is replaced by

ðPxÞ
otðrvf Þ þ ðv � rxÞrvf ¼ 0 ðP 1

x Þ
otðrxf Þ þ ðv � rxÞrxf ¼ 0 ðP 2

x Þ
otðrvf Þ ¼ �rvvrxf ðP 3

x Þ

8<
:
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and

ðPvÞ
otðrxf Þ þ ðE � rvÞrxf ¼ 0 ðP 1

v Þ
otðrvf Þ þ ðE � rvÞrvf ¼ 0 ðP 2

v Þ
otðrxf Þ ¼ �rxErvf ðP 3

v Þ

8<
: :

First we solve the system Px on a half time step, then we solve the system Pv on a time step, and finally we

solve again the system Px on a half time step. The advection equations, ðP 1
x Þ, ðP 1

v Þ, ðP 2
x Þ, ðP 2

v Þ, can be in-

tegrated exactly in time. For the equation ðP 3
x Þ, ðP 3

v Þ, we use and explicit Euler scheme in time. The initial

condition for each system is given by the the solution of the previous system. Each advection is easy to

perform since the characteristic curves can be solved exactly. The error of time discretization comes from
the way we carry out the splitting (see [22]). A convergence proof of a such semi-Lagrangian method with

gradient propagation for the nonlinear VP system can be found in [5]. First we describe the algorithm which

gives the semi-discretization in time of the numerical scheme and allows to go from time step tn to tnþ1.

1. Perform a half time step advection in physical space:

fHðx; vÞ ¼ f ðtn; x� vDt=2; vÞ;

rxfHðx; vÞ ¼ rxðf ðtn; x� vDt=2; vÞÞ
¼ rxf ðtn; x� vDt=2; vÞ;

rvf Hðx; vÞ ¼ rvðf ðtn; x� vDt=2; vÞÞ

¼ �Dt
2
rxf ðtn; x� vDt=2; vÞ þ rvf ðtn; x� vDt=2; vÞ:

2. Compute the electric field EHðxÞ by substituting fH in the Poisson equation; that is to say, solve the

following system:

EHðxÞ ¼ �rx/
HðxÞ;

�D/HðxÞ ¼ qHðxÞ;
qHðxÞ ¼

R
Rd fHðx; vÞdv:

8<
:

3. Perform a full time step advection in velocity space:

fHHðx; vÞ ¼ fHðx; v� EHðxÞDtÞ;
rxfHHðx; vÞ ¼ rxðfHðx; v� EHðxÞDtÞÞ

¼ rxfHðx; v� EHðxÞDtÞ � DtrEHðxÞrvfHðx; v� EHðxÞDtÞ;
rvf HHðx; vÞ ¼ rvðf Hðx; v� EHðxÞDtÞÞ

¼ rvf Hðx; v� EHðxÞDtÞ:
4. Perform a second half time step advection in physical space:

f ðtnþ1; x; vÞ ¼ fHHðx� vDt=2; vÞ;

rxf ðtnþ1; x; vÞ ¼ rxðf HHðx� vDt=2; vÞÞ

¼ rxf HHðx� vDt=2; vÞ;

rvf ðtnþ1; x; vÞ ¼ rvðfHHðx� vDt=2; vÞÞ

¼ �Dt
2
rxfHHðx� vDt=2; vÞ þ rvfHHðx� vDt=2; vÞ:
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At each advection step, once we have followed the characteristic curves backward we have to evaluate

the distribution function f and its gradients at the end points of the characteristic curves which are gen-

erally not the nodes of the mesh where we know f . Therefore we have to reconstruct f by an interpolation

technique. Next, we present different local interpolation operators which are used to reconstruct f . Some of

them need only the knowledge of f at the mesh nodes like Lagrange interpolation but for others we need to

know not only f but also rf at the mesh points.

Note that in step 3 of the algorithm we have to know the gradient of the electric field which is a

2� 2 matrix in two dimensions and a 3� 3 matrix in three dimensions. In the numerical cases we
consider, we do not need to compute directly the gradient of the electric field or the gradient of the

force applied to the particles because we can deduce it from other physical quantities. Nevertheless, in

the general case we have to compute the gradient of the force applied to the particles. In the context of

the coupling with the Poisson equation, as the force applied to the particles is the electric force, and

since the Poisson problem is linear we obtain the gradient of the electric field by differentiating the

Poisson system,

rxEHðxÞ ¼ �rx rx/
HðxÞ

� �
;

�D rx/
HðxÞ

� �
¼ rxqHðxÞ;

rxqHðxÞ ¼
R
Rd rxfHðx; vÞdv;

8<
:

which for example can be solved by a finite element method.
Let X be the compact domain of Rx � Rv, where we want to compute the solution, and Th be a tri-

angulation of X. An element T , of the triangulation is a triangle of R2 defined by its three vertex faigi¼1;...;3.

Every point P of R2 is characterized by its Cartesian coordinates ðx; vÞ and its barycentric coordinates

kj ¼ kjðx; vÞ, 16 j6 3, which are linked by the equation

8ðx; vÞ 2 R2 ðx; vÞ ¼
X3
j¼1

kjðx; vÞaj:

We first present Lagrange interpolation, which does not need to propagate the gradients. Nevertheless

we will see later that this kind of reconstruction leads to stability problems. Therefore we present local

interpolation techniques which involve the propagation of f and rf , and give more stable reconstruction.

Most of these interpolation techniques come from the finite element literature [2,11,28].
3.1. Lagrange interpolation

In order to define the Lagrange interpolation of order k on a triangle T , we need to define the principal

lattice of order k which is the set of the points of R2 determined by

LkðT Þ ¼ ðx; vÞ 2 R2; kjðx; vÞ 2 0;
1

k
; . . . ;

k � 1

k
; 1

� �
; 1

�
6 j6 3

�
;

where the barycentric coordinates are defined with respect to the vertex faigi¼1;...;3. Every point of the

principal lattice LkðT Þ can be written as

al ¼
1

k

X3
j¼1

ljaj; l ¼ ðl1; l2; l3Þ;

where the coefficients lj are integer which verify the relations
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lj P 0;
X3
j¼1

lj ¼ k:

We associate LkðT Þ with the set of degrees of freedom RkðT Þ defined as follows

RkðT Þ ¼ ff ðalÞ; al 2 LkðT Þg

and with the space of Lagrange polynomial of order k, PkðT Þ whose dimension is ð2þ kÞ!=2!k! which is

identical to the cardinal of LkðT Þ. PkðT Þ is defined by its basis functions ul as follows. We associate every
vertex al of LkðT Þ with the basis function ul defined by

ulðx; vÞ ¼
Y3
j¼1

ðlj!Þ
 !�1 Y3

j¼1
lj P 1

Ylj�1

i¼0

ðkkjðx; vÞ � iÞ: ð7Þ

The triple ðT ; PkðT Þ;RkðT ÞÞ is called a Lagrange finite element. Then we introduce the local interpolation

operator PT defined by

ðPT f Þðx; vÞ ¼
XNk

l¼1

f ðalÞulðx; vÞ 8f 2 C0ðT Þ ð8Þ

with Nk ¼ ð2þ kÞ!=2!k! and ul is defined by (7). Now we introduce the space Xh, which will be the space of

the discretization of the solution:

Xh ¼ f 2 C0ðXÞ \ H 1ðXÞ; fjTj 2 PkðTjÞ 8Tj 2 Th

n o
:

The space Xh is characterized by the basis functions fwkg, which verify the property wkðxi; viÞ ¼ di;k,
where ðxi; viÞ is the ith point of the triangulation Th. Then, every function f 2 Xh is given by

f ðx; vÞ ¼
X
k

f ðxk; vkÞwkðx; vÞ:

Finally we define the global interpolation operator Ph by

ðPhf Þðx; vÞ ¼
XN
k¼1

fkwkðx; vÞ 8f 2 C0ðXÞ;

where fk ¼ f ðxk; vkÞ and N is the number of all degrees of freedom.

The relationship of paramount importance between the global interpolation operator Ph and the local

interpolation operator PT is given by

ðPhvÞjT ¼ PT vjT
� �

8T 2 Th; v 2 C0ðXÞ; ð9Þ

where vjT denotes the restriction of v onto T .
In fact Lagrange interpolation of high order on triangles does not provide a good reconstruction for the

distribution function since the Lagrange interpolation operator does not have good stability properties. If

we take a one-dimensional finite element (a bounded interval) it is well known that the Lagrange inter-

polant oscillates a lot at the extremities of the element, even if the function to interpolate is very smooth.

Besides the amplitude of the oscillations increase with the degree of the Lagrange polynomial. This ob-

servation is known as the Runge phenomena. For example Runge has consider the Cauchy distribution
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f ðxÞ ¼ 1

1þ x2

in the interval [)5,5], with the equally spaced points

xj ¼ �5þ jDx; j ¼ 0; 1; 2; . . . ; n; Dx ¼ 10

n
:

For each n there exists a unique polynomial PnðxÞ of degree at most n such that PnðxjÞ ¼ f ðxjÞ. This is the
Lagrange interpolation polynomial. In [20] it is shown that jf ðxÞ � PnðxÞj becomes arbitrarily large at points

in [)5,5] if n is sufficiently large. Moreover this occurs even though the interpolation points fxjg become

dense in [)5,5] as n ! 1. Then it means that the ratio of kPnkL1 to kf kL1 is greater than one and increases
with n. If f‘igi¼0;n denote the Lagrange basis functions and ph the Lagrange interpolation operator in one

dimension, we have

kphkL1 ¼ sup
f2Cð½a;b�Þ
f 6¼0

kPnkL1
kf kL1

¼ sup
x2½a;b�

Xn
i¼0

jliðxÞj ¼ C > 1;

where C is independent of the discretization parameter h, but dependent on n, the order of the Lagrange
polynomials. If we take a uniform discretization we can prove that (see [13,24])

kphkL1 � 1þ 2nþ1

en log n
;

which can be optimized when the interpolation points are the zeros of Chebyshev polynomials of degree

nþ 1, then the stability constant becomes

kphkL1 � 1þ 2

p
log n:

Therefore it is impossible to get stability in the sense there is constant C such that

kPhgkL1ðXÞ 6 ð1þ ChÞkgkL1ðXÞ 8g 2 L1ðXÞ; ð10Þ

where h is the maximum diameter of the triangles and Ph a high order Lagrange interpolation operator

(order >1). Moreover the same estimates as (10) seems difficult to obtain in other Lebesgue Lp space with

p 2 ½1;1�. The stability condition (10) is a crucial estimate to obtain convergence of the numerical method

(see [3]). Nevertheless we can show (see [4]) that the stability condition (10) holds when we replace the L1

norm by the L2 norm, with symmetrical Lagrange interpolation of any order on a grid. More precisely, it is
shown that L2-stability only holds if the feet of the characteristics fall in a certain area centered in the finite

element. Then if we symmetrize Lagrange interpolation we can recover L2-stability. Even if the same kind of

result probably exists on unstructured meshes (triangulation) it is useless in practice as we cannot control

where the foot of a characteristic falls in a triangle. The proof of such a result is very complex as there are

no convenient tools to study the L2-stability on unstructured meshes. We now consider Hermite type in-

terpolation which are not subject to this problem.
3.2. Hermite type interpolation

In order to use local interpolation operators we have to define the triple ðT ; PT ;RT Þ. Depending on which

interpolation operator is considered the space of discretization of the solution will be, respectively
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Xh ¼ f 2 C0ðXÞ \ H 1ðXÞ; fjTj 2 PT ðTjÞ 8Tj 2 Th

n o
or

Yh ¼ f 2 C1ðXÞ \ H 2ðXÞ; fjTj 2 PT ðTjÞ 8Tj 2 Th

n o
:

Then we present different local interpolation operators which require the knowledge of f andrf . In fact

we just have to define RT and PT . Next we denote, respectively, by P2 and P3 the sets of polynomials of

degree two and three. Finally we introduce the notation mod where imod j ¼ i� intði=jÞ � j. The solution

of the continuous problem is supposed to be smooth, typically in CmðXÞ. In velocity space the solution is

rapidly decreasing and in physical space the solution is periodic or rapidly decreasing. Note that all these

properties have to be verified by the initial data so as to hold for all finite times.

3.2.1. The C0 reduced Hermite element (HC0)

The set of degrees of freedom is given by

RT ¼ ff ðaiÞ : 16 i6 3; oxf ðaiÞ; ovf ðaiÞ : 16 i6 3g;

and the local interpolation operator PT is determined for all f in C0ðT Þ by

PT f ¼
X3
i¼1

f ðaiÞ
�
� 2k3i þ 3k2i þ 2kikjkk

�
þ kikj

2
ðki � kj þ 1Þrf ðaiÞ � ðaj � aiÞ

þ kikk
2

ðki � kk þ 1Þrf ðaiÞ � ðak � aiÞ;

where fkigi¼1;...;3 are the barycentric coordinates, j ¼ imod3þ 1, and k ¼ jmod3þ 1. Note that

P2 � PT � P3. In fact PT f is C1 over T except through the edges (see [11]).

3.2.2. The C0 cubic Nielson element (NC0)

The set of degrees of freedom is given by

RT ¼ ff ðaiÞ : 16 i6 3; oxf ðaiÞ; ovf ðaiÞ : 16 i6 3g;
and the local interpolation operator PT is determined for all f in C0ðT Þ by

PT f ¼
X3
i¼1

f ðaiÞ
�
� 2k3i þ 3k2i þ 2kikjkk

�
þ kikj ki

�
þ 1

2
kk

�
rf ðaiÞ � ðaj � aiÞ

þ kikk ki

�
þ 1

2
kj

�
rf ðaiÞ � ðak � aiÞ;

where j ¼ imod3þ 1, k ¼ jmod3þ 1, and P2 � PT � P3. In fact PT f is C1 over T except through the edges

(see [28]).

3.2.3. The C1 cubic Nielson rational singular element (NC1)

The set of the degrees of freedom is given by

RT ¼ ff ðaiÞ : 16 i6 3; oxf ðaiÞ; ovf ðaiÞ : 16 i6 3g;
and the local interpolation operator PT is determined for all f in C1ðT Þ by

PT f ¼
X3
i¼1

f ðaiÞðk2i ð3� 2kiÞ þ 6wkiðkkaij þ kjaikÞÞ þ rf ðaiÞ � ðaj � aiÞ k2i kj
�

þ wkið3kjaik þ kk � kjÞ
	

þrf ðaiÞ � ðak � aiÞ k2kk
�

þ wkið3kkaij þ kj � kkÞ
	
;
i
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where

w ¼ k1k2k3
k1k2 þ k2k3 þ k1k3

;

aij ¼
jjeijj2 þ jjejjj2 � jjekjj2

2jjejjj2
;

and jjeijj denote the length of edge ei opposite to the vertex ai. We have the relationship P2 � PT � P3. In
fact we recover the C1 continuity through the edge by adding rational polynomials (see [11,28]). Moreover
NC1 operator has a good stability property since it is a discretization of the operator M½f � characterized as

the unique interpolant which minimizes the pseudonorm

Z
T

o2f
oxov

ðx; vÞ











2

dxdv

 !1=2

among all functions in C4ðT Þ which interpolate to f 2 C4ðT Þ and its first derivative on the boundary of T
(see [28]).

3.2.4. The C1 cubic Hsieh–Clough–Tocher element(HCT-C)

If ai is a vertex of a triangle T , then we denote, respectively, by li, and mi the length and the middle of the

edge of T opposite to the vertex ai. We denote by hi the intersection point of the edge opposite to the vertex
ai and the perpendicular to this edge which goes through ai. Then we introduce ni ¼ jhi � aij and mi the unit
exterior normal of the edge opposite to ai. Let a be the barycentre of T , then Ki denotes the subtriangle of T
built with the vertex a, aj, and ak where 16 i6 3, j ¼ imod3þ 1 and k ¼ jmod3þ 1: Finally we introduce

the so-called ‘‘eccentricity parameters’’ ei defined by

ei ¼
l2k � l2j
l2i

:

The set of the degrees of freedom is given by

RT ¼ ff ðaiÞ : 16 i6 3; oxf ðaiÞ; ovf ðaiÞ; omi f ðmiÞ : 16 i6 3g;

where omi denote the normal derivative. We can replace RT by R
0

T where

R0
T ¼ ff ðaiÞ : 16 i6 3; oxf ðaiÞ; ovf ðaiÞ; oxf ðmiÞ; ovf ðmiÞ : 16 i6 3g:

The local interpolation operator PT is determined for all f in C1ðT Þ by

PT fjKl ¼
Xðlþ1Þmod 3þ1

i¼l

f ðaiÞW0
l;i þ rf ðaiÞ � aiak��!� �

W1
l;i;k þ rf ðaiÞ � aiaj��!� �

W1
l;i;j þ rf ðmiÞ � hiai

�!� 

W1

?;l;i

or by

PT fjKl ¼
Xðlþ1Þmod 3þ1

i¼l

f ðaiÞW0
l;i þ rf ðaiÞ � aiak��!� �

W1
l;i;k þ rf ðaiÞ � aiaj��!� �

W1
l;i;j � ni

of
omi

ðmiÞ
� �

W1
?;l;i:

The basis functions fWlg are defined by

Nl ¼ RlKl



352 N. Besse, E. Sonnendr€uucker / Journal of Computational Physics 191 (2003) 341–376
with i ¼ l, j ¼ imod3þ 1 and k ¼ jmod3þ 1

Nl ¼ ðW0
l;i;W

0
l;j;W

0
l;k;W

1
l;i;k;W

1
l;i;j;W

1
l;j;i;W

1
l;i;kW

1
l;k;j;W

1
l;k;i;W

1
?;l;i;W

1
?;l;j;W

1
?;l;kÞ

T
;

Kl ¼ ðk3i ; k
3
j ; k

3
k ; k

2
i kk; k

2
i kj; k

2
jki; k

2
jkk; k

2
kkj; k

2
kki; kikjkkÞ

T

and

Rl ¼

� 1
2
ðej � ekÞ 0 0 3

2
ð3þ ejÞ 3

2
ð3� ekÞ 0 0 0 0 0

1
2
ð1� 2ei � ekÞ 1 0 � 3

2
ð1� eiÞ 3

2
ðei þ ekÞ 3 3 0 0 3ð3� eiÞ

1
2
ð1þ 2ei � ejÞ 0 1 � 3

2
ðei þ ejÞ � 3

2
ð1þ eiÞ 0 0 3 3 3ð3þ eiÞ

� 1
12
ð1þ ejÞ 0 0 1

4
ð7þ ejÞ � 1

2
0 0 0 0 0

� 1
12
ð1� ekÞ 0 0 � 1

2
1
4
ð7� ekÞ 0 0 0 0 0

� 1
12
ð7þ ekÞ 0 0 1

2
1
4
ð5þ ekÞ 1 0 0 0 �1

1
6
ð4� eiÞ 0 0 � 1

4
ð3� eiÞ � 1

4
ð5� eiÞ 0 1 0 0 1

2
ð3� eiÞ

1
6
ð4þ eiÞ 0 0 � 1

4
ð5þ eiÞ � 1

4
ð3þ eiÞ 0 0 1 0 1

2
ð3þ eiÞ

� 1
12
ð7� ejÞ 0 0 1

4
ð5� ejÞ � 1

2
0 0 0 1 �1

4
3

0 0 �2 �2 0 0 0 0 4

� 2
3

0 0 2 0 0 0 0 0 0

� 2
3

0 0 0 2 0 0 0 0 0

2
6666666666666666666666664

3
7777777777777777777777775

:

We have the equality PT ¼ P3. For the proof of C
1 continuity and the interpolation error estimates we refer

to [11].
3.2.5. The C1 reduced cubic Hsieh–Clough–Tocher element (HCT-R)

With the same notations as previously the set of degrees of freedom is given by

RT ¼ ff ðaiÞ : 16 i6 3; oxf ðaiÞ; ovf ðaiÞ : 16 i6 3g:

The local interpolation operator PT is determined for all f in C1ðT Þ by

PT fjKl ¼
Xðlþ1Þmod 3þ1

i¼l

f ðaiÞW0
l;i þ ðrf ðaiÞ:aiak��!ÞW1

l;i;k þ ðrf ðaiÞ:aiaj��!ÞW1
l;i;j:

The basis functions fWlg are defined by

Nl ¼ RlKl

with i ¼ l, j ¼ imod3þ 1 and k ¼ jmod3þ 1
Nl ¼ ðW0
l;i;W

0
l;j;W

0
l;k;W

1
l;i;k;W

1
l;i;j;W

1
l;j;i;W

1
l;i;kW

1
l;k;j;W

1
l;k;iÞ

T
;

Kl ¼ ðk3; k3; k3; k2kk; k2kj; k2ki; k2kk; k2kj; k2ki; kikjkkÞT
i j k i i j j k k
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and

Rl ¼

� 1
2
ðej � ekÞ 0 0 3

2
ð3þ ejÞ 3

2
ð3� ekÞ 0 0 0 0 0

1
2
ð1� 2ei � ekÞ 1 0 � 3

2
ð1� eiÞ 3

2
ðei þ ekÞ 3 3 0 0 3ð1� eiÞ

1
2
ð1þ 2ei � ejÞ 0 1 � 3

2
ðei þ ejÞ � 3

2
ð1þ eiÞ 0 0 3 3 3ð1þ eiÞ

� 1
4
ð1þ ejÞ 0 0 1

4
ð5þ ejÞ 1

2
0 0 0 0 0

� 1
4
ð1� ekÞ 0 0 1

2
1
4
ð5� 3ekÞ 0 0 0 0 0

1
4
ð1� ekÞ 0 0 � 1

2
� 1

4
ð1� 3ekÞ 1 0 0 0 1

� 1
2
ei 0 0 � 1

4
ð1� 3eiÞ 1

4
ð1þ 3eiÞ 0 1 0 0 1

2
ð1� 3eiÞ

1
2
ei 0 0 1

4
ð1� 3eiÞ � 1

4
ð1þ 3eiÞ 0 0 1 0 1

2
ð1þ 3eiÞ

1
4
ð1þ ejÞ 0 0 � 1

4
ð1þ 3ejÞ � 1

2
0 0 0 1 1

2
6666666666664

3
7777777777775
:

We have the relationship P2 � PT � P3. In fact HCT-R is obtained from HCT-C by supposing that the

gradients vary linearly along the edges. For the proof of C1 continuity and the interpolation error estimates

we refer to [11].

For smooth solution (with low gradients) like linear Landau damping the C0 and C1 reconstruction gives

similar results. On the contrary for stiff problems (with steep gradients) like the two stream instability the
C0 reconstructions does not give satisfactory results whereas the C1 reconstructions work well.

3.3. The fully discretized scheme

Now, we can write the fully discretized scheme. From the local interpolation operator PT we can define

the global interpolation operator Ph from C0ðXÞ (resp. C1ðXÞ) onto Xh (resp. Yh) by the relation (9). For

example the discretization space Yh built on the C1 cubic Nielson element admits basis functions fukgk¼1;...;N ,

fwkgk¼1;...;N and fgkgk¼1;...;N such that

ðPhf Þðx; vÞ ¼
XN
k¼1

fkgkðx; vÞ þ oxfkwkðx; vÞ þ ovfkukðx; vÞ 8f 2 C1ðXÞ;

where

fk ¼ f ðxk; vkÞ; oxfk ¼ ðoxf Þðxk; vkÞ; ovfk ¼ ðovf Þðxk; vkÞ:

We start at the time tn, where we know the discrete distribution function f n
h ðx; vÞ that we can express as

f n
h ðx; vÞ ¼

XN
k¼1

f n
h;kgkðx; vÞ þ oxf n

h;kwkðx; vÞ þ ovf n
h;kukðx; vÞ;

where the ff n
h;kg

N
k¼1, foxf n

h;kg
N
k¼1 and fovf n

h;kg
N
k¼1 are the degrees of freedom of the space Yh. Now we develop

the algorithm to reach time tnþ1.

1. Perform a half time step advection in physical space:

fH

h ðx; vÞ ¼ Phf n
h ðx� vDt=2; vÞ;

that is to say

fH

h ðx; vÞ ¼
XN
k¼1

fH

h;kgkðx; vÞ þ oxf H

h;kwkðx; vÞ þ ovfH

h;kukðx; vÞ;

where

fH

h;k ¼ f n
h ðxk � vkDt=2; vkÞ;
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oxfH

h;k ¼ oxf n
h ðxk � vkDt=2; vkÞ;
ovfH

h;k ¼ �Dt
2
oxf n

h ðxk � vkDt=2; vkÞ þ ovf n
h ðxk � vkDt=2; vkÞ:

2. Compute the electric field EH

h ðxÞ by substituting f H

h in the Poisson equation which has to be discretized

by a usual numerical scheme like finite difference or finite element method.

3. Perform a full time step time advection in velocity space:

fHH

h ðx; vÞ ¼ PhfH

h ðx; v� EH

h ðxÞDt=2; vÞ;

that is to say

fHH

h ðx; vÞ ¼
XN
k¼1

fHH

h;k gkðx; vÞ þ oxf HH

h;k wkðx; vÞ þ ovfHH

h;k ukðx; vÞ;

where

fHH

h;k ¼ f H

h ðxk; vk � EH

h ðxkÞDtÞ;
oxfHH

h;k ¼ oxf H

h ðxk; vk � EH

h ðxkÞDtÞ � DtoxEH

h ðxkÞovfH

h ðxk; vk � EH

h ðxkÞDtÞ;
ovfHH

h;k ¼ ovf H

h ðxk; vk � EH

h ðxkÞDtÞ:

4. Perform a second half time step advection in physical space:

f nþ1
h ðx; vÞ ¼ Phf HH

h ðx� vDt=2; vÞ;

that is to say

f nþ1
h ðx; vÞ ¼

XN
k¼1

f nþ1
h;k gkðx; vÞ þ oxf nþ1

h;k wkðx; vÞ þ ovf nþ1
h;k ukðx; vÞ;

where

f nþ1
h;k ¼ fHH

h ðxk � vkDt=2; vkÞ;
oxf nþ1
h;k ¼ oxf HH

h ðxk � vkDt=2; vkÞ;
ovf nþ1
h;k ¼ �Dt

2
oxfHH

h ðxk � vkDt=2; vkÞ þ ovfHH

h ðxk � vkDt=2; vkÞ:
3.4. Positive and conservative schemes

The previous schemes do not preserve positivity and mass. Indeed this feature comes from the inter-

polation operator. The nonpreservation of positivity and mass could be an inconvenience for long time

simulations since numerical oscillations develop. In order to recover positivity and mass conservation we

use the ideas of Priestley [29] and Gravel and Staniforth [31] which have been applied in numerical weather
prediction codes.
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First we are going to define the properties, we expect the solution to verify. The algorithm provides a

positive solution if the solution verifies the following maximum principle:

f n
min 6 f nþ1

h;l 6 f n
max 8l 8n; ð11Þ

where

f n
min ¼ min

k
ff n

h;kg; f n
max ¼ max

k
ff n

h;kg:

The solution conserves the mass ifX
k

f n
h;kAk ¼

X
k

f 0
h;kAk ¼ M0; ð12Þ

where Ak is the area associated to the node Nk such that [kAk ¼ X.
Now we explain how to obtain a positive and conservative solution by applying it on the first half

advection in the physical space. Note that the algorithm will be the same for the other advections.

Let f H

Lh
ðx; vÞ be a low order solution computed according to the first step of the algorithm described

previously, with the Lagrange interpolation operator of order one for example. Let fH

Hh
ðx; vÞ a high order

solution computed according to the first step of the algorithm described previously, with one of the Hermite

interpolation operators we saw before. Let f H

Lh;k
¼ f H

Lh
ðxk; vkÞ and fH

Hh;k
¼ fH

Hh
ðxk; vkÞ. We suppose that the

triangle Tj contains the point ðxk � vkDt=2; vkÞ which is at the time tn the departure point approximation of

the characteristic curve ending at the point ðxk; vkÞ at the time tnþ1. Let NT the number of nodes carried by a

triangle T on which we know f n
h . We define f þ and f � by

f þ ¼ maxff n
h;1; . . . ; f

n
h;NT

g

and

f � ¼ minff n
h;1; . . . ; f

n
h;NT

g:

Then we set

f k ¼
f þ if f H

Hh;k
> f þ;

f � if f H

Hh;k
< f �;

f H

Hh;k
otherwise:

8<
:

If fH

Lh;k
� fH

Hh;k
6¼ 0 then we define

cmax
k ¼

f k � fH

Lh;k

fH

Hh;k
� f H

Lh;k

;

otherwise we set

cmax
k ¼ 1:

Then, if we set

fH

h;k ¼ cmax
k fH

Hh;k
þ ð1� cmax

k Þf H

Lh;k
;

we see that the solution satisfies the maximum principle in sense of (11). In order to have a conservative

solution we have to replace the set fcmax
k g by the set of optimal fckg for which the solution still preserves the



356 N. Besse, E. Sonnendr€uucker / Journal of Computational Physics 191 (2003) 341–376
maximum principle and the mass. In order to get a solution which preserves the maximum principle (11) the

set fckg must satisfy the constraints

06 ck 6 cmax
k :

Moreover, if we want that the solution preserves mass we impose the constraint (12). Let us define

nk ¼ ðfH

Hh;k
� f H

Lh;k
ÞAk

then the condition (12) can be rewritten asX
k

cknk ¼ M0 �
X
k

fH

Lh;k
Ak ¼ MH:

Note that if ck ! 1 then we get a high order reconstruction. On the contrary we get low order recon-

struction if ck ! 0. In order to obtain a high order reconstruction as often as possible, the problem can

consist in minimizing the cost function

LðcÞ ¼ �
X
k

ck;

where the unknowns fckg are subject to the constraints

06 ck 6 cmax
k ;

X
k

cknk ¼ MH:

This kind of problem can be solved by linear programming methods as the simplex method. Next we

present a direct way of obtaining a solution by solving the constraints only (cf. [29]). Note that to enforce
the conservation of other physical quantities such as energy, entropy or high order moments we can extend

this method which leads to linear or nonlinear optimization problems with constraints. This method can

also be used to minimize the loss of preserved quantities like the L2 norm (minimization of the numerical

diffusion) by defining the new cost function

LðcÞ ¼ kfhð0ÞkL2h



 � kfhðtnÞkL2h




;
where

kfhðtnÞkL2h ¼
X
k

ckðf n
Hh;k

� 
� f n

Lh;k
Þ þ f n

Lh;k


2
Ak

!1=2

:

First, if we haveX
k

cmax
k nk ¼ MH; ð13Þ

the mass is conserved and we have found a positive solution which preserves the discrete maximum

principle (11) and the mass conservation (12).

Now assume thatX
k

cmax
k nk > MH: ð14Þ

If it is not the case, without loss of generality, we put nk ¼ �nk and MH ¼ �MH so as to achieve in-

equality (14).
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In order to reduce as much as possible the size of the left hand size of (14) the negative and zero terms of

the sums (14) are supplied with the highest coefficient. Then this rule allows us to determine an array iflag
such that

if nk 6 0 then set ck ¼ cmax
k ; iflagðkÞ ¼ 1;

if nk > 0 then set ck ¼ 0; iflagðkÞ ¼ 0:
ð15Þ

Now we have to compute the coefficients ck for which iflagðkÞ ¼ 0. To do this we define a surplus as

surplus ¼ MH �
X

iflagðkÞ¼1

cknk ð16Þ

and an average value of ck as

cav ¼
surplusP

iflagðkÞ¼0 cknk
: ð17Þ

Note that the surplus or all nk can be negative. In that case there is no conservative solution and the best

thing to do to limit as much as possible the loss of mass is to set ck as it was done for the initial set up (15).

In other case all the values cmax
k for which iflagðkÞ ¼ 0 are compared with the average value cav and set

equal to the average if it does not exceed all the upper bounds, that is to say

if cav < cmax
k 8k such that iflagðkÞ ¼ 0; then set ck ¼ cav; iflagðkÞ ¼ 1:

On the other hand, if some coefficients cmax
k for which iflagðkÞ ¼ 0 are smaller than the average value cav,

then those coefficients are set equal to their maximum value:

if cav > cmax
k 8k such that iflagðkÞ ¼ 0; then set ck ¼ cmax

k ; iflagðkÞ ¼ 1:

The other coefficients are left with iflagðkÞ ¼ 0. Then a new evaluation of (16) and (17) is performed. The

algorithm completes successfully when we find a value cav which does not exceed any cmax
k or when

iflagðkÞ ¼ 1 for all k. Note that seeking optimal fckg to enforce mass conservation will sacrifice accuracy.
4. Numerical results

In this section, we present numerical results obtained in problems of plasma physics and in the prop-

agation of charged particle beams, with different methods conservative or not. Note that conservative

methods means here that the methods preserve the conservation of the global mass defined by (12) and the

maximum principle defined by (11).

4.1. The one-dimensional Vlasov–Poisson system

In this section we compare different methods conservative or not, with different reconstruction tech-

niques for the numerical resolution of the VP system with periodic boundary conditions

of
ot

þ v
of
ox

þ Eðt; xÞ of
ov

¼ 0

coupled with the normalized Poisson equation

Eðt; xÞ ¼ � o/
ox

; � o2/
ox2

¼
Z
R

f ðt; x; vÞdv� 1:
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According to the numerical scheme described in Section 3 we have to compute the gradient of the electric

field. Here, this computation is easy because we see that

oE
ox

ðt; xÞ ¼ qðxÞ � 1 ¼
Z
R

f ðt; x; vÞdv� 1:
4.1.1. The linear Landau damping

The initial data is

f ð0; x; vÞ ¼ 1ffiffiffiffiffiffi
2p

p expð�v2=2Þð1þ a cosðkxÞÞ 8ðx; vÞ 2 ½0;L� � R;

where a ¼ 0:01 stands for the intensity of the perturbation. The length period is L ¼ 4p and vmax ¼ 6 is the

value beyond which we consider the distribution function is equal to zero. The time step is Dt ¼ 1=8 and

Nmesh represents the number of mesh cells. The final time T ¼ 50x�1
p .

Fig. 1 shows the comparison of the evolution of the first mode (k ¼ 0:5) of the electric field, for different
interpolation operators. Here the cell number (triangles) is 3906 (�32 points in x by 64 points in v) and we

do neither enforce the positivity nor the mass conservation of the solution. The amplitude of the first mode

Eðk ¼ 0:5; tÞ decreases exponentially as predicted by the theory. The damping rate and the frequency of

oscillations obtained by these methods are, respectively, given by c ¼ 0:153 and x ¼ 1:415, which agree

very well with values c ¼ 0:1533 and x ¼ 1:4156 predicted by the theory. For this physical case the dif-

ferences between the methods appear in long time. The best schemes are those that use C1 reconstructions

and the less satisfactory is the Lagrange operator of order 2. On Fig. 3(a) we observe that the ‘‘recurrence

effect’’ (see [25]) appears at TR ¼ 33:49, which is the theoretical time predicted from the free streaming case
(i.e. without electric field) since TR ¼ 2p=ðkDvÞ. Although no conservation is enforced we observe that

the distribution function remains positive and the relative error norm of variations of kinetic entropy, mass,
Fig. 1. Comparison of interpolation operators on the evolution of the first mode Eðk ¼ 0:5; tÞ of the electric field for the linear Landau

damping, Nmesh ¼ 3906.
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L1-norm, L2-norm and total energy always stay less than 10�5. Figs. 2 and 3 compare for different meshes,

the effectiveness of the interpolation operators and the effect of the positivity and the mass conservation

enforcing on the first mode. First NC1 and HCT-C interpolation operators give very similar results. In the

conservative case we observe that the evolution of the first mode in long time is less accurate but when we

refine the mesh the approximation of the solution is improved. Then the algorithm seems to converge. In

the conservative case (also positive) Fig. 2, the loss of accuracy arises at the same time for our scheme and

the FCT or the PPM scheme (see [1]) for almost the same discretization (3960 triangles �32� 64 points).

The FB and CIP methods give a better accuracy for the same discretization (see [1,27]) in long time because
Fig. 2. Evolution of the first mode Eðk ¼ 0:5; tÞ of the electric field for the linear Landau damping: (a,b) Nmesh ¼ 3906; (c,d)

Nmesh ¼ 7874.



Fig. 3. Evolution of the first mode Eðk ¼ 0:5; tÞ of the electric field for the linear Landau damping: (a) Nmesh ¼ 1092; (b) Nmesh ¼ 3906;

(c) Nmesh ¼ 16,320.
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they do not preserve the positivity of the distribution function whereas the others do. Enforcing the pos-

itivity destroys the accuracy because it introduces diffusion.

4.1.2. The strong Landau damping

The initial data is

f ð0; x; vÞ ¼ 1ffiffiffiffiffiffi
2p

p expð�v2=2Þð1þ a cosðkxÞÞ 8ðx; vÞ 2 ½0;L� � R;

where the amplitude of the initial perturbation of the density is increased. We take a ¼ 0:5. We still take

L ¼ 4p, k ¼ 0:5, Dt ¼ 1=8 and vmax ¼ 6. The number of cells is Nmesh ¼ 2048. The electric field introduce a

strong modulation of the charge density. The previous theory cannot be applied as nonlinear effects are too

important but this test has been studied by many authors [10,16,21,25,27]. The amplitude of the first mode
decreases exponentially in a first time, and oscillates periodically around a constant in a second time. First

the electric waves give energy to the particles, that�s why we observe the exponential decrease of the first

mode which contains the most of the part of electric energy. Then, after the initial condition mixing and the

transitory phenomena, particles whose kinetic energy is smaller than the potential energy, are trapped by

electrostatic waves around the phase velocity v/ ¼ x=k, where small bumps appear preceded by small holes

(Fig. 9). The trapped electrons oscillate in the wave potential with a bounce frequency which is the fre-

quency of the envelope of the first mode (see [9,14,19,23]). When the algorithm is nonconservative we

observe (Figs. 4 and 5) that with Lagrange interpolation of order two the preservation of the L1 norm is
better on short time but the scheme is too dissipative (important loss of the L2 norm and entropy). The

Hermite C1 type interpolation (HCT-C, HCT-R, NC1) gives good results which are similar even better in

term of conservation than results obtained by cubic spline on Cartesian grid (see [16]). We observe a loss of

L1 norm less than 1.16% (6% for cubic splines on a grid for almost the same discretization, see [16]) during

the transitory phenomena (strong variations of the distribution function caused by nonlinear effects) which

is reduced in long time to a relative error of order 10�3. We observe a loss of the L2 norm of 10% and a

growth of the entropy of 16% which stabilize in long time. On one processor of a Compaq Alphaserveur

ES45 1GHz, for 100 steps and 3906 triangles in the case of the conservative method (�32 points in x by 64
points in v) the runs durations are as follows: HCT-C, 16.12s; HCT-R, 6.11s; NC1, 6.30s. Among the C1

interpolation techniques the best interpolation operator in term of L1 norm conservation are HCT-R and

NC1, and in term of conservation of the L2 norm (the less diffusive) the HCT-C interpolation operator is

the best. On the contrary the Lagrange interpolation of order two is twice more diffusive. The conservative



Fig. 4. Evolution of the L1 norm for the strong nonlinear Landau damping, Nmesh ¼ 3906.

Fig. 5. Evolution of (a) L2 norm, (b) entropy and (c) total energy for the strong nonlinear Landau damping in the case of the non-

conservative algorithm, Nmesh ¼ 3906.
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version of thealgorithm does not change the results described previously except that now the solution is

positive, and preserves the mass conservation (also L1 norm) and the maximum principle (see Figs. 5–8).

These conservations are useful for long simulations since numerical oscillations can develop when the

nonlinear effects are dominating. Indeed if we do not search to stabilize or control the growth of these
oscillations the scheme can become numerically unstable and blow up. That is what occurs with Lagrange

interpolation of order 3 or more when we apply the nonconservative version of the algorithm. Moreover the

decrease of the physical entropy and the L2 norm is associated to the fact that the distribution function is

smoothed when filaments become smaller than the phase space cell size. Indeed in the semi-Lagrangian

method the projection onto the mesh means that we solve the Vlasov equation at the scale of the size of the
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phase space cell. Then the development of thin structures is not taken into account by the scheme and the

physical phenomena of high frequency are not reproduced. The projection onto the mesh plays the part of a

low-pass filter.
Fig. 6. Evolution of (a) L2 norm, (b) entropy and (c) total energy for the strong nonlinear Landau damping in the case of the con-

servative algorithm, Nmesh ¼ 3906.

Fig. 7. Evolution of the first mode Eðk ¼ 0:5; tÞ of the electric field for the strong nonlinear Landau damping, Nmesh ¼ 3906. (a) HCT-C,

nonconservative. (b) HCT-C, conservative. (c) Lagrange 2, nonconservative.

Fig. 8. Evolution of the first mode Eðk ¼ 0:5; tÞ of the electric field for the strong nonlinear Landau damping, Nmesh ¼ 3906. (a)

Lagrange 2, conservative; (b) NC1, HCT-R, nonconservative; (c) NC1, HCT-R, conservative.



Fig. 9. Evolution of the distribution function f in phase space for the NC1 conservative scheme Nmesh ¼ 3906, in the case of the strong

nonlinear Landau damping: (a) t ¼ 0x�1
p ; (b) t ¼ 1x�1

p ; (c) t ¼ 3x�1
p ; (d) t ¼ 4x�1

p ; (e) t ¼ 5x�1
p ; (f) t ¼ 8x�1

p ; (g) t ¼ 20x�1
p ; (h)

t ¼ 25x�1
p ; (i) t ¼ 30x�1

p ; (j) t ¼ 40x�1
p ; (k) t ¼ 50x�1

p ; (m) t ¼ 100x�1
p .

N. Besse, E. Sonnendr€uucker / Journal of Computational Physics 191 (2003) 341–376 363
4.1.3. The two stream instability

The initial condition is

f ð0; x; vÞ ¼ 1ffiffiffiffiffiffi
2p

p v2 expð�v2=2Þð1þ a cosðkxÞÞ 8ðx; vÞ 2 ½0; L� � R;

where a ¼ 0:05, L ¼ 4p and vmax ¼ 6. The time step Dt is equal to 1/8 and Nmesh ¼ 3096. The final time T is

100x�1
p .

Fig. 16 shows the time evolution of the distribution function in the phase space. At time t ffi 10, we

observe the formation of a vortex which is associated to trapped particles. From t ffi 10 until t ffi 20, the
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instability grows rapidly and a hole appears. After t ffi 20 the trapped particles oscillate in the electrostatic

potential and the vortex rotates periodically. Figs. 13 and 14 illustrate the evolution of the first two modes

Eðk ¼ 0:5; tÞ and Eðk ¼ 1; tÞ according to the different interpolation operators and the conservative or

nonconservative version of the algorithm. After an initial transitory phase the first mode Eðk ¼ 0:5; tÞ in-
creases exponentially to reach its maximum at the time t ffi 18, then it stabilizes and oscillates slowly be-

cause of particles trapping. The other mode Eðk ¼ 1; tÞ increases exponentially and oscillates but always

stays under the first mode. The electric energy increases rapidly from t ffi 10 to t ffi 20, and then oscillates

periodically (see Fig. 15).
We notice that the scheme with Lagrange interpolation of order two becomes bad in long time when we

do not enforce the maximum principle and the mass conservation (see Figs. 10–12). In the case where the

algorithm preserves the maximum principle and the mass conservation the Lagrange scheme of order two
Fig. 10. Comparison of the interpolation operator on the evolution of the L1 norm with the nonconservative scheme in the case of two

stream instability, Nmesh ¼ 3906.

Fig. 11. Evolution of (a) L2 norm, (b) entropy and (c) total energy, with the nonconservative scheme in the case of two stream in-

stability, Nmesh ¼ 3906.
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gives right results even if it remains more dissipative than the other schemes (see Figs. 11 and 12). The

scheme of C1 Hermite type (NC1, HCT-R, HCT-C) give good results. However we observe that HCT-C

scheme is better in term of conservation of the entropy, L2 norm and energy (see Figs. 11 and 12). Moreover

we note that the filamentation develops from t ffi 15 until t ffi 35, and then is smoothed in long time. The
Fig. 13. Evolution of the first two modes Eðk ¼ 0:5; tÞ and Eðk ¼ 1; tÞ of the electric field with the nonconservative algorithm in the

case of the two stream instability, Nmesh ¼ 3906. (a) Lagrange 2, nonconservative. (b) NC1, HCT-R, nonconservative. (c) HCT-C,

nonconservative.

Fig. 14. Evolution of the first two modes Eðk ¼ 0:5; tÞ and Eðk ¼ 1; tÞ of the electric field with the conservative algorithm in the case of

the two stream instability, Nmesh ¼ 3906. (a) Lagrange 2, conservative. (b) NC1, HCT-R, nonconservative. (c) HCT-C, conservative.

Fig. 12. Evolution of (a) L2 norm, (b) entropy and (c) total energy, with the conservative scheme in the case of two stream instability,

Nmesh ¼ 3906.



Fig. 16. Evolution of distribution function f in the phase space, with the conservative NC1 scheme and Nmesh ¼ 16,320, in the case of

the two stream instability: (a) t ¼ 0x�1
p ; (b) t ¼ 10x�1

p ; (c) t ¼ 15x�1
p ; (d) t ¼ 20x�1

p ; (e) t ¼ 25x�1
p ; (f) t ¼ 30x�1

p ; (g) t ¼ 35x�1
p ; (h)

t ¼ 50x�1
p ; (i) t ¼ 100x�1

p .

Fig. 15. Comparison of the evolution of electric energy in the case of the two stream instability, Nmesh ¼ 3906. (a) Lagrange 2. (b) NC1,

HCT-R. (c) HCT-C.
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same numerical phenomenon of filtering explained for the strong nonlinear Landau damping also occurs

here.
4.2. The axisymmetric Vlasov–Poisson system

The axisymmetric VP system is very useful in the study of the propagation of charged particles beams.

Here we suppose that the beam is uniform in the longitudinal variable z and propagates with constant

velocity vz. The transverse component ðvx; vyÞ are small compared to the longitudinal velocity vz. The
problem is then reduced to study the classical Vlasov equation in the transverse space. Moreover we

suppose that the initial data are invariant by rotation around the axis. Then the solution of the Vlasov

equation still remains invariant by rotation and satisfies the following equation written in dimensionless

cylindrical variables

of
ot

þ vr
of
or

þ Esðt; rÞ
�

þ Eaðr; tÞ þ
v2h
r

�
of
ovr

� vhvr
r

of
vh

¼ 0; ð18Þ

where the radial electric field Esðt; rÞ is given by the Poisson equation

1

r
oðrEsÞ
or

¼ qðt; rÞ; qðt; rÞ ¼
Z
R2

f ðt; r; vr; vhÞdvr dvh ð19Þ

and where the applied radial electric field Eaðt; rÞ is supposed to be linear and equal to �x2
0r.

If we make the variables change ðr; vh; vrÞ ! ðr; vr; IÞ, where I ¼ rvh is the kinetic momentum in the z-

direction, Eq. (18) becomes

of
ot

þ vr
of
or

þ Esðt; rÞ
�

þ I2

r3
� x2

0r
�
of
ovr

¼ 0 8I 2 R: ð20Þ

This formulation is well suited for parallelization as the variable I plays the role of a parameter.
The K–V distribution

f0ðr; vr; vhÞ ¼
n0
p
d0ð2H � bI � a2Þ;

where n0 is the total density, I the kinetic momentum in the z-direction, b and a two constant, and H is the

transverse hamiltonian

Hðr; vr; vhÞ ¼
1

2
ðv2r þ v2hÞ þ /sðt; rÞ þ /aðt; rÞ;

is a stationary solution of the VP equation. The K–V distribution is not the best model to represent a

laboratory beam but it was studied by many authors and it is the departure point for focusing [30]. In fact,
to analyze and compare the behavior of different stationary or nonstationary distributions, Lapostolle and

Sacherer in 1971 introduced RMS quantities and the concept of equivalent beams. According to this

concept, two beams composed of the same particles species and having the same current and kinetic energy

are equivalent if the second moments of the distribution function are the same. If we consider a normalized

stationary or nonstationary distribution f ðx; y; x0; y 0Þ in four-dimensional transverse trace space where

x0 ¼ vx=vz and y0 ¼ vy=vz. The second moment in the particle coordinates x is defined by

x2 ¼
Z
R4

x2f ðx; y; x0; y 0Þdxdy dx0 dy 0;
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and the RMS beam width in the x-direction is given by

xrms ¼
ffiffiffiffi
x2

p
:

In the same way we can define yrms, x0rms and y 0rms. As an example for a K–V distribution whose boundary

in the x� x0 plane is described by a ellipse, if we consider a position where the ellipse is upright and let

xmax ¼ a, x0max ¼ a0 denote the maximum x-position (radius or envelope) and maximum slope in the particle

distribution, then we can show that

x2 ¼ a2=4; x02 ¼ a0
2

=4:

Then we introduce the RMS emittance �x which is a fundamental quantity in beams physics

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x02 � xx0

2
� 
r

:

In order to compute the emittance �x from cylindrical coordinate, a straightforward computation shows
that

�x ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðv2r þ v2hÞ � rvr2

q
;

where

r2 ¼
Z
R3

r2f ðr; vr; IÞdrdvr dI ; v2r ¼
Z
R3

v2r f ðr; vr; IÞdrdvr dI ;

and

v2h ¼
Z
R3

v2hf ðr; vr; IÞdrdvr dI ; rvr ¼
Z
R3

rvrf ðr; vr; IÞdrdvr dI :

Although the emittance is constant for a K–V beam, for more general beam shapes, the emittance is not

constant and increases and oscillates because of the nonlinear effects caused by the coupling between the
Vlasov equation and the Poisson equation. To simulate the propagation of laboratory beams we use the

model of semi-Gaussian beam, Gaussian beam and Maxwell–Boltzmann beam. The latter one is an ana-

lytical equilibrium and in order to focus the semi-Gaussian and Gaussian beams we use the the K–V

distribution and the concept of equivalent beams. Indeed the initial parameters of the studied beam are

computed so that its moments are the same as those of a K–V distribution.

4.2.1. The discretization of the axisymmetric Vlasov equation

For a fixed I the characteristic curves are defined by the system of ordinary differential equations

dr
dt ¼ vr;
dvr
dt ¼ F ðt; rÞ ¼ Esðt; rÞ þ I2

r3 � x2
0r:

�
ð21Þ

In order to solve the axisymmetric Vlasov equation we apply our numerical method where we split the

advection in physical space from the advection in velocity space. The phase space to discretize is ðr; vr; IÞ.
For the subspace ðr; vrÞ we use an unstructured mesh whose the boundary is a half ellipse. For the dis-

cretization of I we use a grid. However we have to choose an appropriate discretization in the I-direction.
Indeed when the total electric field is linear as it is the case for a K–V distribution, the characteristic curves

can be recast as
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x2

2
r2 þ v2r þ

I2

r2
¼ c;

where c is a constant and

x2

2
r2 ¼ x2

0

2

�
� n0

4

�
r2 ¼ �ð/s þ /aÞ:

Then, we must control the ratio I=r, and the discretization in the I-direction must verify

I ¼ 	xr2:

Let NI be the number of points of the discretization for the variable I . Then the mesh for I is chosen such

that

I ¼ 2a
NI

� �2

gx0i2; i 2
�
� NI

2
;
NI

2

�
:

During the half time step advection in the physical space we see that we need to put an artificial

boundary condition for r ¼ 0. Indeed for r ¼ 0 and vr > 0 the particles flux is inward, whereas for vr < 0

the particles flux is outward, and the particles leave the domain of computation. Then to model the

crossing of particles through the axis r ¼ 0 we impose a specular reflection as boundary condition for

r ¼ 0

f ð0; vr; IÞ ¼ f ð0;�vr; IÞ 8vr > 0:

During advection in velocity space step we need to compute orF ðt; rÞ. Thanks to the Poisson equation

(19) we obtain

oF
or

ðt; rÞ ¼ qðt; rÞ � Eðt; rÞ
r

� 3
I
r2

� �2

� x2
0:
4.2.2. Semi-Gaussian beam

The initial data in Cartesian coordinate is

f0ðx; y; vx; vyÞ ¼
n0

ð2pv2thÞðpa2Þ
exp

�
� 1

2v2th
ðv2x þ v2yÞ

�

if x2 þ y2 6 a2 and f0ðx; y; vx; vyÞ ¼ 0 if x2 þ y2 > a2. The density n0 and the pulsation x0 are computed

thanks to RMS quantities so that the semi-Gaussian beam is equivalent to the matched K–V beam. In fact

we fix the beam radius a ¼ 1, the thermal velocity vth ¼ 1 and the tune depression g ¼ x=x0 ¼ 1=4. Then
we deduce x0 and n0 by the following formulae

vth ¼
1

2
agx0; x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

2ð1� g2Þ

r
: ð22Þ

We observe the formation of a space charge wave which starts at the edge of the beam and propagates

inside the beam to be reflected close to the axis r ¼ 0 (see Fig. 17). At the beginning the total electric field is

linear inside the beam. The variations of the total electric field are small but sufficient to perturb strongly

the density (see Figs. 17 and 18).



Fig. 17. Evolution of the density qðt; rÞ (a), the current jr (b), and the total force field Etotal ¼ Esðt; rÞ � x2
0r (c), with the NC1 in-

terpolation operator at times t ¼ 0x�1
0 , 0:571x�1

0 , 0:714x�1
0 , 1x�1

0 , 1:29x�1
0 , Nmesh ¼ 2,509,056 in the case of the semi-Gaussian beam.
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Fig. 18. Evolution of the distribution function f in the phase space ðr; vrÞ with the NC1 interpolation operator and Nmesh ¼ 2,509,056,

in the case of the semi-Gaussian beam. vr is in abscissa and r in ordinate: (a) t ¼ 0x�1
0 ; (b) t ¼ 0:143x�1

0 ; (c) t ¼ 0:286x�1
0 ; (d)

t ¼ 0:429x�1
0 ; (e) t ¼ 0:571x�1

0 ; (f) t ¼ 0:714x�1
0 ; (g) t ¼ 0:857x�1

0 ; (h) t ¼ 1x�1
0 ; (i) t ¼ 1:29x�1

0 .
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4.2.3. Maxwell–Boltzmann beam

The initial data is the normalized Maxwell–Boltzmann distribution (which is an analytical stationary

solution for the VP system)

f0ðr; vr; vhÞ ¼
a
2p

exp

�
� 1

2
ðv2r

�
þ v2hÞ þ /sðt; rÞ þ /aðt; rÞ

��

with /aðt; rÞ ¼ r2=4, Eaðt; rÞ ¼ �orEaðt; rÞ, 06 a6 1 and where the potential /s satisfies the Poisson equa-

tion

� 1

r
o

or
r
o/s

or

� �
¼ a expð�/s � r2=4Þ

solved numerically by finite differences. We take a ¼ 1, vth ¼ 1, g ¼ 1=2. As the Maxwell–Boltzmann dis-

tribution is a stationary analytical solution of the VP system there is no time variation of the function.

Fig. 19 shows the evolution of logðqÞ. Theoretically all the curves must fit the exact solution. This is the case

with a precision of 3� 10�2. Nevertheless, for the weak densities we observe that the numerical solution

differs from the exact solution because of the accumulation of diffusion error.

4.2.4. Gaussian beam

The initial data in Cartesian coordinate is

f0ðx; y; vx; vyÞ ¼
n0

ð2pv2thÞðpa2Þ
exp

�
� 1

2v2th
ðv2x þ v2yÞ

�
exp

�
� 1

2R2
ðx2 þ y2Þ

�
:

Fig. 19. Evolution of the logarithm of the density q with the NC1 interpolation operator and Nmesh ¼ 2,509,056, in the case of

Maxwell–Boltzmann beam.



Fig. 20. Evolution of the distribution function f in the phase space ðr; vrÞ (a), and the logarithm of density q (b), with the NC1 in-

terpolation operator at the time t ¼ 0x�1
0 , 0:25x�1

0 , 0:575x�1
0 , 0:85x�1

0 , Nmesh ¼ 2,509,056, in the case of the Gaussian beam. vr is in
abscissa and r in ordinate.
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Fig. 21. Evolution of the distribution function f in the phase space ðr; vrÞ (a), and the logarithm of density q (b), with the NC1 in-

terpolation operator at the time t ¼ 1:15x�1
0 , 1:9x�1

0 , 2:05x�1
0 , 2:7x�1

0 , Nmesh ¼ 2,509,056, in the case of the Gaussian beam. vr is in

abscissa and r in ordinate.
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The density n0 the radius R and the pulsation x0 are computed thanks to RMS quantities so that the

Gaussian beam is equivalent to the matched K–V beam. In fact we fix the beam radius a ¼ 1, the thermal

velocity vth ¼ 1 and the tune depression g ¼ x=x0 ¼ 1=4. As in the Semi-Gaussian beam case we deduce x0

and n0 thanks to Eq. (22). To compute R we use the following equation

R ¼ a=2:

As in the semi-Gaussian case we observe the formation of a space charge wave which starts at the edge of

the beam and propagates inside the beam to be reflected close to the axis r ¼ 0 (see Figs. 20 and 21). Besides

Figs. 20 and 21 show the appearance of a halo around the beam core which corresponds to the filamen-
tation process of the distribution f in the phase space ðr; vrÞ. The halo appears at r ¼ 2:6 and halo density

lies between 3% and 5% of the core beam density.
5. Conclusions

In this paper, we presented different semi-Lagrangian schemes for solving the Vlasov–Poisson system on

an unstructured mesh of phase space. The time discretization is obtained by a splitting scheme which leads
to the propagation of f and its gradients. Several local reconstruction techniques of high order on an

unstructured mesh were considered and compared. We have checked our numerical schemes on classical

benchmarks of plasma physics. Finally we have presented some applications in the propagation of charged

particle beams. To go on studying beam propagation we have developed a four-dimensional parallel code

ðx; y; vx; vyÞ which gives satisfying results and will be the matter of a further paper.
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