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Abstract. We investigate the regularity of weak solutions of the relativistic Vlasov—
Maxwell system by using Fourier analysis and the smoothing effect of low velocity par-
ticles. This smoothing effect has been used by several authors (see Glassey and Strauss
1986; Klainerman and Staffilani, 2002) for proving existence and uniqueness of ¢'!-regular
solutions of the Vlasov—Maxwell system. This smoothing mechanism has also been used
to study the regularity of solutions for a kinetic transport equation coupled with a wave
equation (see Bouchut, Golse and Pallard 2004). Under the same assumptions as in the
paper “Nonresonant smoothing for coupled wave + transport equations and the Vlasov—
Maxwell system”, Rev. Mat. Iberoamericana 20 (2004) 865-892, by Bouchut, Golse and
Pallard, we prove a slightly better regularity for the electromagnetic field than the one
showed in the latter paper. Namely, we prove that the electromagnetic field belongs to
(R% x R3), with s = 6/(13 + V142).
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1. Introduction

The dimensionless relativistic Vlasov-Maxwell system reads,
Ohf+v-Vof+(E+vxB)-V,f=0, (1.1)
OFE -V xB=—j 0B+VxE=0, (1.2)

V-E=p, V-B=0,
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where t € R, 2 € R?, p € R3 and v = p/+/1+ |p|? represent time, position,
momentum and velocity of particles, respectively. The distribution function of par-
ticles f = f(t,x,p) satisfies the Vlasov equation (II) with acceleration given by
the Lorentz force Fj, = E + v x B, while the electromagnetic field £ = E(t,z) and
B = B(t, z) satisfies Maxwell’s equations ([L2) and ([3). The coupling between
the Vlasov equation and Maxwell’s equations occurs through the source terms of
Maxwell’s equations, which are the charge density p = p(¢, ) and the current den-
sity j = j(t, x). These densities are defined as the first p-moments of the phase-space
density of particles f, namely,

e = [ fam)dp. it = [ oftan)dp. (1.4

The initial value problem associated to the system (LI)—(T4)) requires initial con-
ditions given by,

f(0,2,p) = fo(x,p) >0, (1.5)
E(07.’L'):E0($), B(07.’L'):Bo($), V'Eozp():/RS fodp7 V'BOZO.
(1.6)

In addition for the well-posedness of Maxwell’s equations (L.2) and (L.3)), the den-
sities of charge p and current j must satisfy a compatibility condition given by the
charge conservation law,

Bp+V-j=0. (1.7)

This continuity equation is automatically satisfied if the Vlasov equation (II)) is
satisfied since it can be recovered by integration in momentum variable of the Vlasov
equation.

Global existence and uniqueness of classical smooth solutions to this initial value
problem has been considered by many authors, but it still remains an open problem
in three dimensions. For the global well-posedness of classical solutions, standard
regularity for initial data (LX) and () is fo € €.} (R°) — set of continuously differ-
entiable functions with compact support in phase-space — and Ey, By € €?(R?).
Local existence and uniqueness of classical solutions for smooth and compactly
supported initial data has been proved in [2I]. These solutions can be extended
globally in time as long as the momentum support remains bounded. Such con-
trol of the momentum support is achieved for initial data, which are small [23], or
nearly neutral [I6], or close to spherically symmetry [36]. In [22], the global existence
and uniqueness of classical solutions has been proved under the weaker assumption
that the macroscopic kinetic energy density is bounded in time and space. Recently,
other refined existence criteria related to some integrability properties of the macro-
scopic kinetic energy density have been established in [34] [35] 29] 1] B2]. Different
approaches of the Glassey—Strauss theorem [21] were recently developed: in [2§], the
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authors used intensively Fourier or harmonic analysis , while in [J] the authors
used a “kinetic formulation of Maxwell’s equations” where Maxwell’s equations
can be replaced by a single scalar wave equation for a scalar potential depending
of course on time and position but also momentum. For a phase-space dimension
lower than six, unique global classical solutions exist for general initial data [T7-20].
Finally, we mention that many results concerning the Cauchy problem for kinetic
equations, and especially for the relativistic Vlasov—Maxwell system, are reviewed
in [15, [T1].

Until now there is no evidence that generic classical solutions in three dimen-
sions would develop singularities in a finite time. Nevertheless proving such a con-
jecture remains a challenging open problem. To obtain global-in-time solutions of
Vlasov—Maxwell systems, DiPerna and Lions [I3] have considered a weaker notion
of solutions, which were revisited in [37]. In [I3], the crucial issue of regularity and
uniqueness of such solutions was clearly mentioned and left as an open problem. To
our knowledge, the only existing result on the regularity of the DiPerna—Lions weak
solutions is due to Bouchut, Golse and Pallard [T0]. In this paper, the authors proved
that the electromagnetic field belongs to Hf (R x R*) with s = 2/11, under the
assumption that the macroscopic kinetic energy density is square summable. The
authors of [10] mentioned the natural issue of the optimality of their regularity
result. In fact, their result is not optimal, since we prove here a slightly better
regularity for the electromagnetic field. Indeed, under the same assumptions as
[10 Theorem 2], we prove that the electromagnetic field belongs to Hi, (R% x R?),
with s = 6/(13 + v/142) > 3/13 > 2/11. The regularity estimate of [I0] results
from a smoothing mechanism, called “nonresonant smoothing”, which relies on the
property that the euclidean norm of the velocity is less than unity for particle
momentum staying in a compact set. This smoothing effect is reminiscent of the
proof of existence and uniqueness of compactly supported € classical solutions for
the relativistic Vlasov-Maxwell system performed in [21],[28]. Indeed, in these works,
the boundedness of the electromagnetic field is controlled by the boundedness of
the distribution function as long as the denominators 1+ v - £/|¢| (€ is the Fourier
dual variable of the space variable ) are bounded away from zero. This holds for
momentum remaining in a compact set. The proof of the regularity result in [10]
relies on two key ingredients: the first one is that some well-chosen combinations of
the wave operator and the free-streaming operator lead to elliptic operators in time
and space variables. This elliptic regularity occurs because, under the nonresonant
smoothing condition, the intersection of characteristic manifolds of the wave and the
free-streaming operators is empty. In this framework, the characteristic manifold of
an operator is the set of value of time, space and their Fourier dual variables for
which the symbol of the corresponding operator is null. The second ingredient is the
kinetic formulation of Maxwell’s equations: the latter are equivalently replaced by
a scalar wave equation for a scalar potential depending on an extra variable, which
is the particle momentum. Our proof is also based on the nonresonant smoothing
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mechanism but it follows the Fourier approach of [28], combined together with stan-
dard regularity results for the wave equation B8]. As suggested by the seminal
works [I3] [25], [24] the regularity can be investigated by splitting momentum space
in two regions combined together with interpolation inequalities. The first region is
defined by |p| < R whereas the second one is the complementary set |p| > R, with R
chosen arbitrarily. Our improvement of the index of regularity comes from the con-
tribution |p| < R for which we obtain estimates that increase polynomially in R with
a smaller exponent than in [I0]. Using some LY controls of the macroscopic kinetic
energy density, the contribution |p| > R leads to an estimate decreasing polynomi-
ally in R. This expresses that charge and current densities, and the electromagnetic
field (through Maxwell’s equations) created by the corresponding particles in this
region are small as R — oo. Here, the polynomial exponent for the contribution
[p| > R is the same as in [I0] because we assume the same condition on the control
of the macroscopic kinetic energy density.

Finally, let us stress that regularity issue is important since it is closely related
to the uniqueness one. Unfortunately such regularity result on the electromagnetic
field is still insufficient to obtain uniqueness of weak solutions through a combina-
tion of Eulerian and Lagrangian formulations. Indeed, recently there has been an
important development of existence and uniqueness theories of Lagrangian flows
for transport equations with low regularity vector fields (see,
e.g. [ for an excellent summary). Some of them have been successfully used to
prove uniqueness of weak solutions for the Vlasov-Poisson system [3], [6], [33] and
for a non-self-consistent (without feedback of particles on electromagnetic fields)
Vlasov—Maxwell system [27].

Now, we state the main result of this paper, the following a priori regularity
result on the electromagnetic field.

Theorem 1.1. Consider initial conditions (fo, Eo, Bo) such that fo € L'NL>°(R®),
fo >0 a.e., Ey and By € H}(R3) satisfy,

V-By=0, V'EOZPOZ/RBfodP
Assume in addition that the energy bound & = E(t = 0) < 400 holds, with
&= [ do [ o VTERPIO + [ (BOF+ B0 .
Let (f,E,B) be a weak solution of the relativistic Viasov—Mazwell system (L)—
(@L4l) whose existence is proved in [13] and such that f € L°(0,00; L' N L>°(RY)),

E and B € L>®(0,00; L2(R?)), £(t) < & a.e. t >0, and || f(t)|| ooy < || foll o (o)
a.e. t >0, for p € [1,400]. If the macroscopic kinetic energy density satisfies,

/ VIF PR fdp € LT (Ry x B®),  with q €]3/2,2], (1.8)
RS
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then the electromagnetic field has the following regularity:

E,B € H (R} xR?), with
2q —3 19 7 41 10
< — " g == -1 1——+— )<=,
S 20— 3+ (g (@) 6+q< + 6q+18q2>_ 3
and q €]3/2,2].
Remark 1.2. Using averaging lemmas [25], 24] [T3] and standard results for wave
equation [30), B8], we obtain a first regularity result for the electromagnetic field

(E, B). Tracing the constant R (the radius of the compact momentum ball Br) in
the proof of averaging lemmas (see, e.g. [I5, Chap. 7]), we obtain,

1o sraqorxeey SR, 5Bl gvaqorxrey S R7, with o =7/4,  (1.9)

where we define,

< = / fdp, and <R = / ofdp.
[p|<R

IpI<R
Under condition (L8) and using [10} Lemma 4] (see also Lemma [233)), we obtain,

0” Fll p2o,myxrsy S R¥724 11578 neo.myxrey S R*729,  with ¢ €]3/2,2],
(1.10)

where we define,

PR = / fdp, and 7R = / ofdp.
[p|>R

Ip|>R
Using the interpolation inequality ||| ga/s < Hu1||1L§aHu2||OI;1/4, with u = w1 + us

(see, e.g. [5]), and estimates (I.9)-(LI0), we obtain,

2 — 3
p.j € HE (R x R®),  with s = ——

ST pam (1.11)

Let us rewrite Maxwell’s equations in terms of the scalar electrical potential ¢ and
the magnetic vector potential A. The electromagnetic field (E, B) is then given by
the usual formulas,

E=-0,A-V$, B=VxA (1.12)

Using the wave-operator definition, [0 = 0? — A,, the electromagnetic potential
(¢, A) satisfies the standard wave equations:

|:|¢ =p, A = j7
Bl = G0, Aj,_, = Ao, (1.13)
at(b\t:o = at(bOa 875A|t:O = 8tA0.
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(R3) and
loc
0o, Ot Ag € Hlloc(]R?’ ). In addition, initial conditions must satisfy the Lorentz gauge,

Bido + V - Ag = 0. (1.14)

For initial conditions, we assume the following regularity: ¢g, A9 € H{

The electromagnetic potential (¢, A) then satisfies the Lorentz gauge condition at
any time, namely,

B+ V- A=0. (1.15)

Indeed, setting g := 0y + V - A, from the charge conservation law (7)) and the
wave equations (LI3]) we obtain Og = 9;p + V - j = 0; from the Lorentz gauge
(IL13) we have g|,_, = 0; from the wave equation (II3) for ¢, the electromagnetic
field definition (I.I2)) and Maxwell-Gauss law (L3)), we obtain 9d;g|,_, = 0; hence
g =0, i.e. (LIT).

To construct, with the desired regularity, the initial conditions ¢y, Ag, O:¢o,
and 9;Ag of the wave equations ([[I3) from the initial conditions Fy and By of
Theorem [[.T] we can proceed as follows. Without loss of generality, we can choose
V- Ay = 0 in ([[LI4) and thus we obtain the initial condition d:¢y = 0. From
V-Ay =0 and V x Ay = By, where By is given by assumptions of Theorem [[1]
we can determine Ag. Indeed, V - Ay = 0 implies that there exists a vector ¥y such
that Ag = V x ¥y and for which we can choose the gauge condition V - Wy = 0.
Therefore, we have —A¥, = By, with By € H(R?), and the initial condition Ay
is then given by Ag = —V x A™' By € HZ_(R?). Since Eq. (LIZ) is also satisfied at
initial time, we can choose the initial condition 9; Ag = 0, and we obtain Ey = —V¢y.
Maxwell-Gauss law (I3) and the regularity assumption Ey € H_(R?), imply that
Py satisfies —Ag¢y = po, with pg € L _(R3). Therefore, the initial condition ¢q is
given by ¢o = —A~1py € HE (R?).

Now, using standard regularity results for the wave equation (see, e.g. [30]
Chap. 3] or [38] Chap. 4]) and the regularity of charge and current densities
(LI), we obtain ¢, A € L2NL>® NE(0,T; H:"(R?)) and dy¢, ;A € L>NL>® N

loc

€ (0,T; Hi .(R?)). These regularity properties and (II2)) imply,
E,Be L*NL*N%(0,T; H; (R?)),
with s given by (CIT).

Remark 1.3. Under the same assumptions as Theorem [II], the authors of [L0]
obtain,

49— 6
4qg +3’

E,B € Hi (R xR?), with s < and ¢ €3/2,2].

2. Proof of Theorem [I.1]

In this section, we give the proof of Theorem [Tl For this purpose, we first recall in
Sec. 2l an alternative formulation of Maxwell’s system, which appears in [21] 28].
In Sec. B2 we estimate the regularity of terms coming from initial conditions.
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In Sec. 23] we establish estimates in H' norm for the contribution from low velocity
particles, the momentum of which is such that [p| < R. In Sec. 2] we control in
L? and H'! norms the contribution from high velocity particles, the momentum of
which is such that [p| > R. Finally in Sec. [ZH, we gather all estimates of previous
sections and complete the proof to derive the regularity result of Theorem [TTI

2.1. Reformulation of Maxwell’s equations

The formulation of Maxwell’s equations in [21], 28], consists in writing wave equa-
tions for (E, B), where the source terms are rewritten by using the Vlasov equation
to deal with space-time derivatives of charge and current densities. Indeed, combin-
ing Maxwell’s equations ([L2) and (3], using Vlasov equation (L) for re-expressing
the term 9; f, and using also the definition of charge and current densities (4], we
obtain componentwise, for k € {1,2, 3},

O Ey, — ABy /3(vkvlamlf = 0o, f + vk[Er + €130 Bj|0p, f) dp,  (2.1)
N

0?By — ABy, = 6klm/ U Oz, f dp, (2.2)
RS

where €, is the antisymmetric Levi-Civita symbol. Here, we use the convention
that an index variable appearing twice in a single term implies the summation of
that term over all the values of the index. To write a single vector wave equation
as in [28], we introduce the electromagnetic field ® : Ry x R, — RS, defined by
® = (ET, BT)T. Then Maxwell’s equations (1)) and (Z2]) become,

D20y — ADy, = Jy, = /S(Mklam,f + Niim @ Op, f) dp, (2.3)
R

where M = M (v) is a 6-by-3 real matrix and N = N(v) is a 6-by-3-by-6 real tensor
of rank 3. These tensors depend only on the velocity variable v and are defined as
follows. We first introduce the antisymmetric matrix = Q(v), which is associated
to the cross product with the vector v and defined by,

0 V3 —Ug
Qu)=1|-vs 0 v |- (2.4)
vy =V 0
For any three-dimensional vector w, we have Q(v)w = w x v and QT (v)w =
—Q(v)w = v X w. We also introduce the 3-by-6 real matrix o = «(v) defined by,
a(v) = (I5,Q7 (v)), (2.5)

where I3 is the 3-by-3 identity matrix. We then obtain,
v@v— I v (v) if k<3,
M(’U) = ’ ) and Nklm(v) = e ( ) (26)
Qv) 0 if k> 3.

Using the fundamental solution of the wave operator O = 92 — A (see, e.g. [38]),
we obtain the following integral representation for the electromagnetic field ®: for
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ie{l,...,6},
@@)—/%“%meWaﬁwwiw
W\, T) = s € S 0i |§‘ 14
o) o
A——TF——LLQd) (27)

where

Bo; = Fo(®oi) = Fo(@:(0,)), 1 = Ful®1) = Fo(0:2:(0,-)), Ty = Ful o).
Here, we use the notation J= Fx(J) where F, denotes the Fourier transform with
respect to the space variable z, and is defined by,

R 1 .
g(&) = Fu(9)(§) = W/RS g(z)e " dz, and

ola) = 7 @) = [ alepe< e

R.

Since we want to obtain local estimates in space and time, we multiply (2.2) by a
test function 7 = n(t, z) € D(R% x R?) and we set ®,, := ®7. Now, we split ®,, into
three parts,

— o <R >R
®, =Y+ o 4+ o7,

where ®, &5, and & denote the contributions of the initial conditions, of the
low velocity particles and the contribution of the high velocity particles, respectively.
We define the term ®) by,

0 (4 4) — et o) ( cos s sin([¢]t) ~
#,0) = [ decon) (coseBace) + 0 Be)). @

We define the contribution @;R by,

w5t =~ [

R3

d¢ eiﬁ-zn(t,x)/o Sin(§||(+a))ji<}t(a’ f)dm (2.9)

with

Ieta - |

| ‘<R(iMij (U)fj f(gv §7p) + Nijk (U)(/I\)k’(a-v 5) z 8?]‘ f(gv §7p)) dp7

(2.10)

where we have used the Fourier transform of the right-hand side of (Z3)). The
contribution @; R arising from high velocity particles, is defined analogously. In
the sequel, we shall estimate each of the three terms ®9, &~ and & #.
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2.2. Contribution from initial conditions

Here, we give a local estimate of the term @2 in H' norm. From assumptions of
Theorem [l we have ®y € H _(R?) and ®; = 0. Then, first-order derivatives in
space and time of (ZJ]) are,

) (t,x) :/RS dé e K (t, x,€) Doy, (2.11)
O (t2) = | e K (b2, &), (2.12)
0, W0(t.0) = [ eI 1. (2.13)

The symbols K, K ;57 and Kﬁj are compactly supported in space and time. Denoting
by S™ the class of standard symbols of order m (see, e.g. {0 Sec. 1.3, Chap. VIJ),
we have K, € S°, K;; € S! and K, € S, uniformly with respect to time in a
compact set. Indeed, we have the following estimates:

Ky (t,@,8) = n(t, x) cos([§]t) < ClInll Lo (ry xr3)),
K (t,2,€) = 0pn(t, @) cos([&]t) — []n(t, ) sin([€]t) < ClInllwro @y xra)IE],
K (82, €) = Onyn(t, @) cos([€]t) — t&;n(t, ) sin([€]t) < C(T, [[nllwoe ey xrs)) €]

Therefore, from standard results on pseudo-differential operators (see, e.g. [40]
Proposition 5, Sec. 5.2, Chap. VI]) and the regularity assumption &5 € H{ (R?),
terms (ZIT)—(ZI3) are bounded in L?(R* x R®) and we obtain,

19°]| 111

loc

(R xR3) < C(TM)[®oll 1 (r2)- (2.14)

2.3. Contribution from low velocity particles

In this section, we give a local estimate of the term ®<F in H' norm. This result
is summarized in Proposition 2] the proof of which is divided in several technical
steps. As in [28], the first step (see Sec. ZZ3.0)) consists in rewriting the term ®<%
to take benefit of the nonresonant smoothing effect, which leads to a gain of one
order of derivative or regularity in space variables. In a second step, we establish
the technical Lemma that we use with standard regularity results on pseudo-
differential and Fourier integral operators (see, e.g. [40]) to estimate, through several
sections, each piece of ®<% in H' norm. Finally, gathering all these estimates we
obtain

Proposition 2.1. There ewists a constant C, depending on | @l r2m®s)y and
| foll L2z (rey, such that,

19<5)| pr2

loc

(R xR3) < CRY/3, (2.15)
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2.3.1. The well-suited form of ®<F

Let us first start by rewriting the term ®<%. Using Euler formula for the sinus

function, from (2:9)—(2:I0), we obtain,
R _ 1+ —
‘I);‘ =1, +1;,

where

I —Ilf—i—fi—:F / dU/RSdf | |<deel[i|§|(t o)+a-g] n(t, ) M;; (v)
P

/ da/ df/ dpel[ilil(t o)+a-€] n(t, )
R3 Ip|<R

X ‘§|Nmk( 0)®y (o, f)*apjf(a & p).

As it was done in [28] for terms I, we take benefit of the nonresonant smoothing
mechanism, that consists in obtaining an additional one order of regularity (or space
derivative) represented by the factor 1/|¢| when integrating by parts in time terms
I, This smoothness effect holds provided that |1 + v - £/[¢[|~" < 400, which is
the case for momentum p staying in a compact set. Indeed, using an integration by

&

mf(a,f,p)

parts in time, we have,

/ t doeTII7 (g€, p) = 4= ([e“ﬁ”'ﬁ'f] o / t daejFi”'ﬁ'agf(mf,P)) (2.16)
0 =0 0

iy
Using the Vlasov equation (LI)) written in Fourier variable &, i.e.,
aaf+iv-§f+aijci>j?apif:o7 (2.17)

to replace the term 8, f in (ZI6), we obtain,

il¢lo 1 iolel 717 ' iolel & ;
/OdaeﬂF €l f :|:|£| e ([eﬂF \E\f]gzo_/o doe™ Eaij‘l)jzapif)»

where we set,

v-€ £

DY =14+ —2=1+v -w, withw=w():=>, and
€] €]
v = v(p) = = (2.18)
V1+IpP
Substituting (ZI6) in terms I, we obtain,

i . f 1 ) qo=t
I+ = __/ d dp eEIEIF €y i [emm ]
i 92 s g pl<R p 77( ) ( )|£|2 D+ f o0

-t
+l/ da/ de dp el IEI =) +a-p )
2 Jo rs  Jipl<r

X % (M (v )|£§| Dli ae(v) + Nilk(v)) By (o, §)Z<8plf(g,§,p). (2.19)
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Integrating by parts in momentum variable p the second integral of the right-hand
side of (ZI9), we obtain the convenient form of terms I* given by,
IF=T1t v+ 1+ 1t
i I 11 p
=—5 [ d§ dp e n(t, o) =g Mij (v)w; f(t, €, p)
R3 Ip|<R ‘§| D

i < . 11 .
+—/ 3 dp I Ely (4 ) — —— M (v)w; fo(€,p)
2Jrs " Jpi<r €| D

. t
+i/ dg/ d¢ dpei[i‘f‘(t_")”ﬂn(t,x)
200 Jre " Jpl=r

X é—‘ (%Mij(v)wjazk(v) + Nilk(v)) v (p)®y (o, €) ; F(o,€,p)

.t
_l/ da/ de dp €= +a-p )
2Jo  Jrs " Jpi<r

1 1 ~ p
X Eapl (ﬁMij(U)wjalk(U) + Nilk(”)) P (0,€) >§ f(o,€,p),
where v(p) := p/|p| is the normal unit vector to the momentum sphere of radius
|p|. Before estimating terms Iﬁ7 we establish

Lemma 2.2. Let k be a pure numerical constant and w be any three-dimensional
unit vector. Then the following estimates hold,

vl v, [Nije| < 1, |Mi;] < 2, (2.20)
V], [Vpaisl, [V Nijil, [V Mij| < k/3/1+ pl2, (2.21)
0<(2A+[p*) ' <D* <2, (2.22)
lw—(v-wh|, |vxw|l <V2DE, (2.23)
dp dp dp
/|p|§R D= = i /lpl—R D= = ol /pSR (V1+[p[*D*)? < R
(2.24)

Proof. From definitions (ZZ)-(Z6) and (ZIF)), estimates ([Z20)-Z2ZI) and the
upper bound of (Z:22)) are straightforward. For the lower bound of ([2:22]), we have,

n Ip| V1+1p|? = [p|
DE¥>1—[v[>1~ >
V1+p? V14 p?
1 1
> > -
VI+pP(V/1+pP+pl) — 201+ p[*)
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Let us show estimates (2:23)). Using definitions (2:18), we first have,
1—2(v-w)? + (v-w)? o)/

(
<(1-(v-w)?)Y? =VD+D- < V2D+, (2.25)
(

lv+w| = (o> +20 - w+1)Y? < V2D,

v xw| = |(v+w)xw <|v+wl <V2D*E
To end the proof of ([223), we set w = —@ in |w — (v - w)v|, which leads to
|© — (v - @)v| and we apply the series of inequalities (2:25]). Let us prove the first

estimate of ([2:24)). We only deal with the case D := DT, since the case D~ follows
the same proof. Using (Z.18)), we obtain,

S VI PP+ PP —w-p)
L+ |p]? = (w-p)?

D (2.26)

We set the angle between the vector p and w to 6 + 7. Then (2:26) becomes,

_ V14 pP(/1+pP +|plcost)

D—l
1+ |p|?sin @

For 6 small enough, we claim that we have,

D—l <4 1+|p‘2

—_—s. 2.2
RN 220

Indeed, for 6 small enough (|8] < 7/6), we have #%/2 < sin®# < #2. It follows that
1/(1+ |p|?6%) < 1/(1 + |p|?sin®6) < 1/(1 + |p|?6?/2) and we obtain,

2 2 2
1 1+ p| < 1+ |p| < 1+ |p| ’
1+ [p|262/2 2 + |p|?62 1+ [p|262

which proves [ZZ7). Let 0 < 0y < 1, and assume |0| > 0y. Using ([Z27)), we obtain,

2 2
p-lcg Lt o, 1+pP 4
T L4 pP6? T 1+ |plP65 T 63

(2.28)

Inequality [228) holds because the function RT 3 ¢ +— (1 +1¢)/(1+ 6t) € RT is
nonincreasing if # > 1 (with a maximum value 1) and is nondecreasing if ¢ < 1 (with
a maximum value 1/60). Using Z28) with 6y small enough, estimate (Z22), and
spherical coordinates where the zenith direction is taken in the opposite direction
of w, we obtain,

/ dp _ dp dp
wl<r D 7 Jpi<rjo=00 D Jipi<r,joi<o, D
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4
< 0—2/ dp+4R2/ dp
0 J|p|<R,|0|>00 [p|<R,|0|1<00

167R® °n fo
322 —|—4R2/ dgp/ sm@d@/ Ip|2d|p|

| /\

16T R3 87r
< 362 R5(1 —costp)
167 R3 47r 167 (R
< AT 55 107 [ L7 5
< 398 3R00 3 (02+R00)
< kR

The last inequality is obtained by taking the best 6y, which is given by 6y = 1/ VR.
We observe that 6y is very small as R is large. For the second estimate of (224]),

we obtain,
/ dp / dp n dp
w=r D = Jpi=rioi>00 D Jpi=rjoj<o, D

4

S 52
0 J|p|<R,[0]>00

167 R?
92

167 R?
92

167 R?
03

< kR3.

dp + 4R? / dp
|p|=R.|0]<60

IN

27 90
+ 4R? / do [ R*sinfdf
0 0

| /\

+ 87R*(1 — cos )

IN

+ 87 R*03 < 167 (?—2 + R402)

The last inequality is obtained by taking the best 6y, which is also given by 6y =
1/v/R. Finally, for last estimate of (2224, we obtain,

/ dp </ dp +/ dp
pl<r (V1 +[pI2D)? — Jipi<r,jo1>60 (V14 [p[2D)?  Jipi<r.joi<6, (/1 + [p[*D)?

16 d
< o7 7]92 —|—4R2/ dp
0 Jipi<r.j61>6, 1+ [P Ip|<R,0] <00

A

R
< 64w (04

+R500>
S K}Rll/g-

The last inequality is obtained by taking the best g, which is given by 6y = R=2/3.
O
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2.3.2. A priori estimate for Lﬁ

We start by estimating ||I£||L2(O,T;H1(R3)) and next HatIiEHL2(0,T;L2(R3))~ Setting,

pos(tyo,z,€) = €|t — o) + -, (2.20)
and,
0.6 = [ O (L My (0)wsons(v) = Naw(v) ) Bx(0,€) (0,6, p)
9i(0, <R p@pl DE i Ok ilk k0o, : ySsP)s
(2.30)
we have,
1 /[t el (t,0,2,€)
It mey < = | d de———— Gi(o, . .
L A e R I

We observe that phases ¢4 are real-valued smooth functions in their arguments
(x,€), homogeneous of degree 1 in £, and such that det(V, ¢p+) = 1 # 0. Moreover,
the symbol 1/[¢| of the Fourier integral operator in (Z31]) belongs to S~! and is
compactly supported in space variables. Using standard results on Fourier integral
operators (see, e.g. [40, Secs. 3 & 6.17, Chap. IX]), the Plancherel theorem, and the
Cauchy—Schwarz inequality for p-integration in (Z30), we obtain from (Z3T),

t t
IE@I2 sy < C(T,m) / dor|lgi(0)]12 sy < C(T, ) / 4o 4(0) |2 e,
t
< O(T,n) / 40|y () |2 e s / dp (10, Nk

0 EER3 J|p|<R

+ | M0 0p, (1/DF)auy| + |9y, Mijwjour/ D*|

+ | Mijw;0,, am ) DE|)?. (2.32)

We observe that 0p,ay, =0, for all k € {1,...,6}, and

B y . 1 1
Mor= A, (Mo (/D)0 = % s A, (2.33)
with
A= (w ~ w)v>7 and A= (w e w)v) (2.34)
VX w WX

Using Lemma [ZZ] from (Z32)-(Z34)), we obtain,

1T 122 0.7 o)) < CTMIRNZ2(0 7212 o) | |2 (0,73 (o) B

dp
X sup/ _—
¢er3 Jjp|<r (/1 + [p[2D*)?

< C(T,n, || ®ol| £2(rs)» HfO||L°°(R6))R20/3~ (2.35)
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Let us now deal with terms 9;7;;. Differentiating terms I;; with respect to time, we
obtain,

i i . .
0T = T = = [ o [ dg oo 0t )/ 6] £ in(t. )i (0.

[ e

- = —n(t,x)g;(t,&).

2 Jrs €] '

Terms I fli define Fourier integral operators with symbols in S°, while terms I zitm‘
define pseudo-differential operators with symbols in S~!. Following the same anal-
ysis that we have done for the estimate of HIEHLQ(O,T;HI(RLS)), and using standard
results on Fourier integral operators (see, e.g. [0 Sec. 3, Chap. IX]) and pseudo-
differential operators (see, e.g. [40}, Proposition 5, Sec.5.2, Chap. VI]) we then obtain,

105 L2 (0,7 p2(rey) < C(Tom, | @ollL2wsy, || foll Lo ey RM2.
This estimate and (Z35) lead to,

1735 | 221 o,y <) < C(Tm, [|®ol| L2cray, || foll poo (rey) RM/2. (2.36)

2.3.3. A priori estimate for Iy

Here, we give an estimate for HI;EHLQ(O,T;HI(R;S)) and for Hatl?:,EHLQ(O,T;LQ(R3))- Using
(Z29) and defining,

0,6 = [ o gz Mi(0haron) £ M) )l €)1 o1 €.0),

p|=R
(2.37)

we have,

elpx(t0.2,€) A
/‘df———————nﬁwﬂgdmfﬂ‘ (239)
R3 |§| H'(R3)

Let S%,/ be the two-dimensional momentum sphere, defined by the equation |p| = R.
Using standard results on Fourier integral operators, the Plancherel theorem, and
using the Cauchy-Schwarz inequality for p-integration on the sphere S% in ([2.37),
we obtain from (23],

1 t
IOl < 5 [ do
0

t t
w@m%wasmmmﬁdﬂmwﬁmasmmmédﬂwwﬁm%
t
ngmAdﬂ%ﬂM@mw@

X sup / dp(|Nille| + |Mijwjoqkl/l/DiD2. (2.39)
§ER3 JIp|=R
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Using Lemma 22 from (2:39), we obtain,
1155 | 20,0 (vey) < C(T M@ p2(0, 75023 L f | oo 0,731 (RO ) B
1/2
X sup / dp (1+1/v D*)?
§ER3 \J|p|=R
< C(T,n, [|®ol| 2 (rs), ||fOHL°°(R5))R5/2~ (2.40)

In order to deal with terms 875]3%, we differentiate I;E with respect to time, and we
obtain,

375-732 = I3iu + I3i2¢

i [t : . X
:+§/0 da/R3 d¢ . Rdpewﬂfﬁf@)(am(ux)/|g|im(t,x))gi(a,g)
o=

i e .
by [de [ dpenit ).
e Jipl=r

Terms I3i1i define Fourier integral operators with symbols in S°, while terms I;;i
define pseudo-differential operators with symbols in S~!. Therefore, following the
same analysis that we have done for the estimate of HI§§”L2(O,T;H1(R3))7 we obtain,

1015 || 20,7522 3)) < C(Tym, | @oll L2wsy, | foll Lo (me)) R,
This estimate and (2.40) lead to,

155 | a1 (0,11 xm2) < C(T,m, |0l 2(Re), || fol | Los ey ) R (2.41)

2.3.4. A priori estimate for I3

We continue by giving an estimate for HI;;HLQ(O,T;HI(RLS)) and \\875[;;||L2(07T;L2(R3)).
Using (229) and defining,

~ 1 R
35O = [ dvpeMywsfalé.), (2.42)
[p|<R
we have,
1 el (1,0,2,8) .
I$<t>H1<Rs><—H / dsinw)gi(s)H .
2 R3 |f| H(R3)

Using standard results on Fourier integral operators, the Plancherel theorem, the
Cauchy—Schwarz inequality for p-integration in (Z42), and Lemma 2] we obtain,

Hfzﬁ;(t)H%ﬂ(RS) < CllgillZ2msy < CGill72ms)

< C)foll2(zs) sup / dp (Mijw;/ D¥)?
EeR? J|p|<R
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dp
iy s [
Cll foll 7z (gey S0 Jyper DE

< C)llfoll72(asy R (2.43)
Differentiating terms I;; with respect to time, we obtain,

i

Ouly; = 5 /Rs dg =0T (1, 2) /€] £ i (t, )3 (€),

2

which are Fourier integral operators with symbols in S°. Following the same analysis
that we have done for the estimate of (Z43]), we finally obtain,

115 Il m (0,71 xr2) < C(Ton, || foll z2(rey) B2 (2.44)

2.3.5. A priori estimate for I
We finish by giving an estimate for HI]:_E||L2(0’T;H1(R3)) and ||8t11ii||L2(o,T;L2(R3))-
Using ([229) and defining,
. 1 5
56O = [ dppr M) f(t.6), (2.45)
wi<r D

we have,
IOl < 5| [ o)
H!(R3)
Using standard results on pseudo—dlfferentlal operators, the Plancherel theorem, the
Cauchy—Schwarz inequality for p-integration in (224H), and Lemma 222, we obtain,

55O sy < CODNlgi()1Z2s) < CODNGi (8172 s

COIF B2 o) sup / dp (Mijuw;/ D*)?
EeR3 J|p|<R

dp
: w [
C)ll foll72mey s 3P ) jen DE

C(W)Hfo||2L2(R5)R4'
We then obtain,
1150 2070 )y < C(Tom, || foll L2me)) R (2.46)

We now give an estimate for ||8tlﬁ||L2(0’T;L2(R3)). Differentiating terms I with
respect to time, we obtain,

at[ﬁ = Ililz + 1121
1
&l D=

i

— __/ df dp em 58,577(15 J)) M ( )wj,f(tagap)
R3 [pI<R

1 iz-¢ 11 o F
2/R3 dé- ‘p‘<de6 (t x)‘ﬂ D:EM ( )wjatf(t7§7p)'
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Terms I, can be estimated as ([240). Using Vlasov equation (2.17) to re-express
the term O f in Ilj;“ and using integration by parts in momentum p, terms Ilim are
rewritten as,

+ _ 7+ + +
‘[121' - Il21i + Il22i + Il23i

_ 1 iz L N f
=5 [ [ e g M)y €F D)
42 / de [ dpemn(t, x) e — My (v)wjoun (0) (p) Bk (£.€) * (£, )
2 Jgs Ip|=R ¢ D= £

i

1 i 19 (L 3 )
2 /R3 “ |p|ngpe (h>) &l Opr \ D* Mij(v)e;
X g (V) Dy (¢, €) ; Ft,€p).

Terms I1i21¢ define pseudo-differential operators in space variable x, with symbols
in S°. Following the same kind of analysis that we have done for || T3 | L2(0, 1311 (R3)),
we obtain,

1/2
1550 |22 0,122 Ry < CIFE) | L2re) (Sup/ dp (Mijwj/Di)2>
§ER? JIp|<R
< C(T,m, || foll L2re)) R (2.47)

Terms I3, define pseudo-differential operators in space variable z, with symbols in
S~ Following the same kind of analysis that we have done for HI;E | 220,131 (R3)))
we obtain,

11350: | 220,712 (m2y) < C(T )| @]l pos 0,7 p2(r2 ) | 1] Low (0,7 L= (rO)) R
1/2
X (sup/ dp(Mijwjalkyl/Di)2>
SER3 Jp|=R

< O(T,n, |®ol| L2 (rs) s HfO||L°°(R6))R5/2- (2.48)

Terms I, define pseudo-differential operators in space variable z, with symbols in
S~1. Following the same kind of analysis that we have done for HIfE 220,131 (R3))
we obtain,

11553l 22075222y < C(T, )| @kl oo 0,712 ro)) L f || £ow (0,7 1o (o)) R 2

1/2
X (sup / dp (Op, (Mijwj/Di)alkV)
[p|<R

£ERS

< O(T,n, |®ol| £2(rs) s HfO||L°°(R6))R10/3- (2.49)
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Gathering estimates (2:46)—(2:49), we finally obtain,

I IE | oy xre) < C(Tym, || foll 2 ey R/, (2.50)

2.3.6. Completion of the proof of Proposition 2]
Gathering estimates (Z306), 241), (Z44), (Zh0), we obtain estimate (ZIH), which

completes the proof of Proposition 211

2.4. Contribution from high velocity particles

In this section, we give an estimate for the contribution ‘I); R produced by high
velocity particles. The term (D; R is estimated for one part in H' norm and for a
second part in L? norm. Indeed, we split (I)? R in two parts defined by,

t . o .
o Mt ) = — / do dfe”'ﬁwf’]””'fﬁlﬂt,a,x,fx e {1,2},
0 R3

where we set,
TRt 0,2,€) = /| A N @) Bu(0,€) 13y, F0.6.0)
p|>R

and,

‘ZEZR(L U7x7§) = i/ dp??(tvx)Mij(v)fjf(U»§7p)~
lp|>R

Obviously, we have Jn>iR = Jn>1}f+ Jn>21i%' Therefore, CIJ;ZRg for £€{1,2}, is equiva-

lently the solution of the vector wave equation,

>R _ >R
Lo = J5

o> = =0, (2.51)

77£|t:0

o> = =0.

nl]t=0

If we assume that J77>1R € L?(0,T; L*(R?)), then from [30, Theorem 8.1, Sec. 8,
Chap. 3] the problem (ZII) with ¢ = 1 has a unique weak solution such
that &7 € L?(0,T; H(R®)) N L>(0,T; HY(R®)) N (0, T; H'(R?)), 0,9, €
L2(0,T; L?(R3)) N L>°(0,T; L*(R3)) N €(0,T; L*(R?)), and, (see estimate (8.15) in
B0 Sec. 8, Chap. 3])

T t
L e A R e Ol e 2:52)

for all finite time 7. Moreover, if we assume that J3% € L*(0,T; H~'(R?)), then
from [30, Theorems 9.3 and 9.4, Sec. 9, Chap. 3] the problem [ZXZI) with £ = 2
has a unique weak solution such that ®;* € L*(0,T; L*(R%)) N L>(0,T; L*(R?)) N
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©(0,T; L2(R?)), 0,7/ € L2(0,T; H-'(R%)) N L=(0,T; H~1(R®)) N % (0, T; H~(R?)),

and, (see estimate (9.32) in [30} Sec. 9, Chap. 3])

(L HL2 [0,7]xR3) ~ /dt/ ds|| 7, )H§{*1(R3)7 (2.53)

for all finite time T'. To estimate ||.J,} B 120,712 (r3y) and ||J7 o) P\ L2 0,1 (m3)), We
need to know how densities of charge and current created by hlgh velocity particles
(i.e. for |p| > R) decrease with R in L? norm. This result is given by the following
Lemma 3, which is due to the authors of [10] (see Lemma 4). Since the proof of
this lemma is quite elementary and short, for the sake of completeness we reproduce
it here below.

Lemma 2.3 ([10]). Let f(t,x,p) be a measurable function on Ry x R3 xR3. Then,
for any o € [0,1], one has,

/ | fldp
[p|>R
o<+3

S 3(1 a) ||f||L°° (R4 xR3xR3)

L2(]0,T]xR3)

] [ Ve

L% ((0.7]xR?)

Proof. For all R > 0, one has,

s [ s [ s

A7 R3 1 o
< ||f||L°°(R+><]R3><]R3) + 5o / Ip|*| fldp.
3 R Jgs

Taking R such that,

1
RO e o) = g | 19171710
R.

this inequality becomes,

3
a+3
[ 1510 < 9L o ([ bl71100)
R3

Applying this last estimate to the function 1> gf, we obtain,

3
a+3
[ \fiap < OIS x| [ ISl
R Ip|>R -
[p[> L2([0,T] xR3) L&+3 ([0, T] xR3)
_3
a+3
e 1 sy 177
p|>R L3 ([0,T]xR3)

L3 ([0,T] xR?) ’

\ [ ViR

which completes the proof. O

< R3<1 o 1715 S, oy
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2.4.1. A priori estimate for J"* and @
Here, we give an estimate of J77>1R in L? norm in space and time variables. Using
([2352)), this estimate induces a bound for <I>;1R in H' norm. Using an integration by
parts in momentum, the term Jn>1R is rewritten as,
JZR = J>R 4 70 = 3R 4 liminf g F
nli nlle n12i nll R +o00 gm

_ / dpi(t, 7)Nige (0)v; (0) 81 (0, €)  (0,€, )
Ip|=R §

+ liminf dpn(t,x)Nijk(v)Vj(v)EI\)k(U, ) f(@fvp)-

k
R=+o0 Jip|=R £

We first show that j,,lgi = 0, a.e. on R7 x R3. Using Fourier transform, and the
relation N;j,v;®r = v;E - v, we obtain,

g;R(Lx) = n(t»x)/ deijk(U)Vj (v)fIJk(a,x)f(a7x7p)
lp|=R

— (t,) / ) v o) (2.54)

Using (2:54)), the lower semi-continuity of the norm, the Hausdorff-Young inequality
(see, e.g. [0l Sec. 7.12%, Chap. XII]), and the Cauchy—Schwarz inequality, we obtain,

= . . >R
| Tn12ill 220, 75000 (R3)) < gﬂlfg Hgm- HL2(O,T;L1(R3))

< liminf 77/ dp E -vu; f
lp|=R

R—4

L2(0,T;L* (R?))

./ dp f
[p|=R
Let us assume

/)@\ﬂ+uwfeLﬁququm Vae0,1]. (2.55)
R3

Since || fl ooy xr3 x®3) < || follLoo(r3xr3) < 400, using LemmaZ3 with assumption
(25H), we obtain, for all § > 0,
5(

¢
(R—5§/2)" 57"
> 5

m inf

< C Bl L2(0,7;02®3)) gﬁm

L2(0,T;L2(R?))

/) dp f
[p|>R—4/2 L2(0,T;L2(R3))
/ dr/ dp f
R—6/2 [p|=r L2(0,T;L2%(R3))

| RS2
—/ dr/ dp f
0 Jr-s/2  Jipl=r

. (2.56)
L2(0,T5L2 (B%))
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where the constant C depends on |folpeemsxrs) and || [zo /14 [p|? X
fapll, s,

L&+ ([0,T]xR3)’

Since fo € LP for 1 < p < o0, using Young inequality we easily obtain the
integrability property, h(t,z,r) := flpl—r fdp e LY (R% xR3xRy), for 1 < p < oc.
From the differentiation theorem of Lebesgue-Besicovitch (see, e.g. [39, Corollary 1,
Sec. 1.1, Chap. I]) and a particular property of approximation of identity by char-
acteristic functions (see, e.g. [39] Theorem 2 and its Corollary, Sec. 2.2, Chap. III]),
this integrability property implies,

1 [E+6/2
- drh(t,z,r) — h(t,z,R) a.e.on R} x R® x Ry, (2.57)
0 Jr=5/2

and in L>(0,T; LP(R?® x R,)), for 1 < p < 0o and VT < oo, as § tends to zero.
From (256)-@257), for a.e. R € Ry, for all & > 0, there exists 6. z such for all
c

§ < ' < 6. g we have,
> / dp f
(R— 5/2) = 5 [pI=R
/ dp f
[p|=R
/ dp f
[p|=R

C
(R—68/2)"5%"5

L2(0,T;L3(R%))

1 R+4'/2
y/ dr/ dp f
R—4"/2 [pl=r

L2(0,T;L2(R3)) L2(0,T;L%(R3))

>

— &,
L2(0,T;L%(R3))

that is,

+e> > 0. (2.58)

L2(0,T;L2(R%))

/|P|—R ]

We now take § = R~3(1-)/(2(G+)) in (258) and let R tend to infinity while & tends
accordingly to zero. We then obtain,

/|P|_R ]

Therefore, we have Hej\leiHL@(O’T;Loo(RS)) =0, and Jy12; = 0, a.e. on R x R®. We
now deal with the term Jn>1R. Using Fourier transform, the Plancherel theorem, the
relation Njjrv;®r = v;F/-v and the Cauchy-Schwarz inequality, we obtain, for any
p € L*(R?),

=0.
L2(0,T;L%(R3))

lim inf
R— 400

~

(Jn1i(0), ©)p2, 2 = (Jy11i(0), @) 12,12

N R R RO BE RGP ER R



J. Hyper. Differential Equations 2018.15:693-719. Downloaded from www.worldscientific.com
by UNIVERSITY OF NEW ENGLAND on 01/17/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

Regularity of weak solutions for the relativistic Viasov—Mazwell system 715

—n(t,x) /RS dy /|p|—R dp E(o,y) - v(p)vi(p) f(o,y, p)e(y)

IA

C(n)HE(U)HL2(R3)||80||L2(R3)

/| b )ls

CIE@) L2 @2y ol Lz@e) | £l oo (0,710 (RoY) R

X

Lo (0,T5L°° (RE))

Therefore, we obtain HJnlliHLz(O,T;L2(R3)) S C(’m T, ||E0||L2(R3)7 Hf0||Loo(R6))R27 and
from (2.52]) we finally have,

H(P HHl [0 T}XRB) (an7 HEOHL2(R3)7 HfOHLOO(Rﬁ))RQ' (259)

2.4.2. A priori estimate for Jn>2R and @;QR

Here, we give an estimate of J77>2R in H~! norm in space variables. Using (253]), this
estimate induces a bound for @' in L? norm. Using Fourier transform, density
of the Schwartz space S(R3) in H*(R?), the Plancherel theorem and the Cauchy—
Schwarz inequality, we obtain, for any ¢ € H'(R3),

(Jn2i (@), ) -1 1 = <fn2i(0),s5>s',s

i / i dpn(t, 2) My (0)¢; f (0, €, p)B(€)
R3 [p|>R

= t x /Rg dy/p|>deMzJ f( )8]@(1/)

/ dp f(o)
[p|>R L2(R3)

Using this inequality, estimate (2.53) and Lemma [2.3] with the assumption (2.55]),
we finally obtain,

|27

< Ol (rsy

HLz([o T|xR3)
Cn,T), ., =5

= 3(1 a) ||f0HL°°(R+><R3><R3

[ VTR

L3 ([0,T] xR3)

3(a—1
R (5+3).
_6 _
L3 ([0,T]xR3)

(2.60)

< C <n7T’ HfOHL‘X’(RG)a

| VTP

2.5. Completion of the proof of Theorem [I1]

In this section, we complete the proof of Theorem [Tl Setting ¢ = 6/(« + 3),
with a € [0,1], assumption (Z5H) is then equivalent to assumption (IJ) with
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q €1[3/2,2]. Now, we split the electromagnetic field ® in two parts ®; and 5 where
®) = 0 + &<F 4 o7 and &, = &5 7. Using estimates (2Z.14), (2.15) and 2.59),
there exists a constant C, which depends on || Egl|2(rs) and || fol| L2nzee sy, such
that [[®1]l; (rs xre) < C1RY/3. In addition, using estimate (Z:60), there exists
a constant Co, which depends on || fo|| oo (rs) and || [\/1 4 [p[?fdp||Ler, xr3), With
q €]3/2,2], such that H<I>2||L1206(R1X]R3) < CyR37%4. Using an interpolation theorem
between L? and H' (see, e.g. [5]) we obtain,

svl—s pilst(3— s
D] (R% xR3) SC’IC'Q1 REstB—29(1 ),

loc

which is uniformly bounded with respect to R if s < (2¢ — 3)/(2¢ + 1/3). Let us
remark that this condition on s is slightly better than the same condition obtained
in Remarks[[:2]land[[-3] We can still improve slightly this regularity by a boostraping
argument. Indeed, using ® € H; (R*% x R?), with s < (2¢ — 3)/(2¢ + 1/3), we can
improve the estimate of terms HI;E | 2 (0,7, 17 (r3))- Revisiting estimates of Sec. 2.3.2]
and using Holder inequality, we obtain,
15 ()7 sy < C(T, U)RH/3||‘I’fﬂ\p\<R||2L2(o,T;L2(R3))

< C(T,n)R™M 337 |13 20 10 1 s

with 1/ 4+ 1/0’ = 1. Therefore, we obtain,

2
)||f||L2"'([0,T]><R3)7

LG 2o zey)s 1018 | L2071 (m2)

< C(T,, 1|9]] 2o (0,778 1 foll 20 sy ) RE S 7).
We now have to determine the value of o such that ||®||z20(j0,7)xrs) < +00. We
know that ® € H (R% x R?), with s = (2¢ — 3)/(2¢ — 3 + £o(q)), Lo(q) = 10/3,

loc

and 3/2 < ¢ < 2. By Sobolev embeddings, we have ® € L (R% x R?), with

loc
r=4/[2—(2¢—3)/(2q — 3+ lo(g))]. Thus, ® € L7 (R x R?), with ¢ = r/2, and
f e L™®(Ry; L2 (RY)), with o’ = (2¢ — 3+ £o(q))/(2¢ — 3). The new dependence
in R of the constant C(R) is such that,

- . 31q — 93/2+ 20£o(q)
C(R) = (RER%)Y? = R4 th ¢, (q) =
(R) = (R7R¥) - Wit Gle) = =5 e )

Interpolation of spaces then leads to the constraint sf1(q) + (3 —2¢)(1 —s) < 0 and
by recurrence we obtain,

. 29— 3
® e HE (RY xR?), ths= ————
el I XDt = 5 S @

where £+ (q) is a fixed point of the map,
31q —93/2 + 20¢
l l) =
—0 = 5 st o0
A straightforward study of the map (2.61]), which uses standard results on quadratic
polynomials, shows that there exist two fixed points ¢Z (q) defined by,

19 / 7 41

(2.61)
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We observe that 3 < £ (2) < 10/3, ££,(3/2) = 10/3, /,(2) < 0 and ¢ (3/2) = 0.
Therefore, we obtain,
2q—3
29 — 3+ t&(q)’
which completes the proof of Theorem [Tl Of course, the best regularity result for

the electromagnetic field, which has been announced in the abstract, is obtained by
taking ¢ = 2, namely s = 6/(13 + /142).

® € Hi (R xR?), withs=
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