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In this paper we investigate the regularity in time of the Lagrangian flow associated
with the electron magnetohydrodynamics (e-MHD) equations on a bounded domain
with a smooth (ultradifferentiable) boundary. This model is widely used in controlled
magnetic fusion, in space and astrophysics plasmas and also in physics of solids.
We show that initial data with limited smoothness in Sobolev spaces induce a
Lagrangian flow-map X and a Lagrangian magnetic vector potential A (viz. the
magnetic vector potential evaluated at the Lagrangian spatial point X), which
are ultradifferentiable in time, with the two particular cases of real analytic and
Gevrey time regularity. It turns out that the Lagrangian canonical momentum
P, the Lagrangian magnetic field B, and the Lagrangian electric field E inherit
this Lagrangian regularity property. Among others, the proof makes crucial use
of a novel Lagrangian formulation of the e-MHD in terms of the Lagrangian fields
(X, A, P,B,E). A by-product of this Lagrangian and constructive proof is the design
of arbitrary high-order semi-Lagrangian schemes to solve the e-MHD equations on
a bounded domain.
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1. Introduction

The electron magnetohydrodynamics (e-MHD) equations is a fundamental tool of plasma physics for

solving problems of pulsed plasmas and controlled magnetic fusion, of space and astrophysics plasmas, and

also of physics of solids. The e-MHD equations describe the (hydro-)dynamics of electrons in a plasma where

small length and short time scales phenomena are important, and where strong electromagnetic fields and

high currents play a crucial role. Based on the quasineutrality assumption, this model retains the Hall effect

while the ion motion is neglected. A lot of theoretical and numerical developments with many applications

(such as nonlinear skin effects, electron vortices, solitons, electromagnetic instabilities, plasma turbulence,
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magnetic reconnection, ...) concerning the e-MHD equations can be found in the plasma physics literature,
and for examples we refer the reader to [86,105,48,27,61,94,69,19,20,49,15,75,6,77,31,62,118,63,42,64] and
references therein. For a review of the physics of the e-MHD, the reader can consult references [69,49].

Let Q be a bounded and simply-connected domain of R? containing the plasma of electrons. The boundary
0f) is smooth and we will come back later on the precise definition of its regularity. Let v be the outward
pointing unit normal to the boundary 0f2. Let p and u be respectively the density and the velocity vector
of electrons in a plasma. The vectors b and e denote respectively the self-consistent magnetic and electric
field. The three-dimensional vectors (u,b,e) are functions of a three-dimension position x €  and of the
time ¢ > 0. The so-called e-MHD equations on a bounded domain €2 read,

ou+u-Vut+et+uxb=0, z€Q, te 1

2
3
4

—-Vxb=u, z€Q, te
0b+Vxe=0, z€Q, te€
V-b=0, p=1, 2z€Q, te€

5
6

u-v=0, b-v=0, exv=0, €I, te

(1)
(2)
3)
(4)
(5)
(6)

(u,b,€),_, = (uo0,b0,€0), =€

The boundary conditions (5) mean that the plasma of electrons extends out to an impermeable and perfectly
conducting rigid wall [39].

Using the modulated energy method designed in [17] for proving the quasineutral limit of the Vlasov—
Poisson system to the incompressible Euler equations, the authors of [18] show that the e-MHD equations
in the whole space can be obtained as the quasineutral limit of the Vlasov-Maxwell equations. Using a
weighted energy method combined with the curl-div decomposition of the gradient of the velocity vector
field to obtain some dissipative structures in the equations, the authors of [91] (see also [92]) established
uniform a priori estimates to show the convergence of the compressible Euler—-Maxwell system in a periodic
box to the e-MHD equations in the quasineutral regime.

Roughly speaking, our result states that in the spatial non-too-smooth regime the time smoothness of
the Lagrangian flow of the e-MHD equations (1)-(6), is only limited by the smoothness of the boundary 9
(see Theorem 2). To described more precisely but still briefly our result, we introduce the initial velocity
ug such that V - ug = 0, and the initial magnetic vector potential ag such that by = V X ag and V - ag = 0.
In addition, we denote by X the Lagrangian flow-map and by A the Lagrangian magnetic vector potential,
i.e. the Eulerian magnetic vector potential evaluated at the Lagrangian (material) point X of the Q-space.
We show that initial data (ug,ag) with limited smoothness in Sobolev spaces initiate a Lagrangian flow-
map X and a Lagrangian magnetic vector potential A whose time regularity is given by the regularity
of the boundary 9. This regularity is described by a broad class of ultradifferentiable functions, which
encompasses the real analytic and Gevrey classes. As a consequence, the Lagrangian canonical momentum
P, the Lagrangian electric field E, and the Lagrangian magnetic field B acquire also this Lagrangian
regularity property.

The proof is crucially based on a novel Lagrangian formulation of the e-MHD equations on a bounded
domain in terms of the Lagrangian fields (X, A, P, B, E'). This Lagrangian formulation uses a generalized
Cauchy invariants equation [12,24] for the canonical momentum, the curl of which is Lie-advected by the
velocity field u. Inserting time-Taylor expansions of X and A in this new Lagrangian formulation, we
obtain nonlinear recursion relations among time-Taylor coefficients of (X, A), which allow us to construct
recursively the time-Taylor series of (X, A). Contrary to the incompressible Euler equations for which the
authors of [13,11] obtain a recursive procedure which is linear in terms of the current time-Taylor coefficient
of the Lagrangian flow-map X at a fixed rank, here for the e-MHD, we obtain a recursive procedure which
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is nonlinear in terms of this time-Taylor coefficient. Moreover the current time-Taylor coefficient of the
Lagrangian flow-map X at a fixed rank is here coupled nonlinearly to the current time-Taylor coefficient
of the Lagrangian magnetic vector potential A at the same rank (see Remark 5 for more details). From
the Lagrangian fields (X, A), we can then build the Lagrangian fields (P, B, E). Finally, we show that this
nonlinear recursive procedure converges in a convenient functional framework, which allows us to establish
the Lagrangian regularity property of Theorem 2, for the e-MHD equations on a bounded domain.

In the spirit of [58,13,11] (see also [95,121,40] for periodic boundary conditions), this Lagrangian and
constructive proof can be very useful to design arbitrary high-order semi-Lagrangian methods for integrating
numerically the e-MHD equations on a bounded domain. Indeed, in [58], the authors demonstrate the
efficiency of this family of numerical methods of arbitrary high-order to simulate potentially singular Euler
flows on bounded domains. Moreover such constructive proof can be extended to non-simply-connected
domains. This allows to build similar high-order semi-Lagrangian numerical methods to treat important
geometry in plasma physics such as tokamaks, which play a central part in magnetic confinement fusion.
Indeed, in such a case we must take into account additional harmonic fields, which constitute the kernels of
the elliptic boundary value problems involved in the construction scheme. This time-independent harmonic
fields are completely determined by the geometry of the domain, and in particular their regularity is given
by the regularity of the domain boundary [11].

Originally this Lagrangian regularity property is exhibited by the incompressible Euler equations in the
whole space [25,41,103,28,57], in a periodic box [104,121,40], on a bounded domain [68,106,46,13,57], and
on a manifold with boundary [11]. To the best of our knowledge this is the first time that such a Lagrangian
regularity property is proven for inviscid and non-resistive magnetized fluids. Indeed, the time analyticity of
the Lagrangian flow-map X has been only shown for some inviscid neutral fluids which are governed by 2D
incompressible models in the whole plane such as the 2D Boussinesq equations, the 2D incompressible porous
media equation and the 2D surface quasi-geostrophic equations [28]. This Lagrangian analyticity property
is also shared by the pressureless compressible Euler—Poisson (electrostatic/gravitational) equations in a
periodic box [99] and in the whole space [57]. In the latter model we note that the electric/gravitational
scalar potential plays the same role as the fluid pressure in the incompressible Euler equations.

Naturally, we can ask the compelling and interesting question whether there are other magneto-
hydrodynamics models that support or break this Lagrangian regularity property. Other important
fluid models for the electro-magneto-hydrodynamics are ideal incompressible magnetohydrodynamics
(IIMHD) [37,39,47,102,9,21,56,114], the extended ideal incompressible magnetohydrodynamics (XIIMHD)
[82,112,47,32,81,66,83] including the inertial MHD (IMHD) and the Hall MHD (HMHD) sub-models. There
are also various Euler—Maxwell systems such as the incompressible one-fluid Euler-Maxwell system (IEM),
the pressureless compressible one-fluid Euler-Maxwell system (PCEM), the compressible one-fluid Euler—
Maxwell system [26,65,34,93,110,115,111,116,119,43,60,90,113,53] and the compressible two-fluid Euler—
Maxwell equations [120,89,35,51,52]. Observe that the IEM (resp. PCEM) system can be derived from
the Vlasov—Maxwell equations by considering mono-kinetic solutions with uniform (resp. non-uniform)
charge density for the statistical-distribution function of particles. There are two main obstructions for
obtaining the Lagrangian analyticity property for such models, i.e. time analyticity of the corresponding
Lagrangian fields. The first obstruction, named Oy, is the presence of several coupled fluids. This concerns
two-fluid models and a fortiori multi-fluid models, or models which arise as a derivation from a two-fluid or
a multi-fluid theory. Indeed, in a two-fluid transport model the two Lagrangian flow-maps (associated with
the velocity field of each fluid) are coupled together through some equations for the electromagnetic fields,
which in return determine the velocity fields. Because of this coupling, one Lagrangian flow-map experiences
directly the roughness (with respect to Lagrangian variables) of the other Lagrangian flow-map; everything
happens as if one Lagrangian flow-map comes across the other one and thus sees its relative roughness.
In [57] the author shows that the Vlasov—Poisson equations can not support the Lagrangian analyticity
property. This result is consistent with the obstruction O; because, by considering multi-kinetic solutions
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[7,8] for the Vlasov—Poisson equations we obtain the pressureless compressible multi-fluid Euler—Poisson
system. By contrast, for an incompressible one-fluid model or the pressureless compressible one-fluid Euler—
Poisson system the Lagrangian flow-map can not run into itself. The second obstruction, named Os, is the
finite speed of propagation property which is not compatible with the Lagrangian analyticity property. A
system, in which waves propagate at a finite speed, can not sustain the Lagrangian analyticity property
because, for this, some information must propagate at infinite speed. For examples, in the incompressible
Euler equations (resp. pressureless compressible one-fluid Euler—Poisson system) this is the pressure (resp.
electric scalar potential) which propagates at infinite speed, while for the e-MHD this is the magnetic field
or the magnetic vector potential. By contrast it has been shown in [57] that the 2D barotropic (isentropic)
compressible Euler equations, where the pressure propagates at a finite speed (property of hyperbolic sys-
tems of conservation laws [30]), do not satisfy the Lagrangian analyticity property for its corresponding
Lagrangian flow-map X.

Now, we rapidly examine whether we find such obstructions in the models mentioned above. We start with
the XIIMHD whose the mathematical structure is extremely close to the incompressible Euler equations.
Indeed this model can be seen as a two-fluid model where each fluid satisfies an incompressible Euler
equation written in terms of a generalized vorticity. The coupling between the two incompressible Euler
equations arises from the determination of two velocity fields, which are defined through Biot—Savart-type
laws involving the two generalized vorticities as source terms. Therefore the well-posedness theory for such
model is the same as the incompressible Euler equations [66,83], and the XIIMHD can not sustain the
Lagrangian analyticity property because it meets the obstruction O;. Due to the strong coupling of the
two characteristic curves sets through Biot—Savart-type laws, characteristic curves of one set feel or see
directly the roughness (with respect to Lagrangian variables) of characteristic curves of the second set,
when characteristics of the first set cross those of the second one. By contrast, for the incompressible Euler
equations of a single fluid, a Lagrangian particle stays on its characteristic curve, which never crosses and
feels directly the others, because of the incompressibility property. The interaction of a characteristic curve
with the others is always indirect, through the pressure field given instantaneously. We also have the same
conclusion for the compressible version of the XIIMHD. As far as it concerns the IIMHD, it is well-known
that this model is derived from a two-fluid theory [39,47], and that the ITHMD can be recast as another
two-fluid model by using the Elsasser variables [37]. Moreover the Lagrangian formulation of the ITHMD
equations, in terms of Lagrangian flow-map X, can be recast as a quasilinear or nonlinear system of wave
equations [107,117,1,10], which satisfies the finite speed propagation property [59]. Therefore the IIMHD
meets the obstructions O; and Os, and thus it can not support the Lagrangian analyticity property. The
conclusion will be the same for the compressible version of the IIMHD. The compressible one-fluid and
two-fluid Euler-Maxwell equations can be seen as systems of nonlinear hyperbolic conservation laws with
no dissipation (such as viscosity or resistivity effects). It is also well-known that such systems exhibit the
finite speed propagation property [30]. Then, the compressible two-fluid Euler-Maxwell equations meet the
obstructions O; and Os, while the compressible one-fluid Euler-Maxwell equations meet only the obstruction
O;. The obstruction Os is even more striking by assuming the hypothesis of generalized irrotational flow
(namely b = V x u) since with this assumption the compressible one-fluid and two-fluid Euler-Maxwell
equations can be recast as quasilinear systems of wave and Klein—Gordon-type equations [43,51,60,52,53].
Finally, since Maxwell equations can be classified as a hyperbolic system of first or second order in time, they
satisfy the finite speed propagation property and thus the IEM and PCEM models meet the obstruction
Os. Therefore all the Euler-Maxwell systems considered above can not support the Lagrangian analyticity
property. Finally, we remark that the feature of incompressibility versus compressibility is not a criterion
to determine whether a model satisfies or not the Lagrangian analyticity property, even if from the above
considerations incompressible models are more able to verify this time regularity property than compressible
models. The mathematical proofs of all these claims will be the matter of future work.
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The outline of the paper is as follows. In Section 2, we first recast the e-MHD equations in more suitable
Eulerian forms (Section 2.1), especially in terms of the magnetic vector potential, to obtain a well-posedness
theory for the e-MHD equations on a bounded domain (Sections 2.2). Then, in Section 2.3, after introducing
our notation and defining the functional framework, we state our main result concerning the Lagrangian
regularity of the e-MHD flow, namely Theorem 2. In Section 3, we present the proof of Theorem 2 in three
steps. First, in Section 3.1, we derive a novel Lagrangian formulation of the e-MHD equations on a bounded
domain. Then, in Section 3.2, we use this Lagrangian formulation to derive a nonlinear recursive procedure
to construct the solution of the e-MHD equations. Finally, in Section 3.3, we study the convergence of this
nonlinear recursive procedure and we obtain regularity estimates for the Lagrangian fields (X, A, P, B, E).

2. The e-MHD equations on a bounded domain and main result

This section is divided in three subsections. In Section 2.1 we rewrite the e-MHD equations in two more
convenient Eulerian forms. In particular we derive an Eulerian formulation which involves the magnetic
vector potential. Using these Eulerian reformulations we state a well-posedness result in Sobolev spaces for
the e-MHD in Section 2.2. Finally, after recalling the functional framework of ultradifferentiable functions,

we present our main result about the Lagrangian regularity of the e-MHD flow in Section 2.3
2.1. FEulerian reformulations of the e-MHD equations on a bounded domain

We first introduce the magnetic vector potential a such that
b=Vxa, V-a=0. (7)

Following e.g. [61], we introduce the canonical momentum p and its corresponding generalized vorticity w
defined by

p=u—a, and w,=VXp=w-—0», (8)
where
w=VXxu (9)

is the standard fluid-vorticity. We note that V - p = 0, since from (2) we obtain V -u = 0 and from (7)
we have V - a = 0. Using definitions (7)-(8), and subtracting the Maxwell-Faraday equation (3) to the curl
of the momentum equation (1), we obtain the following incompressible Euler equation for the generalized
vorticity wy,

Ows =V X (uXwy) or Ows+u -Vwe—w, -Vu=0 or w,= VX w.o. (10)

The last equation of (10), the so-called Cauchy or vorticity-transport formula (see, e.g., [24,83])
wi(t, X (t, @) = VI X(t, ) weo(), corresponds to the integration of the two first equations of (10) along
the characteristic curves ¢t — X (¢, ), which are defined by the following ordinary differential equation,

X(t,a) = 0 X(t,a) = u(t, X(t,a)), X(0,a)=ac. (11)

From equations (2) and (4), we observe that the magnetic field b plays the role of the standard fluid stream
function. Taking the curl of the Maxwell-Ampeére equation (2) and subtracting to it the magnetic field b,
we obtain from definition (8) for wi,
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—(1-A}p=w, on Q,
V-b=0 on Q, (12)
v-Vxb=0, and b-v=0 on 99,

and
u=-Vxb on Q. (13)

The boundary conditions in (12) come from the boundary conditions (5), i.e. b-v =0 and v-Vxb = —u-v =0
on 99). We note that the boundary value problem (12) for the magnetic field b is well-posed in Sobolev spaces
(see, e.g., Theorem 3.5 in Chapter 1 of [45]). Finally the electric field e is given by the momentum equation
(1), i.e.

e=—(O+u-V)u—uxb on Q, (14)
while initial conditions

(u,b,€)|,_, = (uo,bo, o), (15)

keep the same. Therefore the e-MHD equations (1)-(6) are equivalent to the system constituted by equations
(10)-(15) from which we will deduce in the next section the well-posedness of the e-MHD equations in Sobolev
spaces.

The proof of our main result (see Theorem 2 in Section 2.3) relies on a new Lagrangian formulation of
the e-MHD (see Section 3.1) in which the magnetic vector potential a(t,x) (more precisely its Lagrangian
counterpart, i.e. the Lagrangian magnetic vector potential A(t,a) = a(t, X(¢,))) plays a central role.
Indeed we will see in Section 3.1 (Propositions 1 and 2) that the determination of the magnetic field
b(t, z) (more precisely its Lagrangian counterpart B(t,«) = b(t, X (¢, «))) will be just a straightforward and
explicit computational consequence of a self-consistent and nonlinear determination of the characteristic
curves t — X(t) and the Lagrangian magnetic vector potential A. Therefore, it is important to determine
here the boundary value problem satisfied by the magnetic vector potential a. We must be careful that
the boundary value problem for the magnetic vector potential a must be consistent with equations (1)-(6)
or (10)-(15). Combining the Maxwell-Ampére equation (2) and definition (7) for the magnetic field b, we
obtain

Aa=u on §,
V-a=0 on 9, (16)

axv=0 on 0.

The boundary condition in (16) comes from the boundary condition v-V xa = b-v = 0 on 9f (see equation
(5)), and the vector analysis formula

V(ﬂ)X@):@(VXlP)—IP(VX(P)» and V xv =0, (17)

for any three-dimensional vector 1 and @. We note that the boundary value problem (16) is well-posed
in Sobolev spaces (see, e.g., Theorem 3.6 in Chapter 1 of [45]). We also note that the boundary condition
a X v =0 on 09 is consistent with the boundary condition e x ¥ = 0 on 9f2. Indeed, the electric field is
always given by e = —V¢ — 0;a, where ¢ is the electric scalar potential subjected to the boundary condition
¢ = 0 on 02, and satisfying —A¢ = V - e on Q. Since ¢ = 0 on 92 implies that the tangential derivative
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of ¢ on 0N vanishes, i.e. v x V¢ = 0 on 99, then e x v = —0;(a X v) + v x V¢ = 0 on IN. Therefore the
e-MHD equations (1)-(6) or (10)-(15) are also equivalent to the system constituted by equations (7)-(11)
and (13)-(16).

2.2. Well-posedness of the e-MHD equations on a bounded domain

Here, we state the local-in-time well-posedness of classical solutions in Sobolev spaces H® (s > 0) for the
e-MHD equations on a bounded domain.

Theorem 1 (Well-posedness of e-MHD equations on a bounded domain). Let 2 be a bounded and simply-
connected domain of R3 with €°° boundary 0. Let s > 3/2 + 1. Let ug € H*(Q) (initial fluid vorticity
wo =V xuy € H71(Q)) such that V -ug =0 on Q and ug - v = 0 on 9Q. Let the initial fields (ag,by) be
the unique solutions of the following boundary value problems,

Abg =V xXug on Q,
V.-bp=0 on Q, (18)
v-Vxby=0, and by-v=0 on 09,

and

Aag =ug on €,
V-ag=0 on Q, (19)

ag X v =0 on ON.

Consequently ag € H*T2(Q) (initial magnetic field by = V x ag € H*1(Q)) and the initial generalized
vorticity w.o = wo — by € H*~1(Q). Let eg € H*~1(Q) with eg x v = 0.

Then there exist a time T > 0 and a unique solution to the e-MHD equations (1)-(6), or (10)-(15), or
(7)-(11) and (13)-(16), such that

u € 6(0,T; H¥(Q)) N W (0,T; H~H(Q)) N € ([0, T) x Q), (20)
a € 60,T; HT2(Q) nWhe(0,T; HT1(Q)) N €10, T; €%7(Q)), 0<~v<1, (21)
be €0, T; HT(Q) nWhee(0,T; H*(Q)) N €10, T; €17 (Q), 0<y<1, (22)
e € L>®(0,T; H 1)) (23)
we € €(0,T; H1(Q)) (24)

Remark 1. In the boundary value problem (19) we can equivalently replace ug by —V X by, where by is the
solution of the boundary value problem (18).

Proof of Theorem 1. We start with the well-posedness of the boundary value problems which determine the
initial conditions (ag, bo) from the initial velocity field ug. The well-posedness of the boundary value problem
for by (resp. ag) in Sobolev spaces H? is ensured by the Theorem 3.5 (resp. Theorem 3.6) of Chapter 1 of [45]
(see also Section 3 of Chapter 1 of [45] for more information on regularity results for the Helmholtz—Hogde
decomposition). We next use reformulation (10)-(15) of the e-MHD equations (1)-(6). As it is pointing out in
[18], we observe that equations (10)-(13) form a closed set of equations which have the same mathematical
structure as the incompressible Euler equations. Therefore the existence and uniqueness results are the
same as the incompressible Euler equations on a regular bounded domain (see [36,16,108,67,45,83]), and we
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obtain the existence of a unique velocity field u satisfying the regularity result (20) and solving (1)-(6) or
(10)-(15) in the classical sense. Moreover we obtain the regularity result (24) for the generalized vorticity
w.. Using standard elliptic regularity estimates [76,79,45,44], continuous Sobolev embeddings theorems and
the regularity estimate (20) for u, we obtain from the boundary value problems (16) and (12) the regularity
results (21)-(22) for the magnetic vector potential @ and the magnetic field b respectively. Finally using the
regularity result (20) for v and the regularity result (22) for b we obtain from the momentum equation (14)
or (1) the regularity result (23) for the electric field e. This ends the proof of Theorem 1. O

2.3. Lagrangian reqularity of the e-MHD flow on a bounded domain

In order to present the main result, we must first define some functional spaces that we use to describe
time regularity and boundary smoothness. Let 2 be a domain in R? and let 8 be a Banach space endowed
with the norm || - ||s. Let M := {M,},>0 be a sequence of positive numbers. The ultradifferentiable class
C{M}(2;B) is defined as the set of functions VP : P — B such that for any compact set K C 2 there
exist constants (depending on ) Ry, Cy, such that for all 0 € N,

sup D7 (@) < Cy Ry M. (25)

The map = — D?(z) is a function defined on 2 with values in the set of symmetric o-linear operators,
which is endowed with the standard induced operator-norm ||| - |||. The class C{M} is invariant under
multiplication by a constant, i.e. C{AM}(Z;B) = C{M}(2;B) for A > 0. As in [13], we choose the “log-
superlinear Faa-di-Bruno” (LSL-FdB in short) class. For such a class the sequence of weights {M,/o!}s>0
(and My = M) satisfies

Definition 1. The log-superlinear Faa-di-Bruno class is the set of functions satisfying (25), where the weights
M, = M, /o! verify the following properties,

i) differentiation stability:

3Cp>0: Myy <CZM,, VoeN. (26)
ii) log-superlinearity:
M, M, < MyM, s, Vo, {€N. (27)
iii) (FdB)-stability:
Vu; € N*, such that pq +...4+ ue =0, wehave MM, ...M,, < M,. (28)

Remark 2. Using the Leibniz differentiation rules, log-superlinearity implies that the class C{M}(Z;B)
is an algebra with respect to pointwise multiplication. Using the Faa di Bruno formula [38,54,29], (FdB)-
stability implies stability under composition in the class C{M}(Z;B) (see the proof of Proposition 3.1
in [97], or Proposition 1.4.2 in [72]). Finally, the differentiability stability property implies closure under
differentiation in C{M}(Z;B) [96,80,70].

Remark 3. Some well-known classes of functions belong to the LSL-FdB class. The first one is the real
analytic functions class, which corresponds to M, = 1 (e.g. [84,23]). The second one, widely discussed in
the literature [33,22,14,80,100,109,74,98], is the log-convex class which corresponds to M2 < My_1 My, 1,
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with My = My = 1 (see Lemma 2.9 of [73]). A particular case of the latter is the Gevrey class (see, e.g.,
[84,80]), which corresponds to M, = (o!)", with r > 0.

We introduce o — X;(a) = X (¢, ) the Lagrangian flow-map tracking at time ¢ the position of a particle
starting at o € Q. The Lagrangian flow-map X satisfies the following ordinary differential equation,

0 X (t,a) =u(t,X(t,a)), X(0,a)=acQ. (29)

Using regularity property (20) for the velocity field u, and the Cauchy—Lipschitz—Picard theorem for ordi-
nary differential equations (see, e.g., [55]), we already know that X € €*([0,T) x Q). We also introduce
the Lagrangian magnetic vector potential A = A(¢, ), the Lagrangian magnetic field B = B(t, «), the La-
grangian electric field E = E(t, «), the Lagrangian velocity field U = U(t, o), and the Lagrangian canonical
momentum P = P(t, «), which are defined as follows,

Using the previous definitions and notation, the main result of this paper is

Theorem 2 (Lagrangian regularity of the e-MHD flow on a bounded domain). Assume that the hypotheses
of Theorem 1 hold, and in addition that the boundary 0 belongs to C{M}, where M := {c!M,}s>0, with
the sequence {M,}»>0 satisfying Definition 1 (log-superlinear Fad-di-Bruno class). Then there exists a time
T = C( [Juol| s ), llaoll 7+ () such that the Lagrangian fields (X, A, B, E) satisfy

X, Aec{M}(J0,T[; H*(Q)), and B,E € C{M}(]0,T[;H* (Q)).
Remark 4. Since U = X and P = U — A, we directly obtain from Theorem 2 that
U, P e C{M}(]0,T[; H*(2)).
3. Proof of Theorem 2

Here, we give a proof of Theorem 2, which is divided in three steps. In Section 3.1 we derive a novel
Lagrangian formulation of the e-MHD equations by using among others the invariants of the equations,
known as the Cauchy invariants equation [24,121,40,12,13,11]. In Section 3.2, using this new Lagrangian
formulation, we obtain novel recursion relations among time-Taylor coefficients to construct, through a
nonlinear recursive procedure, formal time-Taylor series for the Lagrangian flow-map X and the Lagrangian
magnetic vector potential A. These two time series allow to determine, via some explicit formula, the
Lagrangian magnetic field B, the Lagrangian electric field E, the Lagrangian velocity field U and the
Lagrangian canonical momentum P. Section 3.3 is devoted to the convergence analysis of the construction
method of Section 3.2 by proving that such formal time series converge in a suitable functional framework.
In the sequel, we use the standard convention that an index variable appearing twice in a single term,
implies the summation of that term over all the values of the index.

8.1. A Lagrangian formulation of the e-MHD equations on a bounded domain

Let us introduce the symmetric matrix G defined by

G :=G(X)=AA", (31)
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where the inverse Jacobian matrix A is defined by

X\ ' da
=AX) === ) =-——. 2
- ()
In terms of the Lagrangian flow-map X the matrix A is given by
da’ 1 dX7t 9 X2
A= (555, = 2750 G s (53)

where J := det(0X/0a) is the Jacobian of the Lagrangian flow-map X and ¢;;;, is the Levi-Civita symbol.
Formula (33) can be obtained from the well-known formula M ~! = Cof(M)/ det(M) for the inverse of any
square matrix M, where Cof(M) is the cofactor matrix associated with M, i.e. the matrix of cofactors of
M . Indeed the cofactor matrix Cof (M) is rewritten in tensorial form (right-hand side of (33)) by expressing
every cofactor, i.e. a determinant, in tensorial form. Since V - u = 0, the flow is incompressible, i.e. the
Lagrangian flow-map X is a volume-preserving map. Therefore,

o ae ()1 -

We also introduce the operator which denotes the scalar product between matrices, i.e. M : N =
>_i; MijNij. With this notation, we have

w.n

Proposition 1 (Lagrangian formulation of the e-MHD equations on a bounded domain). A Lagrangian for-
mulation in the variables (t,a) € [0,T[xQ of the e-MHD equations on the bounded domain € is given

by

VXFx VXF 4+ by = VA" x VX* 4wy, a€Q, te[0,T] (35)
X

det [ — ) =1 Q, telo,T 36

€ (80[) B a € 9 6[7 [7 ( )

V- (GVA) =X, acQ, tel0

V- (AA)=A:VA=0, acQ, tecl0

B' = (VXF x VX" .VA* Vi, acQ, tel0

E=-X-XxB, acQ, tel0

U=X, P=U-A=X—-A4, acQ, tel0

X v(X)=0, Axv(X)=0, «acdQ, te|o,

Proof. We begin with equation (35). In the geometric language [12], the 2-form associated with the gen-
eralized vorticity vector w, is exact and equal to the exterior derivative of the 1-form associated with the
canonical momentum p. This is the meaning of equation (8) translated in terms of differential forms. More-
over equation (10) means that this 2-form is Lie-advected by the vector field u. Therefore, using Theorem 1

of [12] on the existence of generalized Cauchy invariants equations for Lie-advected differential forms which
are exact, we deduce the following Cauchy invariants equation,

Vo PE(t,a) x Vo XE(t, a) = waola).

This equation can be rewritten as
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Van(t, a) X Van(t, a) + bola) = VaAk(t, a) X Van(t,a) + wo(a),

which is equation (35). The Cauchy invariants equation (35) has to be seen as an integrated form of the
Lie-advection equation (10) for the generalized vorticity w, along the characteristic curves ¢t — X (t). The
Eulerian incompressibility condition V - u = 0 becomes, in terms of the Lagrangian variable «, equation
(36), which means that the Lagrangian flow-map X is volume-preserving. Equations (35)-(36) determine the
Lagrangian flow-map X knowing the Lagrangian magnetic vector potential A. Hence, it remains to obtain an
equation for the determination of the Lagrangian magnetic vector potential A knowing the Lagrangian flow-
map X. For this we rewrite, in the Lagrangian variable «, the Laplace equation in (16) for the magnetic
vector potential a. Let {z'}; be a Cartesian orthonormal coordinate system of the Euclidean space R3,
equipped with the orthonormal frame {e;};, i.e. such that e; - ¢; = &;;. A point M of R? can be written
as M = z'e;. We then consider the change of variables z «+ «, with z := X (¢, ). A natural frame {¢;};
associated with the coordinate system {a'}; is given by
. OM  o0xXFoMm  ox*

6= = = —¢.
Y Qo Oat Oxk oot

We then obtain the metric tensor

oxkoxk 9ot 9ol
Gij =€ -€; = Sk Dod and its inverse ¢" = a—;ka;;k = AAT =G.
ot dov
Using standard expressions for usual differential operators in curvilinear coordinate systems (see, e.g., [78]),
we obtain
Aza(t,x) = Aga(t, X (t,a)) = ALA
1 0 y 0A 0] dat dal OA
= — v —— ) = - -
Jlg] 9ot (g v |g|8aj> dar (axk axXF aw)
=V (AATVA) =V - (GVA), (43)
where |g| := det(g”/) = det(g;;) = 1, because the Lagrangian flow-map X preserves the volume (incom-

pressibility of the flow satisfying V - v = 0). From (43) and using the ordinary differential equation (29),
ie. X =u(t,X(t,a)) = U(t,a), the Laplace equation Aa(t,z) = u(t,z), written in the Lagrangian variable
«, becomes equation (37). We continue by showing equation (38), which is the Lagrangian form (in the
variable «) of the Eulerian constraint V - a = 0. Indeed, using (33) and J = 1, after some algebra we obtain

9 (0a*
— | === ) =0, Vi 44
Dok (axz) v (44)
Using (44) and the chain rule, we obtain from V -a = 0,

= 90X Do ~ 9

dal QA da’ QAT o (dat .
O:Vwa(t,w):W(t,X(t,a)):W(t,a) = (anAJ>,

which is (38). We now prove equation (39). Using the relation b = V x a, equation (33) and the chain rule

we obtain
i dak dal da*
B'(t,a) =b(t, X(t,a)) = (V x a)(t, X (t,)) = Eijk@(t,X(t,a)) = aijkﬁw(t,X(t,a))
dal 0AF 1 0X7 90X 72 9AF

= Ciih o €iikEll11oE iy o ——— ——— ———
9 8.13] aOél (7 ) 9 17 1t2%39172 80&11 aa12 aal
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) OX 7 §XI2 HAk
= 5(5”25]@]1 - 5ij15kj2)€llll2WW aal
1 (ox*OxT 0X'9XE\ oAf
=35 Uyl dalr Hal2 Oalt dal2 ) dal

OXF Xt 0Ax

= EL BT dalz Dol

= (VXF X2
(v xV ) dal’

which is equation (39). Equations (41) are straightforward, while equation (40) is just the momentum
equation (14) evaluated on the Lagrangian flow-map X . Finally, using the invariance of the boundary under
the Lagrangian flow-map X (a particle being initially on the boundary remains on it forever) equation (42)
is obtained from the evaluation of the boundary conditions (5) at the spatial point z = X(¢,a) € 99,
aedf). O

We now introduce the following decomposition for the Lagrangian flow-map X and the Lagrangian
magnetic vector potential A,

X(t,a) =a+&(t,a), and A(t, a)=ap(a)+ V(¢ a), (45)

with £(0,@) = 0, and ¥(0, ) = 0. Rewriting equations (35)-(42) in terms of the new unknowns (&, ¥), we
have

Proposition 2 (Lagrangian formulation of the e-MHD equations on a bounded domain). Let (£, V) be defined
by (45). The Lagrangian formulation (35)-(42) of the e-MHD is equivalent to the following set of equations,

Vxé=uw +VxVU 4+ V(af+0*" - xverk aecQ te0,T], (46)
V- f + §(az§zajgj - (%fjajgz) + 68i1i2i38j1j2j36i1§j1aizghaigé]s =0, (RS Q7 te [07T[’ (47)
A(ao + \Il) + V- (g V(GO + V\I/)) = éa o€ Q’ te [O’T[a (48)

. . . 1 . .
(1 + V- §)V -0 — (6]‘@6 + 6]»\1”)(8]»51 — §Eii1i2€jj1j28ﬁf]181'25]2) = 0, o€ Q, te [O,T[, (49)

B' = (Vxag) + (VxU) + (V(ak + ¥*) x Ver)'

+(VE x V(ak + )" + (VEF x VE) - V(b +T%), Vi, aeQ, te[0,T], (50)
E=—-(—¢(xB, acQ, te[0,T], (51)
U=§ P=f—ay—0, acQ, tel0,T], (52)
E-vla+86)=0, axva+& +Uxvia+& =0 acdQ, tel0,T[, (53)
where the matriz g is given by
9ij =05V € + (1+V &) 0V -~ 9iE — 0;€") + & O€
1
+ 5(1 +V- g) (€i11125jk1k2 + Ejlllzgikllw)ahfkl 8lsz2
1 i e, kg ke
- §5kk1k2(5illl28k€ + €51,1,06€") 01, £ 01, €
1
013200 €M 01,672 (0, M1 05,67 — 0;,6M0;,6M). (54)

4
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Proof. Inserting the decomposition (45) into equations (35)-(42), using (31)-(33) and taking into account
the initial condition V - ag = 0, after some algebra but without any difficulty, we obtain formula (46)-(54).
Algebra involved in the derivation of equations (46)-(54) is standard tensorial calculus and the well-known
formula for any (3 x 3)-matrix M,

det(I + M) =1+ Tr(M) + % (Tr(M)? — Tr(M?)) + det(M),

where Tr(M) denotes the trace of the matrix M. This last formula is only used for the derivation of (47) as it
is done in [13]. Note that the order of equations in Proposition 2 is the same as the one of Proposition 1. O

3.2. Construction of the solution from recursion relations

In this section, using the Lagrangian formulation of Proposition 2, we design a recursive scheme to
construct ¢ and W. The convergence analysis of such a scheme is performed in Section 3.3. In order to
design this scheme we introduce the following formal time-Taylor expansions of £ and W,

§ta) =) &(a)t?, and W(ta)=) Ty(a)t. (55)

o>0 >0

Using these time-Taylor series and Proposition 2 we obtain a constructive scheme to determine recursively
all the time-Taylor coefficients {{, }s>0 and {¥, },~0. Schematically we obtain the following recursive pro-
cedure, for o > 1,

ga = ]:f [aO]({go"}a’<a‘7 {\IIU/}G'/<U)7

\1/071 = ]:\Il[a[)]({go’}a’§07 {\Ila’}a"<a'71)7

(56)

where the functionals F¢[ao](-) and Fe[ao](-), which depends on ag, can be seen as some integro-differential or
pseudo-differential operators of order zero. This recursive scheme is initialized with &, = ug and ag = £L71¢1,
where L refers to the linear differential operator associated with a boundary value problem of elliptic type.
The detailed algorithm is described in

Proposition 3 (Recursive scheme).

1) Initialization of the recursive algorithm.
The time-Taylor coefficient & is given by

&1 = ug. (57)

The initial magnetic vector potential ag is solution of the following non-homogeneous elliptic boundary
value problem,

Aaozfla OéEQ,
V-ap=0, «a€dQ, (58)
(ZQXZ/:O, a € 09).

2) Determination of the time-Taylor coefficients &, for o > 1.
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The Helmholtz—Hodge decomposition of the time-Taylor coefficient &, reads

¢ =V, +Vxd,, V-&,=0, acf

(59)

where the Helmholtz—Hodge potentials ¢, and ®, are respectively a scalar and a three-dimensional

vector.

The scalar potential ¢, satisfies the following non-homogeneous elliptic boundary value problem,

A@J:v'gﬂa QGQ,
Ovpo =&o v, €0,

where
1 i 5 i i oq.¢i
V- fo’ = _§ Z (a’ié-al 8j£0‘2 - aié-o'l ajé-a'g)
o1+02=0
o1,02>0
1 9. &9 9 J28
_6€i1i2i3€j1j2j3 Z 11504 Yiz 03’
o1+02+03=0
01,02,03>0
ga'V:_ Z gal'Vaza
o1+o2=0
o1,02>0
with
i 1\k} 3 \k3
o e ) (@)
vy(a) := Z 0°v(a) P A
1<|B|<o i=1 Py(0,8)j=1 "I’ i

In (63) the set P;(o, ) is defined by
Pi(o,B) == {(517-~-7€i)7 (Riyoooski); 0<by <. <y

lkj| >0, j€1,i; Zk =5, Z\kw —a}

The vector potential @, satisfies the following non-homogeneous elliptic boundary value problem,

AD, = -V x&, acQ,
V- -®, =0, a € 09,
O, xv =0, o € 09,

where
1 1_ & &
Vxé==-VxU,_1+ —Vao x VES_
o

k k g1
+ E V\IJUI x V&5, — E ;Vf vfaz-
o1 +02+1:a o1+02=0
01,02>0 o1,02>0

(63)

(64)

(66)
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3) Determination of the time-Taylor coefficients ¥, for o > 0.
The time-Taylor coefficient U, satisfies the following non-homogeneous elliptic boundary value problem,

AV, = f,, o €,
V. \Ijo = hoa (NS 697 (67)
\Ilox’/zgoa aeaQ7

where
fo = (U + 1)§a+1 -V (gavao) - Z V- (901VW02)7 (68)
o1+o2=0
o1,02>0
i i i i 1 J1 J2 (
heg = 8]'0,03]'50 —+ Z {ajfgl 3]'\1/02 -V 501 V. \Ilcrz - §€ii1i25jjlj26i1£glai2 02aja0}
et
1 . ) .
=5 D Ciniafiindn€h0nER0Y0,, (69)
o1to2to3=0
o1,02,03>0
Jo = —a9 X Vg — Z \1’0'1 X Voyy (70)
o1+o2=0
01,02>0
with

(8:)i5 = 205V - & = i = 0+ Y. {V &0 (05 &y — BiED, — 0581,
o1+o2=0
o1,02>0

+ ak&}rlakgzjrg + §(€il112€jk1k2 + gjlllzgihlm)ahfgialzfgg}

k k
Z {v . 503 (EilllQEjklkz + €jlll2€ik1k2)811501(%2602

o1toztoz=o
o1,02,03>0

, , 3 .
— Ekkiks (Eity1,0kE], + €j11123k5§3)311501312§a§}

N | =

+

k k k k k k
> €iiriz€ij1720ir €0y 02653 (011663 05:€57 — 05:€5305:851)- (71)
o1toz2+to3tos=0
01,02,03,04>0

|

+

Before giving the proof of Proposition 3, we make the important

Remark 5 (A nonlinear recursive scheme). Observe that the recursive scheme (56) is nonlinear. Indeed,
fixing o > 1, we assume that we know all the following time-Taylor coefficients {£, }o <o and { ¥y }orco_1.
From these known time-Taylor coefficients, the aim is to obtain the next unknown time-Taylor coefficients &,
and ¥,_1, that we call the current time-Taylor coefficients at the rank . Introducing the notation A := &,
and Y := ¥, _; for the current time-Taylor coefficients, the scheme (56) rewrites as

X = ]:5 [ao]({ga/}o’<aa {\I’UI}O'/<O'—17 y),

(72)
Y= ]:\II[GJO]({&T’}U’<03 X, {\I/U/}U/<O'—1)7

or
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X = ]:5 [ao]({fa'}a%m {\chf’}o’<a—17 ]:\Il[(lo]({fo’}o’<m Xa {‘I/a’}a'<a—1)),

(73)
y = ]:\I’[GO]({&T'}U’<07 X’ {\IIU’}U'<U—1)~

In other words the boundary value problems (60), (65) and (67) are coupled together and thus constitute
a closed nonlinear system (with Helmholtz—Hodge decomposition (59)) in terms of the current time-Taylor
coefficients (¢,,¥,_1) or (X,)). This nonlinear coupling is just a resurgence of the nonlinearity existing
between ¢ and ¥ in equations (46)-(49) of Proposition 2, or between X and A in equations (35)-(38) of
Proposition 1. This situation is very different from the incompressible Euler equations [13,11], which would
correspond in the scheme (56) to set ag = 0, and {¥, = 0},0, i.e. Fy =0 and

X =68 =F¢ [O]({ga’}cf’<o'> {\I]o—' = 0}0’<0) = CZ({&U’}U’<U)7

where CZ(+) stands for a Calder6n—Zygmund integro-differential operator of order zero. In this case we clearly
observe that for any o > 1, the current time-Taylor coefficient X = £, is obtained only from coefficients
{€s'}o'<o by solving linear boundary value problems in terms of the current time-Taylor coefficient X = &,
or in terms of the current time-Taylor coefficients for the Helmholtz—Hodge potentials (¢,,®,) via the
Helmholtz—Hodge decomposition (59).

For the proof of the regularity result of Theorem 2, we do not need to solve explicitly the nonlinearity
(72) or (73), as we will see in Section 3.3, because the final a priori estimate holds on a generating function,
an object which groups together all the time-Taylor coefficients £, and ¥,. By contrast, from a numerical
perspective, this nonlinearity must be solved explicitly, at least in an approximative way. As often, this
can be performed by applying a Picard iteration method (first-order approximation) or a Newton iteration
method (second-order approximation) to the nonlinear equations (72) or (73). Usually, for a given precision,
the Picard or Newton iterative procedure converges quite fastly, with very few iterations.

Proof of Proposition 3. We start the proof by setting an Helmholtz—Hodge decomposition for the time-Taylor
coeflicients &, of the displacement vector £. This Helmholtz—Hodge decomposition must incorporate suitable
boundary conditions, which must be consistent with the natural boundary conditions of our problem. Using
the Helmholtz—Hodge decomposition for vectors on a bounded, simply-connected and regular domain §2 (with
%> boundary 9Q) of Euclidean spaces (see, e.g., [45,101,4,71,5]), there exist a scalar-valued function ¢, and
a vector-valued function @, such that the coefficient £, can be rewritten as equation (59). Since the domain
Q is simply connected and regular, the Helmholtz decomposition (59) does not contain any harmonic fields.
Moreover for non-homogeneous boundary value problems involving vector potentials, kernels (i.e. solutions
of the corresponding homogeneous boundary value problems) are empty, and there is no integrability or
solvability conditions. As in [13], the divergence (resp. the curl) of (59) gives the first equation of (60) (resp.
(65)). Taking the scalar product of (59) with the normal vector v and assuming

v-Vx®,=0 on 01, (74)

we obtain the boundary condition of the boundary value problem (60). At this point, we have the choice
between two boundary conditions for the Laplace equation,

Ad, = -V x &, on (75)
going hand in hand with the gauge or the constraint condition,

V.®,=0 on Q. (76)
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Keeping in mind the divergence theorem, from (76) a first natural choice for the boundary condition of (75)
is ®, - v = 0 on 91, plus boundary condition (74). With these boundary conditions the Laplace equation
(75) plus the gauge condition (76) are well-posed in Sobolev spaces H® (see, e.g., Section 3 and especially
Theorem 3.5 of Chapter 1 in [45]). The second choice is the boundary condition ®, x v = 0 on 952, which
is a consequence of (74) and the vector analysis formula (17). This last solution is the choice that we have
done in the boundary value problem (65), which is also well-posed in Sobolev spaces H? (see, e.g., Section 3
and especially Theorem 3.6 of Chapter 1 in [45], or [101,4,71,5]). Since these two boundary conditions are
different, the associated Helmholtz—Hodge potentials ®, are also different, but their curl is the same, which
finally gives the same value for &,.

We then continue the proof by establishing the central non-homogeneous elliptic boundary value problems
involved in the recursive scheme, namely (58), (60), (65) and (67). Substituting formal time series (55) into
the Cauchy invariants equation (46), and collecting terms of the same power o > 0, we obtain, after some
algebra, equation (57) for 0 = 1 and equation (66) for o > 1. Similarly, substituting formal time series (55)
into equation (48), and collecting terms of the same power o > 0, we obtain, for ¢ = 0, the first equation
of the boundary value problem (58), and for o > 0, the first equation of the boundary value problem (67)
with definitions (68) and (71). We note that the boundary value problem (58) is equivalent to the boundary
value problem (19) for strong solutions (see, e.g., [71,5]). Using the Faa di Bruno formula [29,54,38], we
obtain the time series expansion of the composed function v(a + £(, &) namely,

via+E(t,a)) = Zua(a)t", (77)

o>0

with vy = v and v, given by definition (63) for o > 0. Using (77) in the first equation of (53) we obtain, for
o = 1, the boundary condition &; -v = 0 on 912, and for o > 1, the boundary condition of the boundary value
problem (60) with definition (62). Similarly, using (77) in the second equation of (53) we obtain, for o = 0,
the boundary condition of the boundary value problem (58), and for o > 0, the boundary condition of the
boundary value problem (67) with definition (70). Finally substituting formal time series (55) into equations
(47), (49), and (54), after collecting terms of the same power o > 0, we obtain respectively equation (61),
the second equation of the boundary value problem (67) with definition (69), and definition (71). Let us
note that in the time series expansion of (49) the term of power o = 0 does not exist because we have used
the initial condition V-ag = 0 when deriving (49) from (38). If we did not use the initial condition V-ay = 0
in deriving (49) from (38), new terms (of degree zero and one in o-power) involving V - ap would appear
in (49). But the time series expansion of this modified version of (49) or directly the time series expansion
of (38), by using (45) and (55), would lead to the equation V - ay = 0, for the term of power ¢ = 0 in
the corresponding time series expansion. Therefore, if we do not assume initially the condition V - ag = 0,
we retrieve it from the time series expansion of the Lagrangian formulation of the e-MHD equations. This
means that some constraints on the initial condition are already encoded in the Lagrangian formulation of
the equations. This ends the proof of Proposition 3. O

3.3. Convergence analysis of the recursive scheme

Here, we prove Theorem 2. For this we need to prove first that the time series expansion (45), for £ and ¥,
converge and are time-ultradifferentiable in the log-superlinear Faa di Bruno class C{M}(]0, T[; H*(Q2)) (see
Definition 1). Using (&, ¥) € C{M}(J0, T[; H*(2)), uo € H*(Q), and ag € H**%(Q), we deduce from (45)
that (X, A) € C{M}(]0,T[; H*(Q2)). Next, using (¢, ¥) € C{M}(]0,T[; H*(R?)), the Lagrangian formulation
(50)-(51) for B and E, and the algebra property (81) for Sobolev spaces H*(£2), we obtain that (B, E) €
C{M}(]0,T[; H*~1(Q)). As already observed in Remark 4, from equation (51) the regularity result (X, A) €
C{M}(0,T[; H*(Q2)) implies (U, P) € C{M}(J0,T[; H*()). Then the rest of the proof is devoted to show
(€, ) € CLMI(0,T[; H*(9)).
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To simplify the notation, the norm || - ||gs(q) will be sometimes denoted by || - |[z-. Any space-time
dependent vector-valued function ¥ :]0, T[xQ + R3, belongs to the space C{M}(]0, T[; H*(2)) if, and only
if, there exists a real positive number g such that the set

{m

ST ceN, te]O,T[}, (78)

is bounded. A sufficient condition to obtain (§, ¥) € C{M}(]0,T[; H*(2)) is that the generating function
t — ((t), defined by

Ct) =" (o=@ + 1¥ollme(a)) 7 M, 17, (79)

a>0

is uniformly bounded on 0, T7[.
To derive a priori estimates we need three tools. The first one is the Lemma 1 of [11] that, for the sake
of completeness, we here give as

Lemma 1. Let ) : 99 — R be a LSL-FdB ultradifferentiable function defined on 0), which is also LSL-FdB
ultradifferentiable. Then, there exist positive constants C' and R, which depend on \, 092, s, My, and Cp,
such that

1070 =00y < CR™V|BIIM g, |8] > 0. (80)
Proof. For the proof of Lemma 1, we refer to the proof of Lemma 1 of [11]. O

We also use repeatedly the property that the Sobolev space H*(2), with s > d/2 (€ being here a bounded
domain of R, d > 1), is an algebra with respect to the pointwise multiplication, i.e. there exists a constant
Cy = C,(s), which depends on s, such that

[bollas ) < Callbllms@ll@la(@), Y, @ € H(Q), s> d/2. (81)

The last tool is the continuous surjection of the trace operator \ — ,,, from H*(Q) to H*~1/2(09), for
s > 1, with the continuity constant Cy (see, e.g., [79]), i.e.

[Wio0lzr5-1200) < Collbllas ), Vb€ HY(Q), s> 1. (82)

We now derive some a priori estimates. For this, we use elliptic regularity estimates in Sobolev spaces
for non-homogeneous boundary value problems, which are recalled in Appendix A. Using Theorem 3 of
Appendix A, for the solution ¢, of the non-homogeneous Neumann boundary value problem (60), we have
the following elliptic regularity estimates

9ol o1y < C1 (IV - Eollme-1(0) + € - vl ae-1r2(00)) - (83)
Using Theorem 4 of Appendix A, we have the following elliptic regularity estimates
[@ollmret1(0) < Co|IV X &l re-1(0), (84)
for the solution @, of the non-homogeneous boundary value problem (65), and

1Wollme ) < Cs ([follzrs—2) + 190 zr:-1/200) + 1o llzrs—s/2(50)) » (85)
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for the solution ¥, of the non-homogeneous boundary value problem (67). Using the Helmholtz—Hodge
decomposition (59) for the coefficient &,, we obtain for o > 0,

1€l 25 (2) SNV - @ollars () + IV X @6l s(02)
< |lpollzs+1(0) + [P || ms+1(0)
< Cr2 (IV % &llger(a) + IV - &oll 1) + 6o - VIl re-1/2(80)) » (36)

with C19 = max{Cy, Cy}. Using (85)-(86), we obtain from the definition of the generating function (79),

((t) < Chas (||V Lol + IV X&) + 1€ viim—1/2(80)
a>0

+ [ follme—2@) + lgollme—rr2(80) + HhUHHS*3/2(8Q)) o M7, (87)
with Cyo3 = max{Ci2,C3}. We must estimate the right hand side of (87). This is here that the assumption
of Theorem 2 on the regularity of the boundary 912 plays a crucial role. Since the boundary 052 is a LSL-FdB

ultradifferentiable manifold, then the normal vector v : 9§ — R? is LSL-FdB ultradifferentiable and using
Lemma 1, there exist positive real constants C,, and R, such that, for 0 < s < oo, and |5]| > 0,

10°¥ll+ o0y < Cu R, \PI[BI1M, (88)
where the sequence {M, },>¢ satisfies Definition 1. An estimate of the right-hand side of (87) is given by

Proposition 4. Let s > 3/2. Then there exist positive constants

2
I

Cy4(Ca, My),
Cr = Cp(Ca, Mo, My, 0, |lag || ),
= Cn(Ca, Mo, Cy, Cp),
Cy = Cp(Cq, Mo, ||ag|| ¢ ),
Cy = Cy(Cq, My, Cy, Co, llao|| a=),
(

Cp = Ch(Ca, My, Cy),
such that

2;0 IV &l ooy 077 My 117 < CaC3(1)(1+C(1)), (89)
ZO IV % &l o1 (@0 My 7 < luollme0™ Mt + CoC(t) (t+ (1+)C(1)), (90)

=
;) 1o - 1l e 1/2g00y 077 My 17 < Cul() (1 - K,1¢(8) ™ (91)
Zz | foll -2y @™ MG < C(t) + CRC)(A+ () + () + (1) + CA(B)), (92)
g) 1ol 7:-1/2(00) 07 M7 1H7 < Cy(14 C(1)) (1 = K H¢(1) (93)
> o llpe-s/2(00) 077 My 117 < CC() (14 C(2) + G (1)), (94)

a>0
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with K" = CaCa/Ry, and ¢(t) = (0/Cb) Xogso (ol o) + 1Wol () (0/Cp) 7 M 117

Proof. In order not to need to determine the purely numerical constants, which arise in a priori estimates
and are not relevant, we introduce the notation A < B and A ~ B defined as follows. The notation A < B
(resp. A ~ B) means that there exists a purely numerical constant Cyum, such that A < ChumB (resp.
A = Chum B). We start with estimate (89). Using the algebra property (81), and the superlinearity property
(27), we obtain from (61),

IV Gl 5 Vel sl
~ Ya
QUMU o14+02=0 QolMUl QUZMUz
o1,02>0

2772 1oy |22 1€z |2 1§05 || 22
+ CaMO Z 0°1 ]\401 QJzMoz QUSMU;; :

o1t+o2+o3=0
01,02,03>0

Multiplying the above estimate by ¢ and summing the result over the index o, we obtain (89) with
Cd >~ CaMo max{l, CaMo}.

We continue with the proof of (90). Using the algebra property (81), and the superlinearity property (27),
we obtain from (57) and (66),

IV % &ollas—1  lluollae Moy [Yorllzs | CaMy [€o—1 |52
o ~ 610- o1 + ||(10HH3 o—1
0 Ma' QMl QMI 0 MO’*I QMl Ma'f
OaMg ||\I/U1||HS 502”1{3 H§0 ”Hg &o HHS
el L CuMo s :
QMl 01+U22+1:U UlMGl QJ2M02 ‘ glézg QUIMUl 902M172

01,02>0 o1,02>0

Multiplying the above estimate by ¢” and summing the result over the index o, we obtain (89) with
C, =~ Mymax{(1+ Cqllag|ms)o MY, CoMoo™* M *, Cyu}.

We continue with the proof of (91). Using the algebra property (81), the superlinearity property (27), and
the continuous surjection of the trace operator (82), we obtain from (62),

160 - vl gro-1/2(00) < CoC M, Z €0+ 1225 () ”VUzHHS*l/z(c’)Q).

(95)
JM o1+02=0 o Mol % MJZ
01,02>0

We then have to control [|[vy|| ga-1/2(9g) in (95). Using the algebra property (81), the continuous surjection
of the trace operator (82), and the Cauchy-like estimate (88), we obtain from (63)-(64),

k3
”VHHHS—l/?(aQ) 10° ]| gro-1/2(a0) | 1€z, ||H 162 1 7
—_— 4 77 Y Bl ° () H(Q)
e Y (CaCo) §j§j|| L

H 31
1<|B|<e o7 M i=1 P;(0,8) j=1 k! k3!

]
<o Y ( ) |ﬂ|'M|ﬂ\ S % H ||€k1|'HS ||§k:l|!Ha
J

1<|8|<o i=1 P;(0,B8) j=1

cao Y (GO

1<|8|<