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In this paper we investigate the regularity in time of the Lagrangian flow associated 
with the electron magnetohydrodynamics (e-MHD) equations on a bounded domain 
with a smooth (ultradifferentiable) boundary. This model is widely used in controlled 
magnetic fusion, in space and astrophysics plasmas and also in physics of solids. 
We show that initial data with limited smoothness in Sobolev spaces induce a 
Lagrangian flow-map X and a Lagrangian magnetic vector potential A (viz. the 
magnetic vector potential evaluated at the Lagrangian spatial point X), which 
are ultradifferentiable in time, with the two particular cases of real analytic and 
Gevrey time regularity. It turns out that the Lagrangian canonical momentum 
P , the Lagrangian magnetic field B, and the Lagrangian electric field E inherit 
this Lagrangian regularity property. Among others, the proof makes crucial use 
of a novel Lagrangian formulation of the e-MHD in terms of the Lagrangian fields 
(X, A, P, B, E). A by-product of this Lagrangian and constructive proof is the design 
of arbitrary high-order semi-Lagrangian schemes to solve the e-MHD equations on 
a bounded domain.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The electron magnetohydrodynamics (e-MHD) equations is a fundamental tool of plasma physics for 
solving problems of pulsed plasmas and controlled magnetic fusion, of space and astrophysics plasmas, and 
also of physics of solids. The e-MHD equations describe the (hydro-)dynamics of electrons in a plasma where 
small length and short time scales phenomena are important, and where strong electromagnetic fields and 
high currents play a crucial role. Based on the quasineutrality assumption, this model retains the Hall effect 
while the ion motion is neglected. A lot of theoretical and numerical developments with many applications 
(such as nonlinear skin effects, electron vortices, solitons, electromagnetic instabilities, plasma turbulence, 
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magnetic reconnection, ...) concerning the e-MHD equations can be found in the plasma physics literature, 
and for examples we refer the reader to [86,105,48,27,61,94,69,19,20,49,15,75,6,77,31,62,118,63,42,64] and 
references therein. For a review of the physics of the e-MHD, the reader can consult references [69,49].

Let Ω be a bounded and simply-connected domain of R3 containing the plasma of electrons. The boundary 
∂Ω is smooth and we will come back later on the precise definition of its regularity. Let ν be the outward 
pointing unit normal to the boundary ∂Ω. Let ρ and u be respectively the density and the velocity vector 
of electrons in a plasma. The vectors b and e denote respectively the self-consistent magnetic and electric 
field. The three-dimensional vectors (u, b, e) are functions of a three-dimension position x ∈ Ω and of the 
time t > 0. The so-called e-MHD equations on a bounded domain Ω read,

∂tu + u · ∇u + e + u× b = 0, x ∈ Ω, t ∈]0, T [, (1)

−∇× b = u, x ∈ Ω, t ∈]0, T [, (2)

∂tb + ∇× e = 0, x ∈ Ω, t ∈]0, T [, (3)

∇ · b = 0, ρ = 1, x ∈ Ω, t ∈]0, T [, (4)

u · ν = 0, b · ν = 0, e× ν = 0, x ∈ ∂Ω, t ∈]0, T [, (5)

(u, b, e)|t=0 = (u0, b0, e0), x ∈ Ω. (6)

The boundary conditions (5) mean that the plasma of electrons extends out to an impermeable and perfectly 
conducting rigid wall [39].

Using the modulated energy method designed in [17] for proving the quasineutral limit of the Vlasov–
Poisson system to the incompressible Euler equations, the authors of [18] show that the e-MHD equations 
in the whole space can be obtained as the quasineutral limit of the Vlasov–Maxwell equations. Using a 
weighted energy method combined with the curl-div decomposition of the gradient of the velocity vector 
field to obtain some dissipative structures in the equations, the authors of [91] (see also [92]) established 
uniform a priori estimates to show the convergence of the compressible Euler–Maxwell system in a periodic 
box to the e-MHD equations in the quasineutral regime.

Roughly speaking, our result states that in the spatial non-too-smooth regime the time smoothness of 
the Lagrangian flow of the e-MHD equations (1)-(6), is only limited by the smoothness of the boundary ∂Ω
(see Theorem 2). To described more precisely but still briefly our result, we introduce the initial velocity 
u0 such that ∇ · u0 = 0, and the initial magnetic vector potential a0 such that b0 = ∇ × a0 and ∇ · a0 = 0. 
In addition, we denote by X the Lagrangian flow-map and by A the Lagrangian magnetic vector potential, 
i.e. the Eulerian magnetic vector potential evaluated at the Lagrangian (material) point X of the Ω-space. 
We show that initial data (u0, a0) with limited smoothness in Sobolev spaces initiate a Lagrangian flow-
map X and a Lagrangian magnetic vector potential A whose time regularity is given by the regularity 
of the boundary ∂Ω. This regularity is described by a broad class of ultradifferentiable functions, which 
encompasses the real analytic and Gevrey classes. As a consequence, the Lagrangian canonical momentum 
P , the Lagrangian electric field E, and the Lagrangian magnetic field B acquire also this Lagrangian 
regularity property.

The proof is crucially based on a novel Lagrangian formulation of the e-MHD equations on a bounded 
domain in terms of the Lagrangian fields (X, A, P, B, E). This Lagrangian formulation uses a generalized 
Cauchy invariants equation [12,24] for the canonical momentum, the curl of which is Lie-advected by the 
velocity field u. Inserting time-Taylor expansions of X and A in this new Lagrangian formulation, we 
obtain nonlinear recursion relations among time-Taylor coefficients of (X, A), which allow us to construct 
recursively the time-Taylor series of (X, A). Contrary to the incompressible Euler equations for which the 
authors of [13,11] obtain a recursive procedure which is linear in terms of the current time-Taylor coefficient 
of the Lagrangian flow-map X at a fixed rank, here for the e-MHD, we obtain a recursive procedure which 
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is nonlinear in terms of this time-Taylor coefficient. Moreover the current time-Taylor coefficient of the 
Lagrangian flow-map X at a fixed rank is here coupled nonlinearly to the current time-Taylor coefficient 
of the Lagrangian magnetic vector potential A at the same rank (see Remark 5 for more details). From 
the Lagrangian fields (X, A), we can then build the Lagrangian fields (P, B, E). Finally, we show that this 
nonlinear recursive procedure converges in a convenient functional framework, which allows us to establish 
the Lagrangian regularity property of Theorem 2, for the e-MHD equations on a bounded domain.

In the spirit of [58,13,11] (see also [95,121,40] for periodic boundary conditions), this Lagrangian and 
constructive proof can be very useful to design arbitrary high-order semi-Lagrangian methods for integrating 
numerically the e-MHD equations on a bounded domain. Indeed, in [58], the authors demonstrate the 
efficiency of this family of numerical methods of arbitrary high-order to simulate potentially singular Euler 
flows on bounded domains. Moreover such constructive proof can be extended to non-simply-connected 
domains. This allows to build similar high-order semi-Lagrangian numerical methods to treat important 
geometry in plasma physics such as tokamaks, which play a central part in magnetic confinement fusion. 
Indeed, in such a case we must take into account additional harmonic fields, which constitute the kernels of 
the elliptic boundary value problems involved in the construction scheme. This time-independent harmonic 
fields are completely determined by the geometry of the domain, and in particular their regularity is given 
by the regularity of the domain boundary [11].

Originally this Lagrangian regularity property is exhibited by the incompressible Euler equations in the 
whole space [25,41,103,28,57], in a periodic box [104,121,40], on a bounded domain [68,106,46,13,57], and 
on a manifold with boundary [11]. To the best of our knowledge this is the first time that such a Lagrangian 
regularity property is proven for inviscid and non-resistive magnetized fluids. Indeed, the time analyticity of 
the Lagrangian flow-map X has been only shown for some inviscid neutral fluids which are governed by 2D 
incompressible models in the whole plane such as the 2D Boussinesq equations, the 2D incompressible porous 
media equation and the 2D surface quasi-geostrophic equations [28]. This Lagrangian analyticity property 
is also shared by the pressureless compressible Euler–Poisson (electrostatic/gravitational) equations in a 
periodic box [99] and in the whole space [57]. In the latter model we note that the electric/gravitational 
scalar potential plays the same role as the fluid pressure in the incompressible Euler equations.

Naturally, we can ask the compelling and interesting question whether there are other magneto-
hydrodynamics models that support or break this Lagrangian regularity property. Other important 
fluid models for the electro-magneto-hydrodynamics are ideal incompressible magnetohydrodynamics 
(IIMHD) [37,39,47,102,9,21,56,114], the extended ideal incompressible magnetohydrodynamics (XIIMHD) 
[82,112,47,32,81,66,83] including the inertial MHD (IMHD) and the Hall MHD (HMHD) sub-models. There 
are also various Euler–Maxwell systems such as the incompressible one-fluid Euler–Maxwell system (IEM), 
the pressureless compressible one-fluid Euler–Maxwell system (PCEM), the compressible one-fluid Euler–
Maxwell system [26,65,34,93,110,115,111,116,119,43,60,90,113,53] and the compressible two-fluid Euler–
Maxwell equations [120,89,35,51,52]. Observe that the IEM (resp. PCEM) system can be derived from 
the Vlasov–Maxwell equations by considering mono-kinetic solutions with uniform (resp. non-uniform) 
charge density for the statistical-distribution function of particles. There are two main obstructions for 
obtaining the Lagrangian analyticity property for such models, i.e. time analyticity of the corresponding 
Lagrangian fields. The first obstruction, named O1, is the presence of several coupled fluids. This concerns 
two-fluid models and a fortiori multi-fluid models, or models which arise as a derivation from a two-fluid or 
a multi-fluid theory. Indeed, in a two-fluid transport model the two Lagrangian flow-maps (associated with 
the velocity field of each fluid) are coupled together through some equations for the electromagnetic fields, 
which in return determine the velocity fields. Because of this coupling, one Lagrangian flow-map experiences 
directly the roughness (with respect to Lagrangian variables) of the other Lagrangian flow-map; everything 
happens as if one Lagrangian flow-map comes across the other one and thus sees its relative roughness. 
In [57] the author shows that the Vlasov–Poisson equations can not support the Lagrangian analyticity 
property. This result is consistent with the obstruction O1 because, by considering multi-kinetic solutions 
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[7,8] for the Vlasov–Poisson equations we obtain the pressureless compressible multi-fluid Euler–Poisson 
system. By contrast, for an incompressible one-fluid model or the pressureless compressible one-fluid Euler–
Poisson system the Lagrangian flow-map can not run into itself. The second obstruction, named O2, is the 
finite speed of propagation property which is not compatible with the Lagrangian analyticity property. A 
system, in which waves propagate at a finite speed, can not sustain the Lagrangian analyticity property 
because, for this, some information must propagate at infinite speed. For examples, in the incompressible 
Euler equations (resp. pressureless compressible one-fluid Euler–Poisson system) this is the pressure (resp. 
electric scalar potential) which propagates at infinite speed, while for the e-MHD this is the magnetic field 
or the magnetic vector potential. By contrast it has been shown in [57] that the 2D barotropic (isentropic) 
compressible Euler equations, where the pressure propagates at a finite speed (property of hyperbolic sys-
tems of conservation laws [30]), do not satisfy the Lagrangian analyticity property for its corresponding 
Lagrangian flow-map X.

Now, we rapidly examine whether we find such obstructions in the models mentioned above. We start with 
the XIIMHD whose the mathematical structure is extremely close to the incompressible Euler equations. 
Indeed this model can be seen as a two-fluid model where each fluid satisfies an incompressible Euler 
equation written in terms of a generalized vorticity. The coupling between the two incompressible Euler 
equations arises from the determination of two velocity fields, which are defined through Biot–Savart-type 
laws involving the two generalized vorticities as source terms. Therefore the well-posedness theory for such 
model is the same as the incompressible Euler equations [66,83], and the XIIMHD can not sustain the 
Lagrangian analyticity property because it meets the obstruction O1. Due to the strong coupling of the 
two characteristic curves sets through Biot–Savart-type laws, characteristic curves of one set feel or see 
directly the roughness (with respect to Lagrangian variables) of characteristic curves of the second set, 
when characteristics of the first set cross those of the second one. By contrast, for the incompressible Euler 
equations of a single fluid, a Lagrangian particle stays on its characteristic curve, which never crosses and 
feels directly the others, because of the incompressibility property. The interaction of a characteristic curve 
with the others is always indirect, through the pressure field given instantaneously. We also have the same 
conclusion for the compressible version of the XIIMHD. As far as it concerns the IIMHD, it is well-known 
that this model is derived from a two-fluid theory [39,47], and that the IIHMD can be recast as another 
two-fluid model by using the Elsasser variables [37]. Moreover the Lagrangian formulation of the IIHMD 
equations, in terms of Lagrangian flow-map X, can be recast as a quasilinear or nonlinear system of wave 
equations [107,117,1,10], which satisfies the finite speed propagation property [59]. Therefore the IIMHD 
meets the obstructions O1 and O2, and thus it can not support the Lagrangian analyticity property. The 
conclusion will be the same for the compressible version of the IIMHD. The compressible one-fluid and 
two-fluid Euler-Maxwell equations can be seen as systems of nonlinear hyperbolic conservation laws with 
no dissipation (such as viscosity or resistivity effects). It is also well-known that such systems exhibit the 
finite speed propagation property [30]. Then, the compressible two-fluid Euler-Maxwell equations meet the
obstructions O1 and O2, while the compressible one-fluid Euler-Maxwell equations meet only the obstruction 
O1. The obstruction O2 is even more striking by assuming the hypothesis of generalized irrotational flow 
(namely b = ∇ × u) since with this assumption the compressible one-fluid and two-fluid Euler–Maxwell 
equations can be recast as quasilinear systems of wave and Klein–Gordon-type equations [43,51,60,52,53]. 
Finally, since Maxwell equations can be classified as a hyperbolic system of first or second order in time, they 
satisfy the finite speed propagation property and thus the IEM and PCEM models meet the obstruction 
O2. Therefore all the Euler–Maxwell systems considered above can not support the Lagrangian analyticity 
property. Finally, we remark that the feature of incompressibility versus compressibility is not a criterion 
to determine whether a model satisfies or not the Lagrangian analyticity property, even if from the above 
considerations incompressible models are more able to verify this time regularity property than compressible 
models. The mathematical proofs of all these claims will be the matter of future work.
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The outline of the paper is as follows. In Section 2, we first recast the e-MHD equations in more suitable 
Eulerian forms (Section 2.1), especially in terms of the magnetic vector potential, to obtain a well-posedness 
theory for the e-MHD equations on a bounded domain (Sections 2.2). Then, in Section 2.3, after introducing 
our notation and defining the functional framework, we state our main result concerning the Lagrangian 
regularity of the e-MHD flow, namely Theorem 2. In Section 3, we present the proof of Theorem 2 in three 
steps. First, in Section 3.1, we derive a novel Lagrangian formulation of the e-MHD equations on a bounded 
domain. Then, in Section 3.2, we use this Lagrangian formulation to derive a nonlinear recursive procedure 
to construct the solution of the e-MHD equations. Finally, in Section 3.3, we study the convergence of this 
nonlinear recursive procedure and we obtain regularity estimates for the Lagrangian fields (X, A, P, B, E).

2. The e-MHD equations on a bounded domain and main result

This section is divided in three subsections. In Section 2.1 we rewrite the e-MHD equations in two more 
convenient Eulerian forms. In particular we derive an Eulerian formulation which involves the magnetic 
vector potential. Using these Eulerian reformulations we state a well-posedness result in Sobolev spaces for 
the e-MHD in Section 2.2. Finally, after recalling the functional framework of ultradifferentiable functions, 
we present our main result about the Lagrangian regularity of the e-MHD flow in Section 2.3.

2.1. Eulerian reformulations of the e-MHD equations on a bounded domain

We first introduce the magnetic vector potential a such that

b = ∇× a, ∇ · a = 0. (7)

Following e.g. [61], we introduce the canonical momentum p and its corresponding generalized vorticity ω∗
defined by

p = u− a, and ω∗ = ∇× p = ω − b, (8)

where

ω = ∇× u (9)

is the standard fluid-vorticity. We note that ∇ · p = 0, since from (2) we obtain ∇ · u = 0 and from (7)
we have ∇ · a = 0. Using definitions (7)-(8), and subtracting the Maxwell–Faraday equation (3) to the curl 
of the momentum equation (1), we obtain the following incompressible Euler equation for the generalized 
vorticity ω∗,

∂tω∗ = ∇× (u× ω∗) or ∂tω∗ + u · ∇ω∗ − ω∗ · ∇u = 0 or ω∗ = ∇TX ω∗0. (10)

The last equation of (10), the so-called Cauchy or vorticity-transport formula (see, e.g., [24,83]) 
ω∗(t, X(t, α)) = ∇T

αX(t, α) ω∗0(α), corresponds to the integration of the two first equations of (10) along 
the characteristic curves t �→ X(t, α), which are defined by the following ordinary differential equation,

Ẋ(t, α) ≡ ∂tX(t, α) = u(t,X(t, α)), X(0, α) = α ∈ Ω. (11)

From equations (2) and (4), we observe that the magnetic field b plays the role of the standard fluid stream 
function. Taking the curl of the Maxwell–Ampère equation (2) and subtracting to it the magnetic field b, 
we obtain from definition (8) for ω∗,
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⎧⎪⎪⎨
⎪⎪⎩

−(1 − Δ)b = ω∗ on Ω,

∇ · b = 0 on Ω,

ν · ∇ × b = 0, and b · ν = 0 on ∂Ω,

(12)

and

u = −∇× b on Ω. (13)

The boundary conditions in (12) come from the boundary conditions (5), i.e. b ·ν = 0 and ν ·∇ ×b = −u ·ν = 0
on ∂Ω. We note that the boundary value problem (12) for the magnetic field b is well-posed in Sobolev spaces 
(see, e.g., Theorem 3.5 in Chapter 1 of [45]). Finally the electric field e is given by the momentum equation 
(1), i.e.

e = −(∂t + u · ∇)u− u× b on Ω, (14)

while initial conditions

(u, b, e)|t=0 = (u0, b0, e0), (15)

keep the same. Therefore the e-MHD equations (1)-(6) are equivalent to the system constituted by equations 
(10)-(15) from which we will deduce in the next section the well-posedness of the e-MHD equations in Sobolev 
spaces.

The proof of our main result (see Theorem 2 in Section 2.3) relies on a new Lagrangian formulation of 
the e-MHD (see Section 3.1) in which the magnetic vector potential a(t, x) (more precisely its Lagrangian 
counterpart, i.e. the Lagrangian magnetic vector potential A(t, α) = a(t, X(t, α))) plays a central role. 
Indeed we will see in Section 3.1 (Propositions 1 and 2) that the determination of the magnetic field 
b(t, x) (more precisely its Lagrangian counterpart B(t, α) = b(t, X(t, α))) will be just a straightforward and 
explicit computational consequence of a self-consistent and nonlinear determination of the characteristic 
curves t �→ X(t) and the Lagrangian magnetic vector potential A. Therefore, it is important to determine 
here the boundary value problem satisfied by the magnetic vector potential a. We must be careful that 
the boundary value problem for the magnetic vector potential a must be consistent with equations (1)-(6)
or (10)-(15). Combining the Maxwell–Ampère equation (2) and definition (7) for the magnetic field b, we 
obtain

⎧⎪⎪⎨
⎪⎪⎩

Δa = u on Ω,

∇ · a = 0 on Ω,

a× ν = 0 on ∂Ω.

(16)

The boundary condition in (16) comes from the boundary condition ν ·∇ ×a = b ·ν = 0 on ∂Ω (see equation 
(5)), and the vector analysis formula

∇ · (ψ×ϕ) = ϕ · (∇×ψ) −ψ · (∇×ϕ), and ∇× ν = 0, (17)

for any three-dimensional vector ψ and ϕ. We note that the boundary value problem (16) is well-posed 
in Sobolev spaces (see, e.g., Theorem 3.6 in Chapter 1 of [45]). We also note that the boundary condition 
a × ν = 0 on ∂Ω is consistent with the boundary condition e × ν = 0 on ∂Ω. Indeed, the electric field is 
always given by e = −∇φ −∂ta, where φ is the electric scalar potential subjected to the boundary condition 
φ = 0 on ∂Ω, and satisfying −Δφ = ∇ · e on Ω. Since φ = 0 on ∂Ω implies that the tangential derivative 
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of φ on ∂Ω vanishes, i.e. ν ×∇φ = 0 on ∂Ω, then e × ν = −∂t(a × ν) + ν ×∇φ = 0 on ∂Ω. Therefore the 
e-MHD equations (1)-(6) or (10)-(15) are also equivalent to the system constituted by equations (7)-(11)
and (13)-(16).

2.2. Well-posedness of the e-MHD equations on a bounded domain

Here, we state the local-in-time well-posedness of classical solutions in Sobolev spaces Hs (s ≥ 0) for the 
e-MHD equations on a bounded domain.

Theorem 1 (Well-posedness of e-MHD equations on a bounded domain). Let Ω be a bounded and simply-
connected domain of R3 with C∞ boundary ∂Ω. Let s > 3/2 + 1. Let u0 ∈ Hs(Ω) (initial fluid vorticity 
ω0 = ∇ × u0 ∈ Hs−1(Ω)) such that ∇ · u0 = 0 on Ω and u0 · ν = 0 on ∂Ω. Let the initial fields (a0, b0) be 
the unique solutions of the following boundary value problems,

⎧⎪⎪⎨
⎪⎪⎩

Δb0 = ∇× u0 on Ω,

∇ · b0 = 0 on Ω,

ν · ∇ × b0 = 0, and b0 · ν = 0 on ∂Ω,

(18)

and
⎧⎪⎪⎨
⎪⎪⎩

Δa0 = u0 on Ω,

∇ · a0 = 0 on Ω,

a0 × ν = 0 on ∂Ω.

(19)

Consequently a0 ∈ Hs+2(Ω) (initial magnetic field b0 = ∇ × a0 ∈ Hs+1(Ω)) and the initial generalized 
vorticity ω∗0 = ω0 − b0 ∈ Hs−1(Ω). Let e0 ∈ Hs−1(Ω) with e0 × ν = 0.

Then there exist a time T > 0 and a unique solution to the e-MHD equations (1)-(6), or (10)-(15), or 
(7)-(11) and (13)-(16), such that

u ∈ C (0, T ;Hs(Ω)) ∩W 1,∞(0, T ;Hs−1(Ω)) ∩ C 1([0, T ) × Ω), (20)

a ∈ C (0, T ;Hs+2(Ω)) ∩W 1,∞(0, T ;Hs+1(Ω)) ∩ C 1(0, T ; C 2,γ(Ω)), 0 < γ < 1, (21)

b ∈ C (0, T ;Hs+1(Ω)) ∩W 1,∞(0, T ;Hs(Ω)) ∩ C 1(0, T ; C 1,γ(Ω)), 0 < γ < 1, (22)

e ∈ L∞(0, T ;Hs−1(Ω)), (23)

ω∗ ∈ C (0, T ;Hs−1(Ω)). (24)

Remark 1. In the boundary value problem (19) we can equivalently replace u0 by −∇ × b0, where b0 is the 
solution of the boundary value problem (18).

Proof of Theorem 1. We start with the well-posedness of the boundary value problems which determine the 
initial conditions (a0, b0) from the initial velocity field u0. The well-posedness of the boundary value problem 
for b0 (resp. a0) in Sobolev spaces Hs is ensured by the Theorem 3.5 (resp. Theorem 3.6) of Chapter 1 of [45]
(see also Section 3 of Chapter 1 of [45] for more information on regularity results for the Helmholtz–Hogde 
decomposition). We next use reformulation (10)-(15) of the e-MHD equations (1)-(6). As it is pointing out in 
[18], we observe that equations (10)-(13) form a closed set of equations which have the same mathematical 
structure as the incompressible Euler equations. Therefore the existence and uniqueness results are the 
same as the incompressible Euler equations on a regular bounded domain (see [36,16,108,67,45,83]), and we 
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obtain the existence of a unique velocity field u satisfying the regularity result (20) and solving (1)-(6) or 
(10)-(15) in the classical sense. Moreover we obtain the regularity result (24) for the generalized vorticity 
ω∗. Using standard elliptic regularity estimates [76,79,45,44], continuous Sobolev embeddings theorems and 
the regularity estimate (20) for u, we obtain from the boundary value problems (16) and (12) the regularity 
results (21)-(22) for the magnetic vector potential a and the magnetic field b respectively. Finally using the 
regularity result (20) for u and the regularity result (22) for b we obtain from the momentum equation (14)
or (1) the regularity result (23) for the electric field e. This ends the proof of Theorem 1. �
2.3. Lagrangian regularity of the e-MHD flow on a bounded domain

In order to present the main result, we must first define some functional spaces that we use to describe 
time regularity and boundary smoothness. Let D be a domain in Rd and let B be a Banach space endowed 
with the norm ‖ · ‖B. Let M := {Mσ}σ≥0 be a sequence of positive numbers. The ultradifferentiable class 
C{M}(D ; B) is defined as the set of functions ψ : D −→ B such that for any compact set K ⊂ D there 
exist constants (depending on ψ) Rψ, Cψ such that for all σ ∈ N,

sup
x∈K

�Dσψ(x)� ≤ CψR
−σ
ψ Mσ. (25)

The map x �→ Dσψ(x) is a function defined on D with values in the set of symmetric σ-linear operators, 
which is endowed with the standard induced operator-norm � · �. The class C{M} is invariant under 
multiplication by a constant, i.e. C{λM}(D ; B) = C{M}(D ; B) for λ > 0. As in [13], we choose the “log-
superlinear Faà-di-Bruno” (LSL–FdB in short) class. For such a class the sequence of weights {Mσ/σ!}σ≥0
(and M0 = M0) satisfies

Definition 1. The log-superlinear Faà-di-Bruno class is the set of functions satisfying (25), where the weights 
Mσ = Mσ/σ! verify the following properties,

i) differentiation stability:

∃ CD > 0 : Mσ+1 ≤ Cσ
DMσ, ∀σ ∈ N. (26)

ii) log-superlinearity:

MσM� ≤ M0Mσ+�, ∀σ, � ∈ N. (27)

iii) (FdB)-stability:

∀μi ∈ N∗, such that μ1 + . . . + μ� = σ, we have M�Mμ1 . . .Mμ�
≤ Mσ. (28)

Remark 2. Using the Leibniz differentiation rules, log-superlinearity implies that the class C{M}(D ; B)
is an algebra with respect to pointwise multiplication. Using the Faà di Bruno formula [38,54,29], (FdB)-
stability implies stability under composition in the class C{M}(D ; B) (see the proof of Proposition 3.1 
in [97], or Proposition 1.4.2 in [72]). Finally, the differentiability stability property implies closure under 
differentiation in C{M}(D ; B) [96,80,70].

Remark 3. Some well-known classes of functions belong to the LSL–FdB class. The first one is the real 
analytic functions class, which corresponds to Mσ = 1 (e.g. [84,23]). The second one, widely discussed in 
the literature [33,22,14,80,100,109,74,98], is the log-convex class which corresponds to M2

σ ≤ Mσ−1Mσ+1, 
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with M0 = M1 = 1 (see Lemma 2.9 of [73]). A particular case of the latter is the Gevrey class (see, e.g., 
[84,80]), which corresponds to Mσ = (σ!)r, with r ≥ 0.

We introduce α �→ Xt(α) = X(t, α) the Lagrangian flow-map tracking at time t the position of a particle 
starting at α ∈ Ω. The Lagrangian flow-map X satisfies the following ordinary differential equation,

∂tX(t, α) = u(t,X(t, α)), X(0, α) = α ∈ Ω. (29)

Using regularity property (20) for the velocity field u, and the Cauchy–Lipschitz–Picard theorem for ordi-
nary differential equations (see, e.g., [55]), we already know that X ∈ C 1([0, T ) × Ω). We also introduce 
the Lagrangian magnetic vector potential A = A(t, α), the Lagrangian magnetic field B = B(t, α), the La-
grangian electric field E = E(t, α), the Lagrangian velocity field U = U(t, α), and the Lagrangian canonical 
momentum P = P (t, α), which are defined as follows,

A(t, α) = a(t,X(t, α)), B(t, α) = b(t,X(t, α)), E(t, α) = e(t,X(t, α)),

U(t, α) = u(t,X(t, α)), P (t, α) = p(t,X(t, α)).
(30)

Using the previous definitions and notation, the main result of this paper is

Theorem 2 (Lagrangian regularity of the e-MHD flow on a bounded domain). Assume that the hypotheses 
of Theorem 1 hold, and in addition that the boundary ∂Ω belongs to C{M}, where M := {σ!Mσ}σ≥0, with 
the sequence {Mσ}σ≥0 satisfying Definition 1 (log-superlinear Faà-di-Bruno class). Then there exists a time 
T = C(Ω, ‖u0‖Hs(Ω), ‖a0‖Hs(Ω)) such that the Lagrangian fields (X, A, B, E) satisfy

X, A ∈ C{M}
(
]0, T [;Hs(Ω)

)
, and B,E ∈ C{M}

(
]0, T [;Hs−1(Ω)

)
.

Remark 4. Since U = Ẋ and P = U −A, we directly obtain from Theorem 2 that

U,P ∈ C{M}
(
]0, T [;Hs(Ω)

)
.

3. Proof of Theorem 2

Here, we give a proof of Theorem 2, which is divided in three steps. In Section 3.1 we derive a novel 
Lagrangian formulation of the e-MHD equations by using among others the invariants of the equations, 
known as the Cauchy invariants equation [24,121,40,12,13,11]. In Section 3.2, using this new Lagrangian 
formulation, we obtain novel recursion relations among time-Taylor coefficients to construct, through a
nonlinear recursive procedure, formal time-Taylor series for the Lagrangian flow-map X and the Lagrangian 
magnetic vector potential A. These two time series allow to determine, via some explicit formula, the 
Lagrangian magnetic field B, the Lagrangian electric field E, the Lagrangian velocity field U and the 
Lagrangian canonical momentum P . Section 3.3 is devoted to the convergence analysis of the construction 
method of Section 3.2 by proving that such formal time series converge in a suitable functional framework. 
In the sequel, we use the standard convention that an index variable appearing twice in a single term, 
implies the summation of that term over all the values of the index.

3.1. A Lagrangian formulation of the e-MHD equations on a bounded domain

Let us introduce the symmetric matrix G defined by

G := G(X) = AAT , (31)



10 N. Besse / J. Math. Anal. Appl. 511 (2022) 126076
where the inverse Jacobian matrix A is defined by

A := A(X) =
(
∂X

∂α

)−1

= ∂α

∂X
. (32)

In terms of the Lagrangian flow-map X the matrix A is given by

(A)ij =
(

∂αi

∂Xj

)
ij

= 1
2J εii1i2εjj1j2

∂Xj1

∂αi1

∂Xj2

∂αi2
, (33)

where J := det(∂X/∂α) is the Jacobian of the Lagrangian flow-map X and εijk is the Levi–Civita symbol. 
Formula (33) can be obtained from the well-known formula M−1 = Cof(M)/ det(M) for the inverse of any 
square matrix M , where Cof(M) is the cofactor matrix associated with M , i.e. the matrix of cofactors of 
M . Indeed the cofactor matrix Cof(M) is rewritten in tensorial form (right-hand side of (33)) by expressing 
every cofactor, i.e. a determinant, in tensorial form. Since ∇ · u = 0, the flow is incompressible, i.e. the 
Lagrangian flow-map X is a volume-preserving map. Therefore,

J := det
(
∂X

∂α

)
= 1. (34)

We also introduce the operator “:” which denotes the scalar product between matrices, i.e. M : N =∑
i,j MijNij . With this notation, we have

Proposition 1 (Lagrangian formulation of the e-MHD equations on a bounded domain). A Lagrangian for-
mulation in the variables (t, α) ∈ [0, T [×Ω of the e-MHD equations on the bounded domain Ω is given 
by

∇Ẋk ×∇Xk + b0 = ∇Ak ×∇Xk + ω0, α ∈ Ω, t ∈ [0, T [, (35)

det
(
∂X

∂α

)
= 1, α ∈ Ω, t ∈ [0, T [, (36)

∇ · (G∇A) = Ẋ, α ∈ Ω, t ∈ [0, T [, (37)

∇ · (AA) = A : ∇A = 0, α ∈ Ω, t ∈ [0, T [, (38)

Bi = (∇Xk ×∇Xi) · ∇Ak, ∀i, α ∈ Ω, t ∈ [0, T [, (39)

E = −Ẍ − Ẋ ×B, α ∈ Ω, t ∈ [0, T [, (40)

U = Ẋ, P = U −A = Ẋ −A, α ∈ Ω, t ∈ [0, T [, (41)

Ẋ · ν(X) = 0, A× ν(X) = 0, α ∈ ∂Ω, t ∈ [0, T [. (42)

Proof. We begin with equation (35). In the geometric language [12], the 2-form associated with the gen-
eralized vorticity vector ω∗ is exact and equal to the exterior derivative of the 1-form associated with the 
canonical momentum p. This is the meaning of equation (8) translated in terms of differential forms. More-
over equation (10) means that this 2-form is Lie-advected by the vector field u. Therefore, using Theorem 1 
of [12] on the existence of generalized Cauchy invariants equations for Lie-advected differential forms which 
are exact, we deduce the following Cauchy invariants equation,

∇αP
k(t, α) ×∇αX

k(t, α) = ω∗0(α).

This equation can be rewritten as
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∇αẊ
k(t, α) ×∇αX

k(t, α) + b0(α) = ∇αA
k(t, α) ×∇αX

k(t, α) + ω0(α),

which is equation (35). The Cauchy invariants equation (35) has to be seen as an integrated form of the 
Lie-advection equation (10) for the generalized vorticity ω∗ along the characteristic curves t �→ X(t). The 
Eulerian incompressibility condition ∇ · u = 0 becomes, in terms of the Lagrangian variable α, equation 
(36), which means that the Lagrangian flow-map X is volume-preserving. Equations (35)-(36) determine the 
Lagrangian flow-map X knowing the Lagrangian magnetic vector potential A. Hence, it remains to obtain an 
equation for the determination of the Lagrangian magnetic vector potential A knowing the Lagrangian flow-
map X. For this we rewrite, in the Lagrangian variable α, the Laplace equation in (16) for the magnetic 
vector potential a. Let {xi}i be a Cartesian orthonormal coordinate system of the Euclidean space R3, 
equipped with the orthonormal frame {ei}i, i.e. such that ei · ej = δij . A point M of R3 can be written 
as M = xiei. We then consider the change of variables x ↔ α, with x := X(t, α). A natural frame {êi}i
associated with the coordinate system {αi}i is given by

êi = ∂M

∂αi
= ∂Xk

∂αi

∂M

∂xk
= ∂Xk

∂αi
ek.

We then obtain the metric tensor

gij := êi · êj = ∂Xk

∂αi

∂Xk

∂αj
and its inverse gij = ∂αi

∂Xk

∂αj

∂Xk
= AAT = G.

Using standard expressions for usual differential operators in curvilinear coordinate systems (see, e.g., [78]), 
we obtain

Δxa(t, x) = Δxa(t,X(t, a)) = ΔxA

= 1√
|g|

∂

∂αi

(
gij

√
|g| ∂A

∂αj

)
= ∂

∂αi

(
∂αi

∂Xk

∂αj

∂Xk

∂A

∂αj

)

= ∇ · (AAT∇A) = ∇ · (G∇A), (43)

where |g| := det(gij) = det(gij) = 1, because the Lagrangian flow-map X preserves the volume (incom-
pressibility of the flow satisfying ∇ · u = 0). From (43) and using the ordinary differential equation (29), 
i.e. Ẋ = u(t, X(t, α)) = U(t, α), the Laplace equation Δa(t, x) = u(t, x), written in the Lagrangian variable 
α, becomes equation (37). We continue by showing equation (38), which is the Lagrangian form (in the 
variable α) of the Eulerian constraint ∇ · a = 0. Indeed, using (33) and J = 1, after some algebra we obtain

∂

∂αk

(
∂αk

∂Xi

)
= 0, ∀i. (44)

Using (44) and the chain rule, we obtain from ∇ · a = 0,

0 = ∇x · a(t, x) = ∂aj

∂Xj
(t,X(t, α)) = ∂Aj

∂Xj
(t, α) = ∂αi

∂Xj

∂Aj

∂αi
= ∂

∂αi

(
∂αi

∂Xj
Aj

)
,

which is (38). We now prove equation (39). Using the relation b = ∇ × a, equation (33) and the chain rule 
we obtain

Bi(t, α) = b(t,X(t, α)) = (∇× a)(t,X(t, α)) = εijk
∂ak

∂xj
(t,X(t, α)) = εijk

∂αl

∂xj

∂ak

∂αl
(t,X(t, α))

= εijk
∂αl ∂Ak

(t, α) = 1
εijkεll1l2εjj1j2

∂Xj1 ∂Xj2 ∂Ak
∂xj ∂αl 2 ∂αl1 ∂αl2 ∂αl
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= 1
2(δij2δkj1 − δij1δkj2)εll1l2

∂Xj1

∂αl1

∂Xj2

∂αl2

∂Ak

∂αl

= 1
2εll1l2

(
∂Xk

∂αl1

∂Xi

∂αl2
− ∂Xi

∂αl1

∂Xk

∂αl2

)
∂Ak

∂αl

= εll1l2
∂Xk

∂αl1

∂Xi

∂αl2

∂Ak

∂αl
= (∇Xk ×∇Xi)l ∂A

k

∂αl
,

which is equation (39). Equations (41) are straightforward, while equation (40) is just the momentum 
equation (14) evaluated on the Lagrangian flow-map X. Finally, using the invariance of the boundary under 
the Lagrangian flow-map X (a particle being initially on the boundary remains on it forever) equation (42)
is obtained from the evaluation of the boundary conditions (5) at the spatial point x = X(t, α) ∈ ∂Ω, 
α ∈ ∂Ω. �

We now introduce the following decomposition for the Lagrangian flow-map X and the Lagrangian 
magnetic vector potential A,

X(t, α) = α + ξ(t, α), and A(t, α) = a0(α) + Ψ(t, α), (45)

with ξ(0, α) = 0, and Ψ(0, α) = 0. Rewriting equations (35)-(42) in terms of the new unknowns (ξ, Ψ), we 
have

Proposition 2 (Lagrangian formulation of the e-MHD equations on a bounded domain). Let (ξ, Ψ) be defined 
by (45). The Lagrangian formulation (35)-(42) of the e-MHD is equivalent to the following set of equations,

∇× ξ̇ = ω0 + ∇× Ψ + ∇(ak0 + Ψk − ξ̇k) ×∇ξk , α ∈ Ω, t ∈ [0, T [, (46)

∇ · ξ + 1
2(∂iξi∂jξj − ∂iξ

j∂jξ
i) + 1

6εi1i2i3εj1j2j3∂i1ξ
j1∂i2ξ

j2∂i3ξ
j3 = 0, α ∈ Ω, t ∈ [0, T [, (47)

Δ(a0 + Ψ) + ∇ ·
(
g∇(a0 + ∇Ψ)

)
= ξ̇, α ∈ Ω, t ∈ [0, T [, (48)

(1 + ∇ · ξ)∇ · Ψ − (∂jai0 + ∂jΨi)
(
∂jξ

i − 1
2εii1i2εjj1j2∂i1ξ

j1∂i2ξ
j2
)

= 0, α ∈ Ω, t ∈ [0, T [, (49)

Bi = (∇× a0)i + (∇× Ψ)i +
(
∇(ak0 + Ψk) ×∇ξk

)i
+
(
∇ξi ×∇(ak0 + Ψk)

)k + (∇ξk ×∇ξi) · ∇(ak0 + Ψk) , ∀i, α ∈ Ω, t ∈ [0, T [, (50)

E = −ξ̈ − ξ̇ ×B, α ∈ Ω, t ∈ [0, T [, (51)

U = ξ̇, P = ξ̇ − a0 − Ψ, α ∈ Ω, t ∈ [0, T [, (52)

ξ̇ · ν(α + ξ) = 0, a0 × ν(α + ξ) + Ψ × ν(α + ξ) = 0, α ∈ ∂Ω, t ∈ [0, T [, (53)

where the matrix g is given by

gij = δij∇ · ξ + (1 + ∇ · ξ) (δij∇ · ξ − ∂iξ
j − ∂jξ

i) + ∂kξ
i∂kξ

j

+ 1
2(1 + ∇ · ξ) (εil1l2εjk1k2 + εjl1l2εik1k2)∂l1ξk1∂l2ξ

k2

− 1
2εkk1k2(εil1l2∂kξj + εjl1l2∂kξ

i)∂l1ξk1∂l2ξ
k2

+ 1
εii1i2εjj1j2∂i1ξ

k1∂i2ξ
k2(∂j1ξk1∂j2ξ

k2 − ∂j1ξ
k2∂j2ξ

k1). (54)
4
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Proof. Inserting the decomposition (45) into equations (35)-(42), using (31)-(33) and taking into account 
the initial condition ∇ · a0 = 0, after some algebra but without any difficulty, we obtain formula (46)-(54). 
Algebra involved in the derivation of equations (46)-(54) is standard tensorial calculus and the well-known 
formula for any (3 × 3)-matrix M ,

det(I + M) = 1 + Tr(M) + 1
2
(
Tr(M)2 − Tr(M2)

)
+ det(M),

where Tr(M) denotes the trace of the matrix M . This last formula is only used for the derivation of (47) as it 
is done in [13]. Note that the order of equations in Proposition 2 is the same as the one of Proposition 1. �
3.2. Construction of the solution from recursion relations

In this section, using the Lagrangian formulation of Proposition 2, we design a recursive scheme to 
construct ξ and Ψ. The convergence analysis of such a scheme is performed in Section 3.3. In order to 
design this scheme we introduce the following formal time-Taylor expansions of ξ and Ψ,

ξ(t, α) =
∑
σ>0

ξσ(α)tσ, and Ψ(t, α) =
∑
σ>0

Ψσ(α)tσ. (55)

Using these time-Taylor series and Proposition 2 we obtain a constructive scheme to determine recursively 
all the time-Taylor coefficients {ξσ}σ>0 and {Ψσ}σ>0. Schematically we obtain the following recursive pro-
cedure, for σ > 1,

ξσ = Fξ [a0]
(
{ξσ′}σ′<σ, {Ψσ′}σ′<σ

)
,

Ψσ−1 = FΨ[a0]
(
{ξσ′}σ′≤σ, {Ψσ′}σ′<σ−1

)
,

(56)

where the functionals Fξ[a0](·) and FΨ[a0](·), which depends on a0, can be seen as some integro-differential or 
pseudo-differential operators of order zero. This recursive scheme is initialized with ξ1 = u0 and a0 = L−1ξ1, 
where L refers to the linear differential operator associated with a boundary value problem of elliptic type. 
The detailed algorithm is described in

Proposition 3 (Recursive scheme).

1) Initialization of the recursive algorithm.
The time-Taylor coefficient ξ1 is given by

ξ1 = u0. (57)

The initial magnetic vector potential a0 is solution of the following non-homogeneous elliptic boundary 
value problem,

⎧⎪⎪⎨
⎪⎪⎩

Δa0 = ξ1, α ∈ Ω,

∇ · a0 = 0, α ∈ ∂Ω,

a0 × ν = 0, α ∈ ∂Ω.

(58)

2) Determination of the time-Taylor coefficients ξσ for σ > 1.
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The Helmholtz–Hodge decomposition of the time-Taylor coefficient ξσ reads

ξσ = ∇ϕσ + ∇× Φσ, ∇ · Φσ = 0, α ∈ Ω, (59)

where the Helmholtz–Hodge potentials ϕσ and Φσ are respectively a scalar and a three-dimensional 
vector.
The scalar potential ϕσ satisfies the following non-homogeneous elliptic boundary value problem,

⎧⎨
⎩Δϕσ = ∇ · ξσ, α ∈ Ω,

∂νϕσ = ξσ · ν, α ∈ ∂Ω,
(60)

where

∇ · ξσ = −1
2

∑
σ1+σ2=σ
σ1, σ2>0

(∂iξiσ1
∂jξ

j
σ2

− ∂iξ
j
σ1
∂jξ

i
σ2

)

−1
6εi1i2i3εj1j2j3

∑
σ1+σ2+σ3=σ
σ1, σ2, σ3>0

∂i1ξ
j1
σ1
∂i2ξ

j2
σ2
∂i3ξ

j3
σ3
, (61)

ξσ · ν = −
∑

σ1+σ2=σ
σ1, σ2>0

ξσ1 · νσ2 , (62)

with

νσ(α) :=
∑

1≤|β|≤σ

∂βν(α)
σ∑

i=1

∑
Pi(σ,β)

i∏
j=1

(ξ1
�j

)k
1
j

k1
j !

. . .
(ξ3

�j
)k

3
j

k3
j !

. (63)

In (63) the set Pi(σ, β) is defined by

Pi(σ, β) :=
{

(�1, . . . , �i), (k1, . . . , ki); 0 < �1 < . . . < �i;

|kj | > 0, j ∈ [1, i];
i∑

j=1
kj = β,

i∑
j=1

|kj |�j = σ

}
. (64)

The vector potential Φσ satisfies the following non-homogeneous elliptic boundary value problem,

⎧⎪⎪⎨
⎪⎪⎩

ΔΦσ = −∇× ξσ, α ∈ Ω,

∇ · Φσ = 0, α ∈ ∂Ω,

Φσ × ν = 0, α ∈ ∂Ω,

(65)

where

∇× ξσ = 1
σ
∇× Ψσ−1 + 1

σ
∇ak0 ×∇ξkσ−1

+
∑

σ1+σ2+1=σ

1
σ
∇Ψk

σ1
×∇ξkσ2

−
∑

σ1+σ2=σ

σ1

σ
∇ξkσ1

×∇ξkσ2
. (66)
σ1, σ2>0 σ1, σ2>0
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3) Determination of the time-Taylor coefficients Ψσ for σ > 0.
The time-Taylor coefficient Ψσ satisfies the following non-homogeneous elliptic boundary value problem,

⎧⎪⎪⎨
⎪⎪⎩

ΔΨσ = fσ, α ∈ Ω,

∇ · Ψσ = hσ, α ∈ ∂Ω,

Ψσ × ν = gσ, α ∈ ∂Ω,

(67)

where

fσ := (σ + 1)ξσ+1 −∇ · (gσ∇a0) −
∑

σ1+σ2=σ
σ1, σ2>0

∇ · (gσ1∇Ψσ2), (68)

hσ := ∂ja
i
0∂jξ

i
σ +

∑
σ1+σ2=σ
σ1, σ2>0

{
∂jξ

i
σ1
∂jΨi

σ2
−∇ · ξσ1 ∇ · Ψσ2 −

1
2εii1i2εjj1j2∂i1ξ

j1
σ1
∂i2ξ

j2
σ2
∂ja

i
0

}

−1
2

∑
σ1+σ2+σ3=σ
σ1, σ2, σ3>0

εii1i2εjj1j2∂i1ξ
j1
σ1
∂i2ξ

j2
σ2
∂jΨi

σ3
, (69)

gσ := −a0 × νσ −
∑

σ1+σ2=σ
σ1, σ2>0

Ψσ1 × νσ2 , (70)

with

(gσ)ij := 2δij∇ · ξσ − ∂iξ
j
σ − ∂jξ

i
σ +

∑
σ1+σ2=σ
σ1, σ2>0

{
∇ · ξσ1 (δij∇ · ξσ2 − ∂iξ

j
σ2

− ∂jξ
i
σ2

)

+ ∂kξ
i
σ1
∂kξ

j
σ2

+ 1
2(εil1l2εjk1k2 + εjl1l2εik1k2)∂l1ξk1

σ1
∂l2ξ

k2
σ2

}
+ 1

2
∑

σ1+σ2+σ3=σ
σ1, σ2, σ3>0

{
∇ · ξσ3 (εil1l2εjk1k2 + εjl1l2εik1k2)∂l1ξk1

σ1
∂l2ξ

k2
σ2

− εkk1k2(εil1l2∂kξjσ3
+ εjl1l2∂kξ

i
σ3

)∂l1ξk1
σ1
∂l2ξ

k2
σ2

}
+ 1

4
∑

σ1+σ2+σ3+σ4=σ
σ1, σ2, σ3, σ4>0

εii1i2εjj1j2∂i1ξ
k1
σ1
∂i2ξ

k2
σ2

(∂j1ξk1
σ3
∂j2ξ

k2
σ4

− ∂j1ξ
k2
σ3
∂j2ξ

k1
σ4

). (71)

Before giving the proof of Proposition 3, we make the important

Remark 5 (A nonlinear recursive scheme). Observe that the recursive scheme (56) is nonlinear. Indeed, 
fixing σ > 1, we assume that we know all the following time-Taylor coefficients {ξσ′}σ′<σ and {Ψσ′}σ′<σ−1. 
From these known time-Taylor coefficients, the aim is to obtain the next unknown time-Taylor coefficients ξσ
and Ψσ−1, that we call the current time-Taylor coefficients at the rank σ. Introducing the notation X := ξσ
and Y := Ψσ−1 for the current time-Taylor coefficients, the scheme (56) rewrites as

X = Fξ [a0]
(
{ξσ′}σ′<σ, {Ψσ′}σ′<σ−1, Y

)
,

Y = FΨ[a0]
(
{ξσ′}σ′<σ, X , {Ψσ′}σ′<σ−1

)
,

(72)

or
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X = Fξ [a0]
(
{ξσ′}σ′<σ, {Ψσ′}σ′<σ−1, FΨ[a0]

(
{ξσ′}σ′<σ, X , {Ψσ′}σ′<σ−1

))
,

Y = FΨ[a0]
(
{ξσ′}σ′<σ, X , {Ψσ′}σ′<σ−1

)
.

(73)

In other words the boundary value problems (60), (65) and (67) are coupled together and thus constitute 
a closed nonlinear system (with Helmholtz–Hodge decomposition (59)) in terms of the current time-Taylor 
coefficients (ξσ, Ψσ−1) or (X , Y). This nonlinear coupling is just a resurgence of the nonlinearity existing 
between ξ and Ψ in equations (46)-(49) of Proposition 2, or between X and A in equations (35)-(38) of 
Proposition 1. This situation is very different from the incompressible Euler equations [13,11], which would 
correspond in the scheme (56) to set a0 = 0, and {Ψσ = 0}σ>0, i.e. FΨ ≡ 0 and

X = ξσ = Fξ [0]
(
{ξσ′}σ′<σ, {Ψσ′ = 0}σ′<σ

)
= CZ

(
{ξσ′}σ′<σ

)
,

where CZ(·) stands for a Calderón–Zygmund integro-differential operator of order zero. In this case we clearly 
observe that for any σ > 1, the current time-Taylor coefficient X = ξσ is obtained only from coefficients 
{ξσ′}σ′<σ by solving linear boundary value problems in terms of the current time-Taylor coefficient X = ξσ
or in terms of the current time-Taylor coefficients for the Helmholtz–Hodge potentials (ϕσ, Φσ) via the 
Helmholtz–Hodge decomposition (59).

For the proof of the regularity result of Theorem 2, we do not need to solve explicitly the nonlinearity 
(72) or (73), as we will see in Section 3.3, because the final a priori estimate holds on a generating function, 
an object which groups together all the time-Taylor coefficients ξσ and Ψσ. By contrast, from a numerical 
perspective, this nonlinearity must be solved explicitly, at least in an approximative way. As often, this 
can be performed by applying a Picard iteration method (first-order approximation) or a Newton iteration 
method (second-order approximation) to the nonlinear equations (72) or (73). Usually, for a given precision, 
the Picard or Newton iterative procedure converges quite fastly, with very few iterations.

Proof of Proposition 3. We start the proof by setting an Helmholtz–Hodge decomposition for the time-Taylor 
coefficients ξσ of the displacement vector ξ. This Helmholtz–Hodge decomposition must incorporate suitable 
boundary conditions, which must be consistent with the natural boundary conditions of our problem. Using 
the Helmholtz–Hodge decomposition for vectors on a bounded, simply-connected and regular domain Ω (with 
C∞ boundary ∂Ω) of Euclidean spaces (see, e.g., [45,101,4,71,5]), there exist a scalar-valued function ϕσ, and 
a vector-valued function Φσ such that the coefficient ξσ can be rewritten as equation (59). Since the domain 
Ω is simply connected and regular, the Helmholtz decomposition (59) does not contain any harmonic fields. 
Moreover for non-homogeneous boundary value problems involving vector potentials, kernels (i.e. solutions 
of the corresponding homogeneous boundary value problems) are empty, and there is no integrability or 
solvability conditions. As in [13], the divergence (resp. the curl) of (59) gives the first equation of (60) (resp. 
(65)). Taking the scalar product of (59) with the normal vector ν and assuming

ν · ∇ × Φσ = 0 on ∂Ω, (74)

we obtain the boundary condition of the boundary value problem (60). At this point, we have the choice 
between two boundary conditions for the Laplace equation,

ΔΦσ = −∇× ξσ on Ω, (75)

going hand in hand with the gauge or the constraint condition,

∇ · Φσ = 0 on Ω. (76)
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Keeping in mind the divergence theorem, from (76) a first natural choice for the boundary condition of (75)
is Φσ · ν = 0 on ∂Ω, plus boundary condition (74). With these boundary conditions the Laplace equation 
(75) plus the gauge condition (76) are well-posed in Sobolev spaces Hs (see, e.g., Section 3 and especially 
Theorem 3.5 of Chapter 1 in [45]). The second choice is the boundary condition Φσ × ν = 0 on ∂Ω, which 
is a consequence of (74) and the vector analysis formula (17). This last solution is the choice that we have 
done in the boundary value problem (65), which is also well-posed in Sobolev spaces Hs (see, e.g., Section 3 
and especially Theorem 3.6 of Chapter 1 in [45], or [101,4,71,5]). Since these two boundary conditions are 
different, the associated Helmholtz–Hodge potentials Φσ are also different, but their curl is the same, which 
finally gives the same value for ξσ.

We then continue the proof by establishing the central non-homogeneous elliptic boundary value problems 
involved in the recursive scheme, namely (58), (60), (65) and (67). Substituting formal time series (55) into 
the Cauchy invariants equation (46), and collecting terms of the same power σ > 0, we obtain, after some 
algebra, equation (57) for σ = 1 and equation (66) for σ > 1. Similarly, substituting formal time series (55)
into equation (48), and collecting terms of the same power σ ≥ 0, we obtain, for σ = 0, the first equation 
of the boundary value problem (58), and for σ > 0, the first equation of the boundary value problem (67)
with definitions (68) and (71). We note that the boundary value problem (58) is equivalent to the boundary 
value problem (19) for strong solutions (see, e.g., [71,5]). Using the Faà di Bruno formula [29,54,38], we 
obtain the time series expansion of the composed function ν(α + ξ(t, α)) namely,

ν(α + ξ(t, α)) =
∑
σ≥0

νσ(α)tσ, (77)

with ν0 = ν and νσ given by definition (63) for σ > 0. Using (77) in the first equation of (53) we obtain, for 
σ = 1, the boundary condition ξ1 ·ν = 0 on ∂Ω, and for σ > 1, the boundary condition of the boundary value 
problem (60) with definition (62). Similarly, using (77) in the second equation of (53) we obtain, for σ = 0, 
the boundary condition of the boundary value problem (58), and for σ > 0, the boundary condition of the 
boundary value problem (67) with definition (70). Finally substituting formal time series (55) into equations 
(47), (49), and (54), after collecting terms of the same power σ > 0, we obtain respectively equation (61), 
the second equation of the boundary value problem (67) with definition (69), and definition (71). Let us 
note that in the time series expansion of (49) the term of power σ = 0 does not exist because we have used 
the initial condition ∇ ·a0 = 0 when deriving (49) from (38). If we did not use the initial condition ∇ ·a0 = 0
in deriving (49) from (38), new terms (of degree zero and one in σ-power) involving ∇ · a0 would appear 
in (49). But the time series expansion of this modified version of (49) or directly the time series expansion 
of (38), by using (45) and (55), would lead to the equation ∇ · a0 = 0, for the term of power σ = 0 in 
the corresponding time series expansion. Therefore, if we do not assume initially the condition ∇ · a0 = 0, 
we retrieve it from the time series expansion of the Lagrangian formulation of the e-MHD equations. This 
means that some constraints on the initial condition are already encoded in the Lagrangian formulation of 
the equations. This ends the proof of Proposition 3. �
3.3. Convergence analysis of the recursive scheme

Here, we prove Theorem 2. For this we need to prove first that the time series expansion (45), for ξ and Ψ, 
converge and are time-ultradifferentiable in the log-superlinear Faà di Bruno class C{M}(]0, T [; Hs(Ω)) (see 
Definition 1). Using (ξ, Ψ) ∈ C{M}(]0, T [; Hs(Ω)), u0 ∈ Hs(Ω), and a0 ∈ Hs+2(Ω), we deduce from (45)
that (X, A) ∈ C{M}(]0, T [; Hs(Ω)). Next, using (ξ, Ψ) ∈ C{M}(]0, T [; Hs(Ω)), the Lagrangian formulation 
(50)-(51) for B and E, and the algebra property (81) for Sobolev spaces Hs(Ω), we obtain that (B, E) ∈
C{M}(]0, T [; Hs−1(Ω)). As already observed in Remark 4, from equation (51) the regularity result (X, A) ∈
C{M}(]0, T [; Hs(Ω)) implies (U, P ) ∈ C{M}(]0, T [; Hs(Ω)). Then the rest of the proof is devoted to show 
(ξ, Ψ) ∈ C{M}(]0, T [; Hs(Ω)).
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To simplify the notation, the norm ‖ · ‖Hs(Ω) will be sometimes denoted by ‖ · ‖Hs . Any space-time 
dependent vector-valued function ψ :]0, T [×Ω �→ R3, belongs to the space C{M}(]0, T [; Hs(Ω)) if, and only 
if, there exists a real positive number � such that the set

{‖∂σ
t ψ‖Hs(Ω)

�σ σ!Mσ
, σ ∈ N, t ∈]0, T [

}
, (78)

is bounded. A sufficient condition to obtain (ξ, Ψ) ∈ C{M}(]0, T [; Hs(Ω)) is that the generating function 
t �→ ζ(t), defined by

ζ(t) =
∑
σ>0

(
‖ξσ‖Hs(Ω) + ‖Ψσ‖Hs(Ω)

)
�−σM−1

σ tσ, (79)

is uniformly bounded on ]0, T [.
To derive a priori estimates we need three tools. The first one is the Lemma 1 of [11] that, for the sake 

of completeness, we here give as

Lemma 1. Let ψ : ∂Ω �→ R be a LSL–FdB ultradifferentiable function defined on ∂Ω, which is also LSL–FdB 
ultradifferentiable. Then, there exist positive constants C and R, which depend on ψ, ∂Ω, s, M0, and CD, 
such that

‖∂βψ‖Hs(∂Ω) ≤ CR−|β||β|!M|β|, |β| ≥ 0. (80)

Proof. For the proof of Lemma 1, we refer to the proof of Lemma 1 of [11]. �
We also use repeatedly the property that the Sobolev space Hs(Ω), with s > d/2 (Ω being here a bounded 

domain of Rd, d ≥ 1), is an algebra with respect to the pointwise multiplication, i.e. there exists a constant 
Ca = Ca(s), which depends on s, such that

‖ψϕ‖Hs(Ω) ≤ Ca‖ψ‖Hs(Ω)‖ϕ‖Hs(Ω), ∀ψ, ϕ ∈ Hs(Ω), s > d/2. (81)

The last tool is the continuous surjection of the trace operator ψ �→ ψ|∂Ω from Hs(Ω) to Hs−1/2(∂Ω), for 
s ≥ 1, with the continuity constant C∂ (see, e.g., [79]), i.e.

‖ψ|∂Ω‖Hs−1/2(∂Ω) ≤ C∂‖ψ‖Hs(Ω), ∀ψ ∈ Hs(Ω), s ≥ 1. (82)

We now derive some a priori estimates. For this, we use elliptic regularity estimates in Sobolev spaces 
for non-homogeneous boundary value problems, which are recalled in Appendix A. Using Theorem 3 of 
Appendix A, for the solution ϕσ of the non-homogeneous Neumann boundary value problem (60), we have 
the following elliptic regularity estimates

‖ϕσ‖Hs+1(Ω) ≤ C1
(
‖∇ · ξσ‖Hs−1(Ω) + ‖ξσ · ν‖Hs−1/2(∂Ω)

)
. (83)

Using Theorem 4 of Appendix A, we have the following elliptic regularity estimates

‖Φσ‖Hs+1(Ω) ≤ C2‖∇ × ξσ‖Hs−1(Ω), (84)

for the solution Φσ of the non-homogeneous boundary value problem (65), and

‖Ψσ‖Hs(Ω) ≤ C3
(
‖fσ‖Hs−2(Ω) + ‖gσ‖Hs−1/2(∂Ω) + ‖hσ‖Hs−3/2(∂Ω)

)
, (85)
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for the solution Ψσ of the non-homogeneous boundary value problem (67). Using the Helmholtz–Hodge 
decomposition (59) for the coefficient ξσ, we obtain for σ > 0,

‖ξσ‖Hs(Ω) ≤ ‖∇ · ϕσ‖Hs(Ω) + ‖∇ × Φσ‖Hs(Ω)

≤ ‖ϕσ‖Hs+1(Ω) + ‖Φσ‖Hs+1(Ω)

≤ C12
(
‖∇ × ξσ‖Hs−1(Ω) + ‖∇ · ξσ‖Hs−1(Ω) + ‖ξσ · ν‖Hs−1/2(∂Ω)

)
, (86)

with C12 = max{C1, C2}. Using (85)-(86), we obtain from the definition of the generating function (79),

ζ(t) ≤ C123
∑
σ>0

(
‖∇ · ξσ‖Hs−1(Ω) + ‖∇ × ξσ‖Hs−1(Ω) + ‖ξσ · ν‖Hs−1/2(∂Ω)

+ ‖fσ‖Hs−2(Ω) + ‖gσ‖Hs−1/2(∂Ω) + ‖hσ‖Hs−3/2(∂Ω)

)
�−σM−1

σ tσ, (87)

with C123 = max{C12, C3}. We must estimate the right hand side of (87). This is here that the assumption 
of Theorem 2 on the regularity of the boundary ∂Ω plays a crucial role. Since the boundary ∂Ω is a LSL–FdB 
ultradifferentiable manifold, then the normal vector ν : ∂Ω �→ R3 is LSL–FdB ultradifferentiable and using 
Lemma 1, there exist positive real constants Cν , and Rν such that, for 0 ≤ s < ∞, and |β| ≥ 0,

‖∂βν‖Hs(∂Ω) ≤ CνR
−|β|
ν |β|!M|β|, (88)

where the sequence {Mσ}σ≥0 satisfies Definition 1. An estimate of the right-hand side of (87) is given by

Proposition 4. Let s > 3/2. Then there exist positive constants

Cd = Cd(Ca,M0),

Cr = Cr(Ca,M0,M1, �, ‖a0‖Hs),

Cn = Cn(Ca,M0, Cν , C∂),

Cf = Cf (Ca,M0, ‖a0‖Hs),

Cg = Cg(Ca,M0, Cν , C∂ , ‖a0‖Hs),

Ch = Ch(Ca,M0, C∂),

such that
∑
σ>0

‖∇ · ξσ‖Hs−1(Ω)�
−σM−1

σ tσ ≤ Cdζ
2(t)(1 + ζ(t)), (89)

∑
σ>0

‖∇ × ξσ‖Hs−1(Ω)�
−σM−1

σ tσ ≤ ‖u0‖Hs�−1M−1
1 t + Crζ(t)

(
t + (1 + t)ζ(t)

)
, (90)

∑
σ>0

‖ξσ · ν‖Hs−1/2(∂Ω)�
−σM−1

σ tσ ≤ Cnζ(t)
(
1 −K−1

ν ζ(t)
)−1

, (91)

∑
σ>0

‖fσ‖Hs−2(Ω)�
−σM−1

σ tσ ≤ ˙̃ζ(t) + Cfζ(t)
(
1 + ζ(t) + ζ2(t) + ζ3(t) + ζ4(t)

)
, (92)

∑
σ>0

‖gσ‖Hs−1/2(∂Ω)�
−σM−1

σ tσ ≤ Cg(1 + ζ(t))
(
1 −K−1

ν ζ(t)
)−1

, (93)

∑
‖hσ‖Hs−3/2(∂Ω)�

−σM−1
σ tσ ≤ Chζ(t)

(
1 + ζ(t) + ζ2(t)

)
, (94)
σ>0
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with K−1
ν = CaC∂/Rν , and ζ̃(t) = (�/CD) 

∑
σ>0

(
‖ξσ‖Hs(Ω) + ‖Ψσ‖Hs(Ω)

)
(�/CD)−σM−1

σ tσ.

Proof. In order not to need to determine the purely numerical constants, which arise in a priori estimates 
and are not relevant, we introduce the notation A � B and A � B defined as follows. The notation A � B

(resp. A � B) means that there exists a purely numerical constant Cnum such that A ≤ CnumB (resp. 
A = CnumB). We start with estimate (89). Using the algebra property (81), and the superlinearity property 
(27), we obtain from (61),

‖∇ · ξσ‖Hs−1

�σMσ
� CaM0

∑
σ1+σ2=σ
σ1, σ2>0

‖ξσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

+ C2
aM

2
0

∑
σ1+σ2+σ3=σ
σ1, σ2, σ3>0

‖ξσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

‖ξσ3‖Hs

�σ3Mσ3

.

Multiplying the above estimate by tσ and summing the result over the index σ, we obtain (89) with

Cd � CaM0 max{1, CaM0}.

We continue with the proof of (90). Using the algebra property (81), and the superlinearity property (27), 
we obtain from (57) and (66),

‖∇ × ξσ‖Hs−1

�σMσ
� ‖u0‖Hs

�M1
δ1σ + M0

�M1

‖Ψσ−1‖Hs

�σ−1Mσ−1
+ CaM0

�M1
‖a0‖Hs

‖ξσ−1‖Hs

�σ−1Mσ−1

+ CaM
2
0

�M1

∑
σ1+σ2+1=σ
σ1, σ2>0

‖Ψσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

+ CaM0
∑

σ1+σ2=σ
σ1, σ2>0

‖ξσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

Multiplying the above estimate by tσ and summing the result over the index σ, we obtain (89) with

Cr � M0 max{(1 + Ca‖a0‖Hs)�−1M−1
1 , CaM0�

−1M−1
1 , Ca}.

We continue with the proof of (91). Using the algebra property (81), the superlinearity property (27), and 
the continuous surjection of the trace operator (82), we obtain from (62),

‖ξσ · ν‖Hs−1/2(∂Ω)

�σMσ
≤ C∂CaM0

∑
σ1+σ2=σ
σ1, σ2>0

‖ξσ1‖Hs(Ω)

�σ1Mσ1

‖νσ2‖Hs−1/2(∂Ω)

�σ2Mσ2

. (95)

We then have to control ‖νσ‖Hs−1/2(∂Ω) in (95). Using the algebra property (81), the continuous surjection 
of the trace operator (82), and the Cauchy-like estimate (88), we obtain from (63)-(64),

‖νσ‖Hs−1/2(∂Ω)

�σMσ
≤ Ca

∑
1≤|β|≤σ

‖∂βν‖Hs−1/2(∂Ω)

�σMσ
(CaC∂)|β|

σ∑
i=1

∑
Pi(σ,β)

i∏
j=1

‖ξ1
�j
‖k

1
j

Hs(Ω)

k1
j !

. . .
‖ξ3

�j
‖k

3
j

Hs(Ω)

k3
j !

≤ CaCν

∑
1≤|β|≤σ

(
CaC∂

Rν

)|β| |β|!M|β|
�σMσ

σ∑
i=1

∑
Pi(σ,β)

i∏
j=1

‖ξ1
�j
‖k

1
j

Hs

k1
j !

. . .
‖ξ3

�j
‖k

3
j

Hs

k3
j !

≤ CaCν

∑ (
CaC∂

Rν

)|β| |β|!
�σ
1≤|β|≤σ
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σ∑
i=1

∑
Pi(σ,β)

M|β|M
|k1|
�1

. . .M
|ki|
�i

Mσ

i∏
j=1

(‖ξ�j‖Hs

M�j

)|kj | 1
kj !

. (96)

It is now convenient to introduce the following notation,

μ1 := �1, . . . , μ|k1| := �1, μ|k1|+1 := �2, . . . , μ|k1|+|k2| := �2, . . . , μ|k1|+...+|ki| := �i,

in terms of which we have

M
|k1|
�1

. . . M
|ki|
�i

= Mμ1 . . . Mμ|k1|Mμ|k1|+1 . . . Mμ|k1|+|k2| . . . Mμ|k1|+...+|ki|

= Mμ1 . . . Mμ|β| .

Using the FdB-stability property (28) and definition (64) for the set Pi(σ, β), we obtain

M|β|M
|k1|
�1

. . . M
|ki|
�i

Mσ
=

M|β|Mμ1 . . . Mμ|β|

Mσ
≤

Mμ1+...+μ|β|

Mσ
=

M|k1|�1+...+|ki|�i
Mσ

= 1. (97)

Using (97) and the definition of the generating function (79), we obtain from (96),

‖νσ‖Hs−1/2(∂Ω)

�σMσ
≤ CaCν

∑
1≤|β|≤σ

(
CaC∂

Rν

)|β|
|β|!

σ∑
i=1

∑
Pi(σ,β)

i∏
j=1

(‖ξ�j‖Hs

��jM�j

)|kj | 1
kj !

≤ CaCν

σ! σ!
∑

1≤|β|≤σ

(
CaC∂

Rν

)|β|
|β|!

σ∑
i=1

∑
Pi(σ,β)

i∏
j=1

(
∂
�j
t ζ(0)

)|kj |

kj !(�j)|kj |
. (98)

We introduce the function K : R3 �→ R, defined by

K(x1, x2, x3) =
3∏

i=1

(
1 −K−1

ν xi

)−1/3
, K−1

ν := CaC∂/Rν , (99)

and such that

(∂βK)(0, 0, 0) = ∂|β|
z K(z, z, z)|z=0 = |β|!K−|β|

ν . (100)

Using (99)-(100), and setting

Θ(σ)(0) = σ!
∑

1≤|β|≤σ

(∂βK)(0, 0, 0)
σ∑

i=1

∑
Pi(σ,β)

i∏
j=1

(
∂
�j
t ζ(0)

)|kj |

kj !(�j)|kj |
,

we obtain from (98),

‖νσ‖Hs−1/2(∂Ω)

�σMσ
≤ CaCν

Θ(σ)(0)
σ! . (101)

Multiplying (101) by tσ, summing the result over the index σ, and using the Faà di Bruno formula, we 
obtain
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∑
σ>0

‖νσ‖Hs−1/2(∂Ω)

�σMσ
tσ ≤ CaCν

∑
σ>0

Θ(σ)(0) t
σ

σ!

≤ CaCνΘ(t)

≤ CaCνK(ζ(t), ζ(t), ζ(t))

≤ CaCν

(
1 −K−1

ν ζ(t)
)−1

. (102)

Multiplying (95) by tσ, summing the result over the index σ, and using (102), we obtain (91) with

Cn = C2
aCνC∂M0.

We now deal with estimate (92). Using the algebra property (81), the differentiation property (26), and the 
superlinearity property (27), we obtain from (68),

‖fσ‖Hs−2

�σMσ
≤ �

CD

(σ + 1)‖ξσ+1‖Hs−2

(�/CD)σ+1Mσ+1
+ Ca

�σMσ
‖gσ‖Hs−1‖a0‖Hs + CaM0

∑
σ1+σ2=σ
σ1, σ2>0

‖gσ1‖Hs−1

�σ1Mσ1

‖Ψσ2‖Hs

�σ2Mσ2

.

(103)
We then have to control ‖gσ‖Hs−1 in (103). Using the algebra property (81), and the superlinearity property 
(27), we obtain from (71),

‖(gσ)ij‖Hs−1

�σMσ
� ‖ξσ‖Hs

�σMσ
+ CaM0

∑
σ1+σ2=σ
σ1, σ2>0

‖ξσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

+ C2
aM

2
0

∑
σ1+σ2+σ3=σ
σ1, σ2, σ3>0

‖ξσ1‖Hs

�σ3Mσ3

‖ξσ2‖Hs

�σ2Mσ2

‖ξσ3‖Hs

�σ3Mσ3

+ C3
aM

3
0

∑
σ1+σ2+σ3+σ4=σ
σ1, σ2, σ3, σ4>0

‖ξσ1‖Hs

�σ3Mσ3

‖ξσ2‖Hs

�σ2Mσ2

‖ξσ3‖Hs

�σ3Mσ3

‖ξσ4‖Hs

�σ4Mσ4

.

Multiplying the above expression by tσ and summing the result over the index σ, we obtain

∑
σ>0

‖(gσ)ij‖Hs−1

�σMσ
tσ � ζ(t)

(
1 + CaM0ζ(t) + (CaM0ζ(t))2 + (CaM0ζ(t))3

)
. (104)

Multiplying (103) by tσ, summing the result over the index σ, and using (104), we obtain (92) with

Cf � max
{
Ca‖a0‖Hs , CaM0(1 + Ca‖a0‖Hs), C2

aM
2
0 (1 + Ca‖a0‖Hs), C3

aM
3
0 (1 + Ca‖a0‖Hs), C4

aM
4
0
}
.

We now deal with estimate (93). Using the algebra property (81), the superlinearity property (27), and the 
continuous surjection of the trace operator (82), we obtain from (70),

‖gσ‖Hs−1/2(∂Ω)

�σMσ
≤ CaC∂‖a0‖Hs

‖νσ‖Hs−1/2(∂Ω)

�σMσ
+ CaC∂M0

∑
σ1+σ2=σ
σ1, σ2>0

‖Ψσ1‖Hs(Ω)

�σ1Mσ1

‖νσ2‖Hs−1/2(∂Ω)

�σ2Mσ2

. (105)

Multiplying (105) by tσ, summing the result over the index σ, and using (102), we obtain (93) with

Cg = C2
aCνC∂ max{M0, ‖a0‖Hs}.
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Finally we deal with estimate (94). Using the algebra property (81), the superlinearity property (27), and 
the continuous surjection of the trace operator (82), we obtain from (69),

‖hσ‖Hs−3/2(∂Ω)

�σMσ
≤ C∂

‖hσ‖Hs−1(Ω)

�σMσ

� C∂Ca‖a0‖Hs

‖ξσ‖Hs

�σMσ

+ C∂

∑
σ1+σ2=σ
σ1, σ2>0

{
CaM0

‖ξσ1‖Hs

�σ1Mσ1

‖Ψσ2‖Hs

�σ2Mσ2

+ C2
aM0‖a0‖Hs

‖ξσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

}

+ C∂C
2
aM

2
0

∑
σ1+σ2+σ3=σ
σ1, σ2, σ3>0

‖ξσ1‖Hs

�σ1Mσ1

‖ξσ2‖Hs

�σ2Mσ2

‖Ψσ3‖Hs

�σ3Mσ3

. (106)

Multiplying (106) by tσ and summing the result over the index σ, we obtain (94) with

Ch � CaC∂ max
{
‖a0‖Hs , M0(1 + Ca‖a0‖Hs), CaM

2
0
}
.

Therefore the proof of Proposition 4 is complete. �
We now complete the proof of Theorem 2. Combining (87) and estimates of Proposition 4 we obtain the 

following differential inequality,

ζ(t) ≤ C123

{
‖u0‖Hs�−1M−1

1 t + ˙̃ζ(t) + Cdrfh(1 + t)ζ(t)
(
1 + ζ(t)

)
+ Cdfhζ

3(t) + Cfζ
4(t) + Cfζ

5(t) + Cng

(
1 + ζ(t)

)(
1 −K−1

ν ζ(t)
)−1

}
, (107)

where

Cdrfh = Cd + Cr + Cf + Ch, Cdfh = Cd + Cf + Ch, and Cng = Cn + Cg.

Setting

λ(t) := ‖u0‖Hs�−1M−1
1 t,

Q(t) := λ(t) − C−1
123ζ(t) + Cdrfh(1 + t)ζ(t)

(
1 + ζ(t)

)
+ Cdfhζ

3(t) + Cfζ
4(t) + Cfζ

5(t),

Z(t) := Q(t) + Cng

(
1 + ζ(t)

)(
1 −K−1

ν ζ(t)
)−1

,

inequality (107) can be recast as

− ˙̃ζ(t) ≤ Z(t),

which gives, after time integration, the following final inequality

ζ̃(t) +
t∫

0

Z(τ)dτ ≥ 0. (108)

A sufficient condition for inequality (108) to hold is to have both
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Q(t) ≥ 0, and ζ(t) ≤ Kν . (109)

Following [13,11], we can show that there exists a time T > 0, with

T = T (‖u0‖Hs , ‖a0‖Hs , M0, M1, Ca, C∂ , Cν , Kν , �)

such that for all t ∈]0, T [, the sufficient condition (109) is satisfied, which ends the proof Theorem 2.

Appendix A. Regularity estimates for some non-homogeneous elliptic boundary value problems

The literature concerning non-homogeneous elliptic boundary value problems is so huge that we can not 
cite all of it. We only cite a few, which are relevant for our problem, such as [2,3,87,88,79,85,50,45,101,44,
4,71,5]. The following theorems are extracted from [79,16,45,101,71].

Theorem 3. Let Ω be a bounded and simply-connected domain of R3 with C∞ boundary. Let ν be the outward 
pointing unit normal to the boundary ∂Ω, whose the elementary measure is denoted by dΓ. Let p and s be 
respectively an integer and a real such that 1 < p < ∞ and s ≥ 0. Let f : Ω �→ R, and g : ∂Ω �→ R be such 
that f ∈ W s,p(Ω) and g ∈ W s+1−1/p,p(∂Ω). We consider the following non-homogeneous boundary value 
problem, ⎧⎨

⎩Δϕ = f on Ω,

∂νϕ = g on ∂Ω.
(110)

The non-homogeneous boundary value problem (110) is solvable if and only if the data obey the integrability 
or solvability condition, ∫

Ω

fdΩ =
∫
∂Ω

gdΓ. (111)

The non-homogeneous boundary value problem (110) has a unique solution up to a constant. Moreover there 
exists a constant C = C(s, p, Ω) such that this solution satisfies the following regularity estimate

‖ϕ‖W s+2,p(Ω) ≤ C
(
‖f‖W s,p(Ω) + ‖g‖W s+1−1/p,p(∂Ω)

)
. (112)

Proof. A proof of Theorem 3 can be found for example in [45] (Theorem 1.10) or in [16] (Lemma 1, see also 
[79]). �
Theorem 4. Let Ω be a bounded and simply-connected domain of R3 with C∞ boundary. Let ν be the 
outward pointing unit normal to the boundary ∂Ω. Let p and s be respectively an integer and a real such 
that 1 < p < ∞ and s ≥ 0. Let f : Ω �→ R3, g : ∂Ω �→ R3, and h : ∂Ω �→ R be such that f ∈ W s,p(Ω), 
g ∈ W s+2−1/p,p(∂Ω), and h ∈ W s+1−1/p,p(∂Ω). We consider the following non-homogeneous boundary value 
problem,

⎧⎪⎪⎨
⎪⎪⎩

ΔΦ = f on Ω,

∇ · Φ = h on ∂Ω,

Φ × ν = g on ∂Ω.

(113)

The non-homogeneous boundary value problem (113) has a unique solution. Moreover there exists a constant 
C = C(s, p, Ω) such that this solution satisfies the following regularity estimate
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‖Φ‖W s+2,p(Ω) ≤ C
(
‖f‖W s,p(Ω) + ‖g‖W s+2−1/p,p(∂Ω) + ‖h‖W s+1−1/p,p(∂Ω)

)
. (114)

Proof. A proof of Theorem 4 can be found for example in [101] (Corollary 3.4.8 and Lemma 3.4.7) or in 
[71] (Lemma 4.4). �
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