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ABSTRACT
In this paper, we study the Hamiltonian dynamics of charged particles subject to a non-self-consistent stochastic electric field when the
plasma is in the so-called weak turbulent regime. We show that the asymptotic limit of the Vlasov equation is a diffusion equation in the
velocity space but homogeneous in the physical space. We obtain a diffusion matrix, quadratic with respect to the electric field, which
can be related to the diffusion matrix of the resonance broadening theory and of the quasilinear theory, depending on whether the typ-
ical autocorrelation time of particles is finite or not. In the self-consistent deterministic case, we show that the asymptotic distribution
function is homogenized in the space variables, while the electric field converges weakly to zero. We also show that the lack of compact-
ness in time for the electric field is necessary to obtain a genuine diffusion limit. By contrast, the time compactness property leads to
a “cheap” version of the Landau damping: the electric field converges strongly to zero, implying the vanishing of the diffusion matrix,
while the distribution function relaxes, in a weak topology, toward a spatially homogeneous stationary solution of the Vlasov–Poisson
system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0022130

I. INTRODUCTION
Here, we are interested in a problem of particle diffusion, which is produced by the wave–particle interaction. In plasma physics,

the wave–particle interaction is an important phenomenon, which stands at the root of Landau damping, of wave heating, of numerous
instabilities, and of some regimes of anomalous transport in magnetically confined plasmas. This work is closely related to the so-called
quasilinear (QL) theory, which describes the nonlinear relaxation of the weak warm beam-plasma instability through the derivation of a
diffusion equation in the velocity variable conjugated with the prediction of an associated diffusion coefficient. This topic has led to a
longstanding controversy that is not solved yet.2,10,14,18,19,25–34,36,38,40–46,52,54,56,57 References cited above are not exhaustive but testify to the
huge literature on this subject. For a brief history on the development of the QL theory, we refer the reader to Refs. 10 and 44. Further-
more, the QL diffusion coefficient is quite frequently used for modeling particle transport in different branches of plasma physics, such
as laser-plasma interaction or magnetized plasma turbulence. Since the QL approximation is ubiquitous, particularly in kinetic modelling,
it is then important to assess, in the most rigorous possible way, whether the QL theory is valid or not. A complete and rigorous proof
of the QL theory goes beyond the purpose of this paper, which aims at taking stock of what can or cannot be rigorously proven at this
time.

We now sketch this problem in dimension one (see, e.g., Ref. 34 for an intuitive introduction and Chap. 8 and 9 of Ref. 21 or Chap.
7 of Ref. 31 for a more exhaustive one). We consider a two-dimensional distribution function of particles in the two-dimensional phase
space (x, v). This distribution function is initially given by a one-dimensional (in v) spatially uniform (in x) beam-plasma system. This
beam corresponds to a gentle and small bump on the tail of the electronic plasma velocity distribution function (see, e.g., Sec. 9.4 of
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Ref. 39). The study of the bump-on-the-tail instability dates back to the pioneering work of Buneman16 on the two-stream instability,
where each stream is considered as a mono-kinetic beam. Using the Nyquist method (see, e.g., Sec. 9.6 of Ref. 39), Penrose49 derived a
criterion, the so-called Penrose criterion for instability, under which the beam-plasma system distribution function (spatially uniform and
one-dimensional in the velocity variable) constitutes an unstable equilibrium (i.e., an unstable stationary solution of the Vlasov–Poisson
equations). Then, any initial small perturbations of the beam-plasma system are destabilized by the inversion of the electron population
corresponding to the positive slope interval of the velocity distribution. This gives rise to electrostatic waves, which first grow linearly until
the beginning of a saturation stage, where the amplitude of waves reaches a non-negligible value. In this resulting wave spectrum, the par-
ticle dynamics becomes chaotic enough in their range of phase velocities so that the bump is eroded with eventually a plateau formation
in the distribution function. Simultaneously, there is a transfer of momentum from particles to electric waves, generating a turbulent spec-
trum of waves. This scenario was first predicted on a theoretical basis26,57 by considering the wave–particle interaction as perturbative and
neglecting all nonlinear wave–wave interactions in the Vlasov–Poisson equation, except for their effect on the space-averaged distribution
function f = f (t, v). This led to the set of QL equations coupling the distribution function f and the Fourier modes E(t, k) of the electric
field,

∂t f (t, v) − ∂v(DQL(t, v)∂v f (t, v)) = 0, (1)

∂t ∣E(t, k)∣2 = 2γ(t, k)∣E(t, k)∣2, (2)

where the QL diffusion coefficient is given by

DQL(t, v) = π∑
k∈Z
∣E(t, k)∣2δ(ω(t, k) − kv)61. (3)

The real functions (t, k)↦ ω(t, k) and (t, k)↦ γ(t, k) satisfy the following dispersion equation:

D(k,ω(t, k) + iγ(t, k)) = 0, with

D(k,ω(t, k) + iγ(t, k)) ∶= 1 +
ω2

p

k2 ∫R
dv

k∂v f (t, v)
ω(t, k) − kv + iγ(t, k)

,
(4)

where ωp is the plasma frequency.21,26,39,57 System (1)–(4) is a closed and self-consistent system of equations. We recall that in the case
of the gentle-bump-on-the-tail instability, an approximate solution of the dispersion equation is given (see, e.g., Ref. 39) by the so-called
Bohm–Gross relation

ω2
(t, k) ≃ ω2

(k) ∶= ω2
p(1 + 3k2λ2

D), (5)

with the Debye length λD ∶= vth/ωp and the thermal velocity squared v2
th ∶= ∫ f v2dv/ ∫ f dv. The approximate growth rate is given by

γ(t, k) ≃
π
2
ω2

p

k2 ω(k)∫R
dv δ(ω(k) − kv)k∂v f (t, v). (6)

Therefore, the system constituted by (1), (2), (5), and (6) is also a closed and self-consistent system. This approximate solution relies on the
following assumptions: v ↦ f (t, v) is even, γ/ω≪ 1 (weak instability), and kλD ≪ 1 (long wavelength approximation) (see, e.g., Ref. 39 for
more details). Let us note that the dispersion equation and its approximate solution are the same as for the Landau damping case, where the
damping rate γ given by (6) is negative because the slope of f so is.

We must emphasize that, even from a physical and physicist’s point of view, the derivation of quasilinear theory from either a determin-
istic or a probabilistic approach is actually not clear. Indeed, the original 1962 derivation,26,57 briefly exposed above, is deterministic. Right
after there were many other derivations of the QL theory, most of them (see, e.g., Refs. 3, 5, and 21 and references therein) appeal to some
statistical arguments, like the random phase approximation (RPA), and invoke some time/space decorrelation hypotheses. From a numerical
point of view, it has been shown in Ref. 10 that a statistical ensemble average of solutions of the Vlasov–Poisson system is required to recover
a QL description of the long time behavior of the weak warm beam-plasma system.

In this work, we consider both the self-consistent deterministic case and the non-self-consistent stochastic case. Here, the term “self-
consistent” means that the electric field is produced by the particles themselves through the coupling with the Poisson equation. In the
self-consistent deterministic case, we show that the asymptotic distribution function is homogenized in the space variables, while the self-
consistent electric field converges weakly to zero. As already observed in related works (e.g., Ref. 6), we show that the lack of time compactness
for the electric field is compulsory to obtain a non-trivial and thus a diffusion limit for the Vlasov equation. By contrast, the time compactness
property leads to a cheap version of the Landau damping, where the electric field converges strongly to zero (entailing a null diffusion matrix)
and the distribution function converges weakly to a spatially homogeneous stationary solution of the Vlasov–Poisson system. Actually, the
difficult part is to show a non-zero diffusion limit in the presence of fast time oscillations. Using a Duhamel formula, we formally derive
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a diffusion equation for the asymptotic distribution function, which depends only on the time and velocity variables. Unfortunately, we
are not able to justify rigorously this diffusion limit. This task requires a new approach, which will be the matter of a future work. It is
worthwhile to mention that in the nonlinear regime, the saturation of the weak warm beam-plasma instability generates in phase space a type
of turbulence, which has a very close connection to Hamiltonian chaos theory (see, e.g., Refs. 8 and 35 and references therein). A complete
treatment of the self-consistent deterministic case remains an open issue, the proof of which must be based at least (but not only) on the same
ingredients than those used for proving the Landau damping48 and more particularly on the control of nonlinear wave–wave interactions
(e.g., plasma echoes). In contrast with Landau damping, the main and not the least difficulty is that perturbations are not arbitrarily small,
since wave amplitudes are amplified by the instability. From a mathematical point of view, this makes the nonlinear wave–wave interactions
more difficult to control, especially for showing that the latter remains negligible at least at the end of the relaxation process. The proof of
QL diffusion for this “inverse landau damping” problem remains a challenge. Nevertheless, studying the non-self-consistent problem remains
meaningful. Indeed, it was observed in numerical simulations of the self-consistent problem10 that when the distribution function is enough
phase-space homogenized (after quite a long time), the problem falls into the non-self-consistent framework, even in the strong nonlinear
regime.

As explained in plasma physics literature (see, e.g., Refs. 3 and 21), diffusion in the QL theory comes from the time decorrelation property
of the electric field, which can be considered as a random field. We then place ourselves in similar modeling hypotheses. This second frame-
work is then closer to the case of particles evolving in a given bath of (random) waves9,18,29–31 or particles subject to a reversible reflection
law, which has convenient mixing properties.6 As a result, we prove that the asymptotic limit of the Vlasov equation is a diffusion equation in
the velocity space, where the diffusion matrix is given by the space–time autocorrelation function of the stochastic electric field, the so-called
Reynolds electric stress tensor. Hence, the diffusion matrix is quadratic with respect to the electric field. By specializing a little bit more the
structure of our electric field, we recover, at least from a formal point of view, the diffusion matrix predicted by the QL theory. Our diffusion
matrix can also be related to a refinement of the QL theory called the resonance broadening theory.1,21,27,51,58 For the present problem and to
our knowledge, our results have not been found in the literature so far. For the proof of the non-self-consistent stochastic case, we follow the
strategy introduced in Ref. 50, which relies on short-time decorrelation properties. These techniques have been successfully used in various
physical contexts.7,15,20,37,47

The outline of this paper is as follows: Sec. II describes the weak turbulent regime, which is characterized by some dimensionless parame-
ters. In Sec. III, we deal with the self-consistent deterministic case. In Sec. IV, we deal with the non-self-consistent stochastic case. Section IV A
collects all the hypotheses on the stochastic electric field. Section IV B contains our main result about the diffusion limit of the Vlasov equa-
tion, the proof of which is done in Sec. IV C. Finally, Sec. IV D connects our result with some kinetic turbulence theories of plasma physics,
such as the resonance broadening theory and the quasilinear theory.

II. THE WEAK TURBULENT REGIME
A. Dimensionless parameters

The Vlasov–Poisson system, describing the self-consistent evolution of the distribution function of particles f = f (t, x, v) in an
electrostatic plasma, reads

∂t f + v ⋅ ∇x f +
q
m

E ⋅ ∇v f = 0, (7)

E = −∇Φ, −ΔΦ =
q
ε0
(∫

Rd
dv f − 1). (8)

Here, t ∈ R, x ∈ Td
∶= (R/2πZ)d, and v ∈ Rd, represent, respectively, time, position, and velocity of particles of charge q and mass m, which

are accelerated by the “turbulent” electric field E = E(t, x). Since the plasma is globally neutral, we have

1
(2π)d∫Td

dx∫
Rd

dv f = 1. (9)

In order to have a well-posed problem, we must add the zero-mean electrostatic condition

∫
Td

dx E = 0. (10)

Indeed, condition (10) is necessary to invert the Laplacian operator Δ. The phase space is denoted by Q ∶= Td
×Rd. In order to write the

Vlasov–Poisson system [(7) and (8)] in a dimensionless form, we need to introduce a time unit t̂, a length unit x̂, a velocity unit v̂, and typical
amplitudes Ê, Φ̂ and f̂ for the electric field, the electric potential, and the distribution function, respectively. The dimensionless variables and
physical quantities read
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t′ =
t
t̂

, x′ =
x
x̂

, v′ =
v

v̂
, E′ =

E
Ê

, Φ′ =
Φ
Φ̂

, f ′ =
f
f̂

. (11)

We set

n̂ ∶= f̂ v̂d, (12)

the typical value of the macroscopic (charge) density of particles. Using the Poisson equation (8), we obtain the following dimensional
equation:

Ê = n̂x̂q/ε0. (13)

In an electrostatic plasma, the typical length scale is the Debye length λD, while the typical velocity is the thermal velocity vth. The plasma
frequency ωp, which is related to a typical fast oscillation time of an electrostatic plasma, is then given by

ωp =
vth

λD
. (14)

The typical electric and kinetic energies are, respectively, Eel = ε0∣Ê∣2 and Ekin = n̂mv̂2. The distribution function f has a typical evolu-
tion/relaxation time τrel, while the turbulent electric field has two time scales. A slow time scale τL is associated with the instantaneous
growth or damping rate γL ∶= 1/τL of the electric field, while a fast time scale is related to both the wave (electric field) autocorrelation time
τac and the particle autocorrelation time τD. The time τac is the lapse of time needed for a resonant particle, traveling at the same velocity as
the phase velocity of a typical wave, to cross the localized spatial extent of the oscillatory electric field disturbance. This time can also be seen
as the time needed for a resonant particle to resolve the finite frequency width of the wave spectrum. In other words, the time τac can be seen
as the turnover or the lifetime of a typical wave measured or felt by a resonant particle traveling at the same velocity as the phase velocity of
this wave. Then, the synchronization between a wave and a particle occurs in a lapse of time of the order of τac, during which they interact by
momentum transfer. The time τD is the autocorrelation or spreading time of particles, i.e., the lapse of time after which two close particles or
orbits are completely separated from each other. In the plasma physics literature, the time τD is called the Dupree time.27 A particle distribu-
tion function evaluated at two different times separated by a time interval of the order of τD is then decorrelated. The relaxation time τrel of
the distribution function is then of the order of τD. In the self-consistent case, where the Poisson equation is used to compute the electric field
from the particle distribution function, this implies that two evaluations in time of the electric field, separated by a time interval of the order
of τD, are also decorrelated. We now set

t̂ ∶= τL, x̂ ∶= λD, v̂ ∶= vth. (15)

Let ε ∈ (0, 1) be a small dimensionless parameter and τ̄ ∈ [0,+∞] be a positive dimensionless parameter, which may be finite or infinite. Then,
the weak turbulence regime of an electrostatic plasma is defined by (see, e.g., Chap. 7 in Ref. 21)

Eel

Ekin
=
ε0∣Ê∣2

n̂mv̂2 = ε,
1
ωp t̂
= ε2,

τac

t̂
= ε2,

τD

t̂
= τ̄. (16)

Using (11)–(16) and dropping the prime notation for dimensionless variables and physical quantities, we obtain from (7) and (8) the
dimensionless Vlasov–Poisson equations

∂t f ε +
v

ε2 ⋅ ∇x f ε +
Eε

ε
⋅ ∇v f ε = 0, (t, x, v) ∈ R+ × Td

×Rd, (17)

Eε = −∇Φε, −ΔΦε
= ∫

Rd
dv f ε − 1. (18)

The global neutrality condition (9) and the zero-mean electrostatic condition (10) keep the same. We just have to substitute f ε to f in (9) and
Eε to E in (10).

B. Notation
In the rest of this paper, the notation ⟨⋅, ⋅⟩ denotes the duality bracket between the space of distributions D′(R+ ×Q) and the space

D(R+ ×Q) of indefinitely differentiable functions with compact support in R+ ×Q. The L2-scalar product on the phase space Q = Td
×Rd is

defined by

( f , g) ∶=
1
(2π)d∫Td

dx∫
Rd

dv f g∗, ∀ f , g ∈ L2
(Q), (19)
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where the notation (⋅)∗ stands for the complex conjugate. We then have, for g ∈ L1
loc(R

+
×Q),

⟨g,φ⟩ ∶= ∫
R+

dt (g,φ), ∀φ ∈ D(R+ ×Q).

We denote the space average on the torus Td by

∫ dx g(t, x, v) ∶=
1
(2π)d∫Td

dx g(t, x, v).

The one-parameter family of functions {gε}ε>0, which we call sequences (respectively, subsequences) by abuse of language, must be under-
stood as generalized sequences (respectively, subsequences) such as nets (respectively, subnets) in the sense of Moore–Smith or filters
(respectively, finer filters) in the sense of Cartan (for more details, see, e.g., Refs. 13 and 59). We also use the notation gε to denote the
cluster point, at least in the sense of distributions, of a family of functions {gε}ε>0. We next define the free-flow operator by

L ∶= v ⋅ ∇x.

We note t ↦ Sεt the group on Lp
(Q), 1 ≤ p ≤∞, generated by the free-flow operator ε−2L. Then, an explicit formula for the group t ↦ Sεt is

given by

(Sεt g)(x, v) = exp(−
t
ε2 L)g(x, v) = g(x − vt/ε2, v), ∀g ∈ Lp

(Q). (20)

Eventually, the symbol ∣ ⋅ ∣ denotes either the modulus or the Euclidean norm depending on whether we deal with complex/real scalars or
vectors.

III. THE SELF-CONSISTENT DETERMINISTIC CASE
In this section, we deal with the self-consistent deterministic case.

A. Ergodic theorem
We observe two orthogonal behaviors for the asymptotic limit of the Vlasov–Poisson system [(17) and (18)], depending on whether one

makes or not the hypothesis of time compactness. The cornerstone of such observations is the ergodic property of the free-flow operator L
on the torus, which we recall in the following lemma:

Lemma 1 (Ergodicity of the free flow on the torus). Let g ∈ Lp
(Q), with 1 ≤ p ≤∞, satisfy

Lg = 0 in D′(Q).

Then, g = ⨏dx g (g is independent of the variable x).

Proof. We first integrate the free-flow operator by using characteristic curves, and second, we use the spatial Fourier transform
of the obtained solution. Indeed, the characteristic curves (X(τ), V(τ)) of the free flow satisfy the ODEs Ẋ(τ) = V(τ), V̇(τ) = 0,
with initial conditions X(0) = x0 and V(0) = v0. Its solution is given by (X(τ) = x0 + v0τ, V(τ) = v0). Since (dg/dτ)(X(τ), V(τ))
= (v ⋅ ∇x g)(X(τ), V(τ)) = 0, we obtain g(X(τ), V(τ)) = g(X(0), V(0)) or g(x, v) = g(x − vτ, v) for a.e. (x, v) ∈ Q and all τ ∈ R+. The
Fourier transform in space of this last equation gives

(1 − exp(ik ⋅ vτ))ĝ(k, v) = 0, ∀k ∈ Zd, v ∈ Rd, τ ∈ R.

This relation and g ∈ Lp
(Q), with 1 ≤ p ≤∞ (g cannot be a Dirac mass in velocity), imply that the support of ĝ is contained in the set

supp(ĝ) ∶= {(k, v) ∈ Zd
×Rd

∣ k ⋅ vτ ∈ 2πZ, ∀τ ∈ R}. For any δ, T, r, R > 0 such that δ < T and r < R, the Lebesgue measure of the set supp(ĝ)
for δ < τ < T and r < ∣v∣ < R is zero. This forces ĝ to be equal to zero for all k ≠ 0 and then supp(ĝ) ∶= {(k, v) ∣ k = 0, v ∈ Rd

}. Therefore,
g = ⨏dx g and g is independent of the variable x. This ends the Proof of Lemma 1. ◻

Remark 1. The Proof of Lemma 1 is reminiscent of the Proof of Theorem 2.1 in Ref. 17, but it is not exactly the same. Indeed, here we do
not use the Riemann–Lebesgue lemma (in the Fourier dual variable of v), whereas Ref. 17 does. More precisely, the Proof of Theorem 2.1 in
Ref. 17, which is based on the weak formulation of the equation g(x, v) = g(x − vτ, v) against continuous compactly supported test functions,
uses first the Fourier transform in the phase space Q to switch from real variables to Fourier variables in the weak formulation, and it uses second
the Riemann–Lebesgue lemma together with the Lebesgue dominated convergence theorem to pass to the limit.
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Based on the ergodicity of the free flow, we state the following theorem:

Theorem 1.1. Let { f ε0}ε>0 be a sequence of non-negative initial data and C0 be a positive constant such that

∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0, ∫
Q

f ε0∣v∣
2 dxdv ≤ C0, and

∥Eε0 ∶= ∇Δ
−1
(∫

Rd
f ε0dv − 1)∥

L2(Td)

≤ C0.

Let ( f ε, Eε)ε>0 be a sequence of weak solutions of the Vlasov–Poisson system (17)–(18), with initial data f ε
∣t=0
= f ε0, the existence of which has

been proved in Refs. 4, 12, 22, and 23 for all ε > 0. Then, we have the following:

(i) There exists a function f = f (t, v), independent of the variable x, such that f ∈ L∞(R+; L1
∩ L∞(Rd

)), and up to subsequences, one has

f ε ⇀ f in L∞(R+; L∞(Q)) weak−∗,

∫ dx f ε ⇀ f in L∞(R+; L∞(Rd
)) weak−∗.

(ii) The electric field Eε converges weakly to zero as ε→ 0, more precisely,

Eε ⇀ 0 in L∞(R+; W1,1+2/d
(Td
)) weak−∗.

(iii) The expression

∇v ⋅∫ dx
Eε f ε

ε

is uniformly (with respect to ε) bounded in D′(R+ ×Rd
); hence, up to a subsequence, it converges in D′(R+ ×Rd

), and we obtain

∂t f +∇v ⋅∫ dx
Eεf ε

ε
= 0 in D′(R+ ×Rd

), (21)

f ∣t=0 =∫ dx f 0. (22)

(iv) Let d ≤ 4. Moreover, if we suppose that there exists a constant κ, independent of ε such that

∥Eε∥Ws
loc(R

+ ;L1(Td)) ≤ κ, with s > 0, and ∥∂tΦε
∥L1

loc(R
+ ;L1(Td)) ≤ κ, (23)

then

∫ dx
Eε f ε

ε
⇀ 0 in D′([0, T] ×Rd

), (24)

Eε → 0 in L1
([0, T] × Td

) strong

as ε→ 0, and (21) and (22) degenerate into the following equations:

∂t f = 0 in D′([0, T] ×Rd
), (25)

f ∣t=0 =∫ dx f 0. (26)
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Proof. Since ∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0 <∞, by weak compactness arguments, there exists a function f 0 ∈ L1
∩ L∞(Q) such that f ε0 (up

to a subsequence) converges in L∞(Q) weak-∗ to f 0. Indeed, from ∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0 <∞ and using standard weak compactness
theorems, we obtain that there exists f 0 ∈Mb ∩ L∞(Q) such that f ε0 ⇀ f 0 in Mb ∩ L∞(Q) weak–∗. Here, Mb(Q) is the set of bounded
measures on Q. Moreover, ∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0 <∞ implies that ∥ f ε0∥Lp(Q) ≤ C0 <∞, for 1 ≤ p ≤∞. Therefore, we have also f ε0 ⇀ f 0
in Lp

(Q) weak–∗ for 1 < p ≤∞. This and the De La Vallé–Poussin theorem on the criterion for uniform equi-integrability implies that the
family { f ε0}ε>0 is uniformly equi-integrable. Finally, using Dunford–Pettis theorem, uniform equi-integrability implies that we also have
f ε0 ⇀ f 0 in L1

(Q) weak. Therefore, f 0 ∈ L1
∩ L∞(Q).

From the standard theory of existence of weak solutions for the Vlasov–Poisson system,4,12,22,23 we obtain for all ε > 0

∥ f ε(t)∥Lp(Q) ≤ ∥ f ε0∥Lp(Q) ≤ C0 <∞, 1 ≤ p ≤∞. (27)

Then, by weak compactness arguments, there exists a function f ∈ L∞(R+; L1
∩ L∞(Q)) such that f ε (up to a subsequence) converges in

L∞(R+; L∞(Q)) weak–∗ to f and ⨏dx f ε (up to a subsequence) converges in L∞(R+; L∞(Rd
)) weak–∗ to ⨏dx f . From properties of weak

solutions for the Vlasov–Poisson system, weak solutions of (17) and (18) satisfy the following a priori bound:

E(t) ≤ E(0), ∀t ≥ 0, (28)

where the total energy E(t) is defined by

E(t) ∶= 1
2∫Q

dxdv ∣v∣2 f ε(t, x, v) +
ε
2∫Td

dx ∣Eε(t, x)∣2.

From (28) and the initial data assumptions of Theorem 1, we infer that there exists a constant K0, depending on C0 such that

∫
Q

dxdv ∣v∣2 f ε(t, x, v) ≤ K0, and ∥Eε∥L∞(R+ ;L2(Td)) ≤
K0
√
ε

. (29)

Taking φ ∈ D(R+ ×Q) as a test function and using the L2-scalar product (19), the weak formulation of Vlasov equation (17) reads

ε2
⟨ f ε,∂tφ⟩ + ⟨ f ε, v ⋅ ∇xφ⟩ + ε⟨ f ε, Eε ⋅ ∇vφ⟩ = 0. (30)

Using the L∞-bound for f ε and a priori estimate (29) for the electric field Eε, we obtain

∣ε2
⟨ f ε,∂tφ⟩∣ ≤ ε2

(2π)−d
∥∂tφ∥L1(R+×Q)∥ f ε∥L∞(R+×Q) ≤ Cε2 (31)

and

ε∣⟨ f ε, Eε ⋅ ∇vφ⟩∣ ≤ ε∥Eε∥L∞(R+ ;L2(Td))∥ f ε∥L∞(R+ ;L2(Q))∥∇vφ∥L1(R+ ;L2(Rd ;L∞(Td))

≤ C
√
ε. (32)

Using (31) and (32) to pass to the limit ε→ 0 in (30), we obtain

v ⋅ ∇x f = 0 in D′(R+ ×Q).

From Lemma 1, we infer that f is independent of x and ⨏dx f (t) = f (t) for a.e. t > 0. This proves point (i). For proving point (ii), we first
define the charge density ρε by

ρε = ∫
Rd

dv f ε.

From a standard interpolation inequality (see, e.g., Refs. 12, 22, and 23), there exists a constant Cd depending on d such that
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∥ρε∥L∞(R+ ;L1+2/d(Td)) ≤ Cd∥ f ε∥2/(2+d)
L∞(R+×Q)∥ f ε∣v∣2∥

d/(d+2)

L∞(R+ ;L1(Q))
≤ κ0 <∞, (33)

where the constant κ0 depends on C0 but is independent of ε. From the Poisson equation (18), the bound (33) on the charge density ρε and
standard elliptic regularity estimates, we obtain

∥Eε∥L∞(R+ ;W1,1+2/d(Td)) ≤ c0 <∞, (34)

where the constant c0 depends on initial data but is independent of ε. Then, by weak compactness, there exists a function
E ∈ L∞(R+; W1,1+2/d

(Td
)) such that Eε (up to a subsequence) converges in L∞(R+; W1,1+2/d

(Td
)) weak–∗ to E. To determine the limit

point E, we use the Poisson equation (18). Observing that

∫
Rd

dv f = 1

and passing to the limit ε→ 0 in the Poisson equation (18), we obtain

ΔΦ = 0 in D′(R+ × Td
),

which leads toΦ = 0 and E = 0 in D′(R+ × Td
). This ends the proof of point (ii). For point (iii), using the L2-scalar product (19), we first write

the following weak formulation of the Vlasov equation (17) being previously averaged in space:

⟨ f ε,∂tφ⟩ + ⟨
Eε f ε

ε
,∇vφ⟩ = 0, ∀φ ∈ D(R+ ×Rd

). (35)

Using a priori estimates (27) or point (i) of Theorem 1, we obtain, from (35),

∣∫
R+

dt∫
Rd

dv φ∇v ⋅∫ dx
Eε f ε

ε
∣ ≤ ∥ f ε∥L∞([0,T]×Q)∥∂tφ∥L1(R+×Rd) ≤ C <∞,

where C is independent of ε. This implies that ∇v ⋅ ⨏dxEε f ε/ε (up to a subsequence) converges in D′(R+ ×Rd
). Then, using point (i)

of Theorem 1, we can pass to the limit ε→ 0 in (35) to obtain Eq. (21). For proving point (iv), we start by establishing some strong
convergence properties for the sequences Eε and Φε. Using ∥Eε∥Ws

loc(R
+ ;L1(Td)) ≤ κ, with s > 0 [assumption (23) of Theorem 1], and Eε ∈

L∞(R+; W1,1+2/d
(Td
)), we obtain, from a Lions–Aubin theorem,55 that the sequence

Eε is compact in L1+2/d
([0, T] × Td

) strong, ∀T > 0. (36)

We next deal with the sequence Φε. Using the Poisson equation (18), the bound (33) on the charge density ρε, and standard elliptic regularity
estimates, we obtain that Φε

∈ L∞(R+; W2,1+2/d
(Td
)). Using the Sobolev embedding Ws,p

(Rd
)↪Wr,q

(Rd
), with s > r, d > (s − r)p , and

p ≤ q ≤ dp/(d − (s − r)p), we obtain

L∞(R+; W2,1+2/d
(Td
))↪ L∞(R+; Wδ,1+d/2

(Td
)), (37)

with max{0, 2 − d/(1 + 2/d)} < δ < max{2, (−d2
+ 4d + 4)/(d + 2)} and d ≤ 4. Using the embedding (37) and the bound

∥∂tΦε
∥L1

loc(R
+ ;L1(Td)) ≤ κ [assumption (23) of Theorem 1], we obtain from a Lions–Aubin theorem55 that the sequence

Φε is compact in L1+d/2
([0, T] × Td

) strong, ∀T > 0. (38)

Multiplying the Vlasov equation (17) by εΦε, then averaging in space, multiplying the result by a test function φ ∈ D([0, T] ×Rd
), and finally

integrating with respect to the time and velocity variables, we obtain

ε∫
T

0
dt∫

Rd
dv∫ dx φΦε∂t f ε +

1
ε∫

T

0
dt∫

Rd
dv∫ dx φΦεv ⋅ ∇x f ε

+ ∫

T

0
dt∫

Rd
dv∫ dx φΦε

∇v ⋅ (Eε f ε) = 0. (39)

Using integration by parts, we obtain from (39),
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ε∫
T

0
dt∫

Rd
dv∫ dx f ε(Φε∂tφ + φ∂tΦε

) − ∫

T

0
dt∫

Rd
dv φv ⋅∫ dx

Eε f ε

ε

+ ∫

T

0
dt∫

Rd
dv∫ dx f εΦεEε ⋅ ∇vφ = 0. (40)

Using the L∞-bound (27) for f ε and assumption (23), we obtain, for the first term of (40),

ε∣∫
T

0
dt∫

Rd
dv∫ dx f ε(Φε∂tφ + φ∂tΦε

)∣

≤ ε(2π)−d
∥ f ε∥L∞([0,T]×Q)(∥∂tφ∥L∞(0,T;L1(Rd)) + ∥φ∥L∞(0,T;L1(Rd)))

(∥∂tΦε
∥L∞(0,T;L1(Td)) + ∥Φ

ε
∥L∞(0,T;L1(Td))) ≤ Cε. (41)

Using (36) and (38), we infer that the product ΦεEε converges strongly in L1
([0, T] × Td

). Using this strong convergence, the weak
convergence of f ε in L∞([0, T] ×Q) weak–∗ and the fact that the limit point of Eε vanishes, we obtain for the third term of (40),

∣∫

T

0
dt∫

Rd
dv∫ dx f εΦεEε ⋅ ∇vφ∣→ 0 as ε→ 0. (42)

Using (40)–(42), we obtain

∫

T

0
dt∫

Rd
dv φv ⋅∫ dx

Eε f ε

ε
→ 0 as ε→ 0. (43)

Choosing a test function φ such that 0Rd
v
∉ supp(φ) and passing to the limit ε→ 0 in (35), we then obtain from (43),

∫

T

0
dt∫

Rd
dv f ∂tφ = 0. (44)

Since f ∈ L∞([0, T] ×Rd
), Eq. (44) is valid for any φ ∈ D([0, T] ×Rd

); hence, we obtain (24)–(26), which ends the proof. ◻

Few remarks on Theorem 1 are in order.

Remark 2 (electric energy). A priori estimate (29) for Eε is not optimal. In fact, we have Eε ∈ L∞(R+; L2
(Td
)) for d ≤ 4, uniformly

with respect to ε. Indeed, for d ≤ 2, it is obvious from estimate (34). For 3 ≤ d ≤ 4, it comes from estimate (34) and the Sobolev embedding
W1,1+2/d

(Rd
)↪ Lq

(Rd
), with q = d(d + 2)/(d − 2)/(d + 1) and d > 2.

Remark 3 (time compactness).

1. To obtain time compactness, there are a priori three ways. The first one is to obtain time compactness for the electric field by using standard
control on the charge current jε (see, e.g., Refs. 12, 22, and 23), and the Ampère equation given by ε2∂tEε + jε = 0. This method fails because
the presence of the factor ε2 in front the time partial derivative does not give uniform bound (with respect to ε) for ∂tEε. We obtain the same
result from the charge conservation law (to obtain time compactness on the charge density ρε and thus on Eε via the Poisson equation),
since the latter can be recovered by applying the spatial divergence operator to the Ampère equation. The second method is to use averaging
lemmas.24 With this method, we only obtain compactness in the space variables but not in the time variable because in the limit ε→ 0,
the term ε2∂t f ε in the Vlasov equation disappears.24,53 A third way is to obtain time compactness for the distribution function instead of
the electric field. For this, we can show uniform convergence with respect to time in a weak topology for the phase-space variables. Showing
time equi-continuity for the distribution function requires using the Vlasov equation. Here again, the presence of the factor ε2 in front of
the term ∂t f ε in the Vlasov equation makes this method to fail.

2. Point (iv) of Theorem 1 shows that the lack of time compactness is, in fact, a necessary condition for obtaining a genuine or a non-
degenerate diffusion equation in the limit ε→ 0.
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Remark 4 (boundary conditions). As shown in the Proof of Theorem 1, the relation v ⋅ ∇x f = 0 is a direct consequence of a priori estimates.
By a direct computation using Fourier series (see the Proof of Lemma 1), it has been proved that the limit point f is independent of the space
variable x. This is the ergodic property of the torus. Obviously, the same property is true when the torus is replaced by any domain where the
free flow trajectory (x0, v0)↦ (x0 + v0t, v0) with specular reflections at the boundary are dense (this is a definition of ergodicity). Extending the
present analysis to this more general case may be very useful.

Remark 5 (“cheap” Landau damping).

1. What we proved for the rescaled Vlasov–Poisson system, given by (17) and (18), is a “cheap” version of the Mouhot–Villani version of the
Landau damping,48 i.e. that (under convenient hypotheses of regularity for initial conditions and smallness for initial perturbations) the
self-consistent electric field E of the Vlasov–Poisson system (7) and (8) vanishes strongly when t → +∞, while the distribution f relaxes, in
a weak topology, toward a spatially homogeneous stationary solution of the Vlasov–Poisson system. Indeed, if ε is the ratio of the electric
field E(t) of (7) and (8) to the electric field Eε(t) of (17) and (18) [implying that ∣Eε(t)∣ > ∣E(t)∣], with the change of time scale t → t/ε2,
the Vlasov–Poisson system [(7) and (8)] becomes the rescaled Vlasov–Poisson system [(17) and (18)]. In other words, the limit t → +∞ in
(7) and (8) is equivalent to the limit ε→ 0 in (17) and (18), and ε = 1/

√
t stands for the smallest rate at which the electric field E(t) tends

to zero when t → +∞.
2. By considering the rescaled Vlasov–Poisson system [(17)–(18)] in the framework of the Landau damping, we observe that under the

hypotheses of Ref. 48 the electric field converges strongly to zero. From Theorem 1, this strong convergence corresponds to a zero diffusion.
The Mouhot–Villani result48 is obtained for small perturbations (in some analytic norms) of a stable equilibrium profile (in velocity
variables). Here, we are interested in unstable equilibrium profiles that lead to a non-zero diffusion in the velocity space.

The velocity diffusion operator should arise when we pass to the limit in the term ε−1
∇v ⋅ ⨏dx Eε f ε. A rigorous proof of this fact remains

an open issue and will be the matter of a future work. Nevertheless, we can show, at least formally, what is the structure of this term by using
a simple iteration of the Duhamel formula. This is the aim of Sec. III B.

B. Duhamel formula and Fick-type law
Here, we derive formally a Fick-type law for the flux term

∫ dx
Eεf ε

ε
,

appearing in (21). Most of developments of this section are formal, but they allow us to point out the difficulties for showing rigorously
the diffusion limit. This Fick-type law can be obtained from two ways. The first way is a global-in-time approach, which involves the initial
condition f ε0, while the second one, a local-in-time approach, does not. Each approach has its advantages (Lemmas 2 and 3) and drawbacks
(Remarks 7 and 10). In addition, for both approaches, the absence of time decorrelation properties prevents us to determine the structure and
the properties of the diffusion matrix. Nevertheless, a formal WKB approximation allows us to obtain a non-negative diffusion matrix in the
non-self-consistent case.

1. Global-in-time approach
Using the Duhamel formula and (20), we obtain from the Vlasov equation (17) the following representation formula for f ε(t), solution

to (17) and (18):

f ε(t) = Sεt f ε0 −
1
ε∫

t

0
ds Sεt−sE

ε
(s) ⋅ ∇v f ε(s). (45)

Substituting (45) into

−∫
R+

dt∫
Rd

dv φ∇v ⋅∫ dx
Eε f ε

ε
=

1
ε∫R+

dt∫
Rd

dv∫ dx∇vφ ⋅ Eε f ε, ∀φ ∈ D(R+ ×Rd
),

we obtain

− ∫
R+

dt∫
Rd

dv φ∇v ⋅∫ dx
Eε f ε

ε
= Tε

1(φ) + Tε
2(φ), (46)

where
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Tε
1(φ) ∶= ∫

R+
dt∫

Rd
dv

1
ε
∇vφ(t, v) ⋅∫ dx Eε(t, x) f ε0(x − vt/ε2, v)

and

Tε
2(φ) ∶= −∫

R+
dt∫

Rd
dv

1
ε2∇vφ(t, v)⋅

∫

t

0
ds∫ dx Eε(t, x)Eε(s, x − v(t − s)/ε2

) ⋅ (∇v f ε)(s, x − v(t − s)/ε2, v).

For the term Tε
1, we have the following lemma:

Lemma 2. Assume that f ε0 satisfies the hypotheses of Theorem 1. In addition, we suppose that there exists a constant C0, independent of ε,
such that for ∣α∣ ≤ 1,

∑
k∈Zd∗

(∣k∣−1
∥∂αv f̂ ε0(k)∥L1(Rd))

2
≤ C0 if d = 1 and

∑
k∈Zd∗

(∣k∣−2
∥∂αv f̂ ε0(k)∥L1(Rd))

1+2/d
≤ C0 if d ≥ 2.

(47)

Then,

Tε
1 ⇀ 0 in D′(R+ ×Rd

). (48)

Proof. Using Fourier series and the zero-mean electrostatic condition (10), we rewrite the term Tε
1 as

Tε
1(φ) = ∫

R+
dt∫

Rd
dv∑

k∈Zd∗

1
ε
∇vφ(t, v) ⋅ Êε(t,−k)f̂ ε0(k, v) exp(−ik ⋅ vt/ε2

).

Using a velocity integration by parts, we obtain

Tε
1(φ) = −iε∫

R+
dt

1
t ∫Rd

dv∑
k∈Zd∗

∇v ⋅ (
k
∣k∣2
∇vφ(t, v) ⋅ Êε(t,−k)f̂ ε0(k, v)) exp(−ik ⋅ vt/ε2

),

which leads to

∣Tε
1(φ)∣ ≤ ε∫

R+
dt

1
t ∑k∈Zd∗

∣Êε(t, k)∣∣k∣−1

(∥∇
2
vφ(t)∥L∞(Rd)∥f̂

ε
0(k)∥L1(Rd) + ∥∇vφ(t)∥L∞(Rd)∥∇v f̂ ε0(k)∥L1(Rd)). (49)

Using the bound (34) and the Hausdorff–Young inequality, we obtain for d ≥ 2,

∥∣k∣Êε∥L∞(R+ ;ℓ1+d/2(Zd)) ≤ ∥E
ε
∥L∞(R+ ;W1,1+2/d(Td)) ≤ c0. (50)

Using Hölder’s inequality, (50), and assumption (47), we obtain from (49),

∣Tε
1(φ)∣ ≤ ε2c0Cd/(d+2)

0 ∥φ/t∥L1(R+ ;W2,∞(Rd)).

In the same way, using Remark 2 and the Cauchy–Scharwz inequality, we obtain for d = 1,

∣Tε
1(φ)∣ ≤ ε2C

1/2
0 ∥E

ε
∥L∞(R+ ;L2(Td))∥φ/t∥L1(R+ ;W2,∞(Rd)),

which ends the Proof of Lemma 2. ◻

Remark 6. In Lemma 2, the regularity assumption for f ε0 might be refined, but with the presence of the factor ε−1 in the term Tε
1, some

mixing-type hypotheses seem compulsory.
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We now deal with the term Tε
2. Performing the change of time variable s = t − ε2σ, followed by the change of space variable x′ = x − σv,

and using a velocity integration by parts and x-periodicity, we obtain

Tε
2(φ) = ∫

R+
dt∫

Rd
dv∫ dx∫

t/ε2

0
dσ

f ε(t − ε2σ, x, v)∇v ⋅ (Eε(t − ε2σ, x)⊗ Eε(t, x + vσ)∇vφ(t, v)). (51)

Using the time characteristic function χ[0,t/ε2](σ), Eq. (51) can be recast as

Tε
2(φ) = Jε(φ) +Mε

(φ), (52)

where

Jε(φ) = ∫
R+

dt∫
Rd

dv f (t, v)∇v ⋅ (∫
R+

dσ∫ dx χ[0,t/ε2](σ)E
ε
(t − ε2σ, x)⊗ Eε(t, x + vσ)∇vφ(t, v))

and

Mε
(φ) ∶= ∫

R+
dt∫

Rd
dv ∫

R+
dσ

∫ dx χ[0,t/ε2](σ)( f ε(t − ε2σ, x, v) − f (t, v))∇v ⋅ (Eε(t − ε2σ, x)⊗ Eε(t, x + vσ)∇vφ(t, v)).

If we assume that

lim
ε→0

Jε(φ) exists (53)

and

lim
ε→0

Mε
(φ) = 0, (54)

then we obtain from (52),

lim
ε→0

Tε
2(φ) = ∫

R+
dt∫

Rd
dv f (t, v)∇v ⋅ (𝒟 (t, v)T

∇vφ(t, v)), (55)

with

𝒟 (t, v) ∶= lim
ε→0∫R+

dσ∫ dx χ[0,t/ε2](σ)E
ε
(t, x + vσ)⊗ Eε(t − ε2σ, x)

= lim
ε→0∫R+

dσ∫ dx χ[0,t/ε2](σ)E
ε
(t, x)⊗ Eε(t − ε2σ, x − vσ). (56)

Using (46), (48), and (55) to pass to the limit ε→ 0 in (35), we obtain the following diffusion equation:

∂t f (t, v) −∇v ⋅ (𝒟 (t, v)∇v f (t, v)) = 0 in D′([0, T] ×Rd
). (57)

Few remarks are now in order.

Remark 7 (open issues).

1. All computations involving the term Tε
2 are formal and must be justified in a convenient functional framework. In order to justify (53), we

have to show that

Rε
(t, σ, x, v) ∶= χ[0,t/ε2](σ)∇v ⋅ (Eε(t − ε2σ, x)⊗ Eε(t, x + vσ)∇vφ(t, v))

converges weakly in L1
(R+t ×R+σ ×Q). In order to prove (54) and justify (55), we have to show that Rε converges strongly in L1

(R+t ×R+σ
×Q), since f ε(t − ε2σ, x, v) − f (t, v)⇀ 0 in L∞(R+t ×R+σ ×Q) weak–∗. We observe that a crucial point is to obtain enough integrability
with respect the time variable σ, uniformly in ε.
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2. As already observed, the bound ∥Eε∥L∞(R+ ;W1,1+2/d(Td)) ≤ c0 <∞ does not imply strong convergence (because of the lack of time control or
compactness) for the electric field Eε, which would help to justify the above formal computations for the term Tε

2. However, this lack of
time compactness is, in fact, necessary if we do not want to obtain a trivial equation, as stated in point (iv) of Theorem 1. Indeed, from
point (iv) of Theorem 1, time compactness entails a strong convergence to zero of the electric field Eε. This implies the vanishing of the
diffusion matrix 𝒟 given by (56). Without time compactness, the electric field Eε always converges weakly to zero, but not the quadratic
electric tensor Eε ⊗ Eε (this is a property of weak convergence), which implies a non-trivial diffusion matrix 𝒟 . Therefore, weak convergence
seems mandatory to obtain a diffusion limit.

3. Instead of time compactness, time decorrelation properties could help to justified rigorously above computations. In the presence of a non-
self-consistent but stochastic electric field, with convenient hypotheses, some time decorrelation properties allow us to justify rigorously the
limit of the Vlasov equation (17) toward diffusion equations (56) and (57). This is the object of Sec. IV.

Remark 8 (periodic or quasi-periodic time oscillations). Since the defect of time compactness means that the system contains fast oscilla-
tions in time, it would be tempting to apply the analysis of this section to the case of a non-self-consistent deterministic electric field (satisfying
convenient regularity assumptions) with two time scales, one being slow and not periodic and the other being fast and (quasi-)periodic. Such a
standard homogenization problem would lead to solve a hierarchy of equations where the free-streaming operator v ⋅ ∇x, with periodic boundary
condition, must be inverted at each stage of the hierarchy. Since the free-flow operator is not a Fredholm operator, the Fredholm alternative does
not hold for such a transport equation. On the contrary, when considering a non-self-consistent stochastic electric field, the situation is completely
different and we can obtain a diffusion behavior for the statistical average of the distribution function. This is what is done in Sec. IV.

An explicit form of the diffusion matrix in the non-self-consistent deterministic case.
Here, we pursue a little bit further the above formal analysis to explicit the structure of the diffusion matrix (56) by constructing a well-

suited non-self-consistent deterministic electric field. This gives an example of diffusion matrix (56), which is not zero and non-negative.
Introducing the Fourier series decomposition of Eε,

Eε(t, x) = ∑
k∈Zd

e ik⋅xÊε(t, k),

we assume the formal WKB expansion for the Fourier mode Êε(t, k),

Êε(t, k) =∑
j≥0
εjÊj(t, k,Ω(t, k)/ε2

), (58)

where complex vector-valued functions (k, τ)↦ Êj(t, k, τ) are 2π-periodic with respect to the variable τ. Here, functions Êj(t, k,Ω(t, k)/ε2
)

are Hermitian, i.e.,

Ê∗j (t, k,Ω(t, k)/ε2
) = Êj(t,−k,Ω(t,−k)/ε2

),

and the real-valued function k↦ Ω(t, k) is odd with respect to the variable k. As a first approximation of (58), we obtain

Êε(t, k) = Ê0(t, k) exp(−i
Ω(t, k)
ε2 ) +O(ε), (59)

where the real vector-valued function k↦ Ê0(t, k) is even with respect to the variable k. Using (59) and time Taylor expansions, we obtain
from the definition of the diffusion matrix (56),

𝒟 (t, v) = lim
ε→0∫R+

dσ∑
k∈Zd

χ[0,t/ε2](σ) exp(ik ⋅ vσ)Êε(t, k)⊗ Êε(t − ε2σ,−k)

= lim
ε→0

⎛

⎝
∫

R+
dσ∑

k∈Zd

χ[0,t/ε2](σ) exp(i[k ⋅ vσ +Ω(t − ε2σ, k)/ε2
−Ω(t, k)/ε2

])

Ê0(t, k)⊗ Ê0(t − ε2σ,−k) +O(ε))

= lim
ε→0

⎛

⎝
∫

R+
dσ∑

k∈Zd

χ[0,t/ε2](σ) exp(−iσ[∂tΩ(t, k) − k ⋅ v])Ê0(t, k)⊗ Ê0(t, k) +O(ε)
⎞

⎠
. (60)

Using
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lim
ε→0∫R+

dσ χ[0,t/ε2](σ)e
−iστ
= πδ(τ) − i p.v.(

1
τ
) inD′(R)

and parity of functions Ω(t, k) and Ê0(t, k), we obtain from (60),

𝒟 (t, v) = π∑
k∈Zd

Ê0(t, k)⊗ Ê0(t, k)δ(∂tΩ(t, k) − k ⋅ v). (61)

If we assume Ω(t, k) = ω(k)t, then (61) is the diffusion matrix given by the quasilinear theory,21,39 i.e.,

𝒟 (t, v) = π∑
k∈Zd

Ê0(t, k)⊗ Ê0(t, k)δ(ω(k) − k ⋅ v). (62)

Remark 9. If the electric field Eε derives from a potential Φε, i.e., Eε(t, x) = −∇Φε
(t, x), then following the above computations, a WKB

expansion of Φε
(t, x) similar to (58) leads to the diffusion matrix

𝒟 (t, v) = π∑
k∈Zd

∣Ê0(t, k)∣2
k⊗ k
∣k∣2

δ(ω(k) − k ⋅ v).

2. Local-in-time approach
We first integrate, with respect to the time variable, the space-averaged Vlasov equation

∂t∫ dx f ε +∇v ⋅∫ dx
Eε f ε

ε
= 0

between the time t and t + θ, with θ > 0. Then, we multiply the result by φ ∈ D(R+ ×Rd
) and we perform an integration with respect to the

time and velocity variables. Finally, using the L2-scalar product (19) and a velocity integration by parts, we obtain

⟨
f ε(t + θ) − f ε(t)

θ
,φ⟩ =

1
εθ∫R+

dt∫
Rd

dv∫
t+θ

t
ds∫ dx f ε(s)Eε(s) ⋅ ∇vφ(t, v). (63)

Using the Duhamel formula and the notation (20), we obtain from the Vlasov equation (17) the following representation formula for f ε(s):

f ε(s) = Sεs−t+θ̂ f ε(t − θ̂) −
1
ε∫

s

t−θ̂
dσ Sεs−σEε(σ) ⋅ ∇v f ε(σ), (64)

with θ̂ being an arbitrary non-negative time. Substituting (64) into (63), we obtain

⟨
f ε(t + θ) − f ε(t)

θ
,φ⟩ = T ε

1 (φ) + T ε
2 (φ), (65)

where

T ε
1 (φ) ∶= ∫

R+
dt∫

Rd
dv∫

t+θ

t
ds∫ dx

1
εθ

Eε(s) ⋅ ∇vφ(t, v)Sεs−t+θ̂ f ε(t − θ̂) (66)

and

T ε
2 (φ) ∶= ∫

R+
dt∫

Rd
dv

∫

t+θ

t
ds∫

s

t−θ̂
dσ∫ dx

1
ε2θ

Sεs−σ f ε(σ)∇v ⋅ (Sεs−σEε(σ, x)⊗ Eε(s, x)∇vφ(t, v)).

For the term T ε
1 , we assume that
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T ε
1 ⇀ 0 in D′(R+ ×Rd

). (67)

We now deal with the term T ε
2 . Using x-periodicity and the change of time variable s′ = s − t, the term T ε

2 becomes

T ε
2 (φ) = ∫

R+
dt∫

Rd
dv∫

θ

0
ds∫

t+s

t−θ̂
dσ∫ dx

1
ε2θ

f ε(σ, x, v)∇v ⋅ (Eε(σ, x)⊗ Eε(t + s, x + v(t + s − σ)/ε2
)∇vφ(t, v)). (68)

Using the change of time variable σ′ = (t + s − σ)/ε2, Eq. (68) becomes

T ε
2 (φ) = ∫

R+
dt∫

Rd
dv∫

θ

0
ds∫

(s+θ̂)/ε2

0
dσ∫ dx

1
θ

f ε(t + s − ε2σ, x, v)∇v ⋅ (Eε(t + s − ε2σ, x)⊗ Eε(t + s, x + vσ)∇vφ(t, v)). (69)

Taking θ = ε2τ̄ and θ̂ = ε2η and using the change of time variable s′ = s/ε2, followed by the change of time variable σ′ = σ − η, Eq. (69)
becomes

T ε
2 (φ) = ∫

R+
dt∫

Rd
dv

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∫ dx f ε(t + (s − η − σ)ε2, x, v)

∇v ⋅ (Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vφ(t, v)).

This equation can be recast as

T ε
2 (φ) =J ε

(φ) +Mε
(φ), (70)

where

J ε
(φ) = ∫

R+
dt∫

Rd
dv f (t, v)∇v ⋅ (

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∫ dx

Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vφ(t, v))

and

Mε
(φ) ∶= ∫

R+
dt∫

Rd
dv

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∫ dx ( f ε(t + (s − η − σ)ε2, x, v) − f (t, v))

∇v ⋅ (Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vφ(t, v)).

The next lemma justifies that in the case where τ̄ and η are finite, the termJ ε
(φ) has a limit as ε→ 0. Defining

𝒟 ε
(t, v) ∶=

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∫ dx Eε(t + sε2, x + v(σ + η))⊗ Eε(t + (s − η − σ)ε2, x), (71)

we have the following lemma:

Lemma 3. Let τ̄ and η be finite. Then,J ε has a limit in D′(R+ ×Rd
) such that

lim
ε→0

J ε
(φ) = ∫

R+
dt∫

Rd
dv f∇v ⋅ (𝒟

T
∇vφ), ∀φ ∈ D(R+ ×Rd

), (72)

where 𝒟 is the weak limit of 𝒟 ε (up to a subsequence) in the following sense:
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𝒟 ε
⇀ 𝒟 in L1

loc(R
+; W1,1

loc(R
d
)) weak (73)

and

𝒟 ε
⇀ 𝒟 in L∞(R+; L∞(Rd

)) weak−∗. (74)

Proof. Since f ∈ L∞(R+ ×Rd
), to prove (72) and (73), it is sufficient to show that the term

gε(t, v) ∶= ∇v ⋅ (𝒟
ε
(t, v)T

∇vφ(t, v))

converges weakly in L1
(R+ ×Rd

) as ε→ 0, i.e., for the weak topology σ(L1, L∞). For this, we appeal to the Dunford–Pettis theorem.
First we show that gε ∈ L1

(R+ ×Rd
) uniformly in ε. For this, we use the fact that weak solutions of (17) and (18) are such that

Eε ∈ L∞(R+; W1,1+2/d
(Td
)) uniformly with respect to ε. For d = 2, we use the L2 duality and Eε ∈ L∞(R+; L2

(Td
)) uniformly in ε (see Remark

2). For d = 3, we use the Lp–Lq duality with (p, q) = (1 + 2/d, 1 + d/2) and the Sobolev embedding W1,1+2/d
(Td
)↪ L1+d/2

(Td
). Since the case

d = 1 is simpler [using the regularity Eε ∈ L∞(R+ × Td
) uniformly in ε], we only give the proof for d ≥ 2. Then, for d ≥ 2, using Hölder’s

inequality, we obtain

∥gε∥
L1(R+×Rd)

≤

XXXXXXXXXXX

1
τ̄∑i,j
∫

τ̄

0
ds∫

s

−η
dσ∫ dx (σ + η)

Eεi (t + (s − η − σ)ε
2, x) (∂xj E

ε
)(t + sε2, x + v(σ + η))∂vjφ(t, v)

XXXXXXXXXXXXXL1(R+×Rd)

+

XXXXXXXXXXX

∑
i,j

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∫ dx (σ + η)

Eεj (t + (s − η − σ)ε
2, x)Eεj (t + sε2, x + v(σ + η))∂2

vivjφ(t, v)
XXXXXXXXXXXXXL1(R+×Rd)

≤ (τ̄2
+ 3τ̄η + 3η2

)(2π)−d
∥Eε∥

L∞(R+ ;L1+d/2(Td))

{∥∇xEε∥
L∞(R+ ;L1+2/d(Td))

∥∇vφ∥L1(R+×Rd)
+ ∥Eε∥

L∞(R+ ;L1+2/d(Td))
∥∇

2
vφ∥L1(R+×Rd)

}

< ∞.

For showing uniform equi-integrability of the family gε, we take A ⊂ R+ ×Rd such that ∣A∣ ≤ δ, with δ small. Following the above
computations, we obtain

∥gε∥L1(A) ≤ (τ̄
2
+ 3τ̄η + 3η2

)(2π)−d
∥Eε∥L∞(R+ ;L1+d/2(Td))

{∥∇xEε∥L∞(R+ ;L1+2/d(Td))∥∇vφ∥L1(A) + ∥E
ε
∥L∞(R+ ;L1+2/d(Td))∥∇

2
vφ∥L1(A)}

≤ (τ̄2
+ 3τ̄η + 3η2

)∣A∣(2π)−d
∥Eε∥L∞(R+ ;L1+d/2(Td))

{∥∇xEε∥L∞(R+ ;L1+2/d(Td))∥∇vφ∥L∞(R+×Rd) + ∥E
ε
∥L∞(R+ ;L1+2/d(Td))∥∇

2
vφ∥L∞(R+×Rd)}

≲ δ,

which shows uniform equi-integrability of the family gε. It remains to prove (74). Using Fourier series in the space variables, the matrix (71)
rewrites as

𝒟 ε
(t, v) =

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∑

k∈Zd

e ik⋅v(σ+η)Êε(t + sε2, k)⊗ Êε(t + (s − η − σ)ε2,−k). (75)

From (50), there exists λ > 0 such that

∣Êε(t, k)∣ ≤ c0(1 + ∣k∣)−(1+λ). (76)

Using (75) and (76) and weak compactness, we obtain (74), which ends the Proof of Lemma 3.

If we now assume
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lim
ε→0

Mε
(φ) = 0, (77)

then, using Lemma 3 and (67), we obtain from (65) and (70) the diffusion equation (57) with

𝒟 (t, v) ∶= lim
ε→0

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∫ dx Eε(t + sε2, x)⊗ Eε(t + (s − η − σ)ε2, x − v(σ + η)) (78)

= lim
ε→0

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∑

k∈Zd

e ik⋅v(σ+η)Êε(t + sε2, k)⊗ Êε(t + (s − η − σ)ε2, k)∗.

Few remarks are now in order.

Remark 10 (open issues).

1. In order to justify (77), we have to prove that the term

∇v ⋅ (Eε(t + (s − η − σ)ε2, x)⊗ Eε(t + sε2, x + v(σ + η))∇vφ(t, v))

converges strongly in L1
(R+t ×R+s ×R+σ ×Q) as ε→ 0.

2. Show that T ε
1 ⇀ 0 in D′(R+ ×Rd

) remains an open issue. Nevertheless, we may expect that there exist some mixing-type hypotheses,
which could justify such limit.

3. Taking θ̂ = ε2τ̄ in Eq. (66), the term T ε
1 is reminiscent of the term (109) appearing in the case of the non-self-consistent stochastic electric

field (see Sec. IV). Let us note that in the stochastic case, without additional regularity assumptions on weak solutions, this term vanishes
by using a time decorrelation property between Eε and f ε and by using the fact that the stochastic average of Eε vanishes.

4. The parameter τ̄ is reminiscent of the autocorrelation time of particles τ̄, which is introduced in case of the non-self-consistent stochastic
electric field (see Sec. IV).

An explicit form of the diffusion matrix in the non-self-consistent deterministic case.
Without being able to prove some time decorrelation properties for the electric field Eε, it is difficult to deduce the structure of the

diffusion matrix 𝒟 . However, as in Sec. III B 1, we can design a non-self-consistent deterministic electric field by using the WKB expansion
(58) to obtain an explicit diffusion matrix. This gives a formal example for which the diffusion matrix (78) is not zero and non-negative. Using
the WKB approximation (59), the notation

ΔΩ ∶= ∂tΩ(t, k) − k ⋅ v,

and the parity of functions Ω(t, k) and Ê0(t, k) in the variable k, we obtain from similar computations leading to (60),

𝒟 (t, v) = lim
ε→0

1
τ̄∫

τ̄

0
ds∫

s

−η
dσ∑

k∈Zd

e ik⋅v(σ+η)Êε(t + sε2, k)⊗ Êε(t + (s − η − σ)ε2, k)∗

=∑
k∈Zd

1
τ̄∫

τ̄

0
ds∫

s+η

0
dσe−iσΔΩ(t,k)Ê0(t, k)⊗ Ê0(t, k)

=∑
k∈Zd

(
1

iΔΩ
−

e−iηΔΩ

iΔΩ
1 − e−iτ̄ΔΩ

iτ̄ΔΩ
)Ê0(t, k)⊗ Ê0(t, k)

=∑
k∈Zd

sin(τ̄ΔΩ/2)
τ̄ΔΩ/2

sin((τ̄/2 + η)ΔΩ)
ΔΩ

Ê0(t, k)⊗ Ê0(t, k). (79)

At this point, we obtain some important limits with respect to the parameters η and τ̄. The parameter τ̄ is the same as the one that we have
defined in Sec. II and used in Sec. IV. Hence, parameters τ̄ and η can be seen as normalized particle autocorrelation times.

The first significant limit is η→ +∞. Indeed, using the limit limη→+∞ sin(ητ)/τ = πδ(τ) in D′(R) and taking the limit η→ +∞ in (79),
we recover the same diffusion matrix (61) that we have obtained with the global-in-time approach of Sec. III B 1. Therefore, we recover the
quasilinear diffusion matrix (62) too. In a sense, the limit η→ +∞ corresponds to take into account all the past of the distribution function
and particularly the initial condition as it was done in the global-in-time approach of Sec. III B 1. Therefore, it is consistent to obtain the result
of the global-in-time approach by taking the limit η→ +∞ in the local-in-time approach.

The second significant limit is η→ 0. Indeed, for η = 0, we obtain from (79) the following non-negative diffusion matrix:
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𝒟 (t, v) =
τ̄
2∑k∈Zd

(
sin( τ̄2(∂tΩ(t, k) − k ⋅ v))

τ̄
2(∂tΩ(t, k) − k ⋅ v)

)

2

Ê0(t, k)⊗ Ê0(t, k). (80)

This diffusion matrix seems more regular in velocity than the quasilinear diffusion matrix (62). This regularity improvement in velocity is
reminiscent of the finite-τ̄ effect that we observe in the framework of the non-self-consistent stochastic electric field (see Sec. IV) and also in
the resonance broadening like theory (see Sec. IV D 1).

The last significant limit is to keep η finite and to pass to the limit τ̄→ +∞ in (79) or (80). In this limit, we also recover the quasilinear
diffusion matrix (61) or (62), and Remark 9 still holds true. This result is consistent with the developements of Sec. IV D 2 for the non-self-
consistent stochastic electric field.

Remark 11. As in Remark 9, if the electric field Eε derives from a potential Φε, then in the diffusion matrices (79) and (80), we should
replace the matrix Ê0(t, k)⊗ Ê0(t, k) by the matrix ∣Ê0(t, k)∣2 k⊗ k/∣k∣2.

IV. THE NON-SELF-CONSISTENT STOCHASTIC CASE
In this section, we deal with the non-self-consistent stochastic case. Before stating our main Theorem 2 in Sec. IV B, we start by describing

the features of the stochastic electric field in Sec. IV A.

A. The turbulent electric field
Here, electrostatic turbulence is modeled through the random vector field Eε. Let (𝒪 ,F,P) be a probability space, with P being a σ-finite

measure. A random vector F is real vector-valued function defined on 𝒪. When F : 𝒪 → Rd is an integrable random vector, its expectation is
given by

E[F] = ∫
𝒪

dP(ϖ) F(ϖ).

From considerations of Sec. II A, the turbulent electric field Eε has two time scales, one slow and the other fast. We then choose a turbulent
electric field Eε given by

Eε(t, x) = E(t, t/ε2, x;ϖ), (81)

where the integrable random vector field E satisfies the following “stochastic” assumptions:

(H1) The random vector field E is centered, i.e.,

E[E(t, τ, x)] = 0, ∀(t, τ, x) ∈ R+ ×R+ × Td.

(H2) There exists a constant τ̄ > 0 such that for every x, y ∈ Rd and for every τ, σ ∈ R+, the electric fields E(t, τ, x) and E(s, σ, y) are
independent random vector fields as soon as ∣τ −σ∣ ≥τ̄. The autocorrelation time τ̄ is supposed fixed and finite, hence independent of ε.

(H3) There exists a matrix-valued functionRτ̄ : R+ ×R+ ×R × Td
→ R2d, called the autocorrelation matrix or the Reynolds electric

stress tensor, such that

E[E(t, τ, x)⊗ E(s, σ, y)] = Rτ̄(t, s, τ − σ, x − y). (82)

Hypothesis (H1) sets the stochastic average of Eε to zero, which is standard and not restrictive. Assumption (H2)means that the turbu-
lent electric field Eε is time decorrelated on a time scale ε2τ̄. Assumption (H2) can be seen as a hypothesis of propagation of “stochasticity” or
propagation of independence of random vector fields. Therefore, two evaluations in time of the electric field, separated by a lapse of time larger
than ε2τ̄, are independent random vector fields. Hypothesis (H3) is the standard spatiotemporal homogeneity property of the turbulence, i.e.,
the spatiotemporal autocorrelation of the electric field Eε is invariant under space and time translations. These assumptions are similar to the
ones of Ref. 50.

Remark 12. In the nonlinear regime, the property of time decorrelation seems to be the cornerstone of the diffusion process for both the self-
consistent and the non-self-consistent setting.3,5,21 An open and very difficult problem remains to show mathematically such time decorrelation
property from only the deterministic Vlasov–Poisson system [(7) and (8)] and random initial data f 0. In a sense, this is what has been shown
numerically in Refs. 10 and 11. This property of propagation of “stochasticity” is reminiscent of the property of propagation of chaos in statistical
mechanics.

In order to justify rigorously the diffusion limit, the stochastic electric field requires the following regularity assumptions:
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(H4) The regularity of E is such that

E ∈ L∞(R+ ×R+; W2,∞
(Td
)) and E[∥E∥3

L∞(R+×R+ ;W2,∞(Td))] =: CE <∞.

Assumption (H4) imposes the regularity (especially in space) of the random vector field E. It is worthwhile to end this section by giving an
explicit example of a random field E, which satisfies assumptions (H1)–(H4). Following the spirit of Example 2 in Ref. 50, we construct
in the Appendix a random vector field E satisfying these requirements.

B. Main theorem
Concerning the non-self-consistent stochastic case, we establish the following theorem:

Theorem 2. Let E be an integrable random vector field satisfying assumptions (H1)–(H4), and let Eε be given by (81). Let { f ε0}ε>0 be a
sequence of independent random non-negative initial data and C0 be a positive constant such that for a.e. ϖ ∈𝒪 , ∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0 <

∞. Let 𝒟 τ̄ = 𝒟 τ̄(t, v) be the matrix-valued function defined by

𝒟 τ̄(t, v) = ∫
τ̄

0
dσRτ̄(t, t, σ, σv), (83)

the properties of which are described in Proposition 1. Let f ε be the unique weak solution of the Vlasov equation (17), with initial data f ε
∣t=0
= f ε0.

Then, up to extraction of a subsequence, E[ f ε0] converges in L∞(Q) weak–∗ to a function f 0 ∈ L1
∩ L∞(Q), E[ f ε] converges in

L∞(R+; L∞(Q)) weak–∗ to a function f ∈ L∞(R+; L1
∩ L∞(Rd

)), and E[⨏dx f ε] converges in L∞(R+; L∞(Rd
)) weak–∗ to f . Moreover

E[⨏dx f ε] converges in 𝒞 (0, T; Lp
(Rd
) −weak) to f for 1 < p <∞ and for all T > 0. The limit point f = f (t, v) is solution of the following

diffusion equation in the sense of distributions:

∂t f −∇v ⋅ (𝒟 τ̄∇v f ) = 0 in D′(R+ ×Rd
), (84)

f ∣t=0 =∫ dx f 0.

The Proof of Theorem 2 is postponed to Sec. IV C. General properties of the diffusion matrix 𝒟 τ̄ and the autocorrelation matrix Rτ̄ of
Theorem 2 are stated in the following proposition:

Proposition 1 (properties of the diffusion matrix 𝒟 τ̄). Under assumptions (H1)–(H4), the matrix-valued function Rτ̄ : R+ ×R+ ×R
× Td

→ R2d and the diffusion matrix 𝒟 τ̄ : R+ ×Rd
→ R2d satisfy the following properties:

(i) Rτ̄(t, t, τ, x) = RT
τ̄ (t, t,−τ,−x) and Rτ̄(t, t, τ, x + 2πk) = Rτ̄(t, t, τ, x), ∀k ∈ Z.

(ii) Rτ̄ ∈ L∞(R+ ×R+ ×R; W2,∞
(Td
)) and supp(Rτ̄) ⊂ R+ ×R+ × [−τ̄, τ̄] × Td.

(iii) 𝒟 τ̄ ∈ L∞(R+; W2,∞
(Rd
)) and supp(𝒟 τ̄) ⊂ R+ ×Rd.

(iv) The symmetric part of 𝒟 τ̄ is non-negative, i.e., XT𝒟 τ̄X ≥ 0, ∀ ∈ X ∈ Rd.

Proof. We start with property (i). Using (H3), we obtain

Rτ̄ ij(t, t, τ − σ, x − y) = E[Ei(t, τ, x)Ej(t, σ, y)] = E[Ej(t, σ, y)Ei(t, τ, x)] = Rτ̄ ji(t, t,−(τ − σ),−(x − y)),

and for all k, k′ ∈ Z,

Rτ̄(t, t, τ − σ, x − y) = E[E(t, τ, x)⊗ E(t, σ, y)] = E[E(t, τ, x + 2πk)⊗ E(t, σ, y + 2πk′)]

= Rτ̄ ij(t, t, τ − σ, x − y + 2π(k − k′)).

The regularity property (ii) for Rτ̄ comes immediately from the regularity assumption (H4) for E and the definition (H3) for Rτ̄. The
regularity property (iii) for 𝒟 τ̄ is the straight consequence of the definition (83) for 𝒟 τ̄ and the regularity property (ii) for Rτ̄. The support
of 𝒟 τ̄ is obvious, while the support of Rτ̄ results from assumptions (H1)–(H3). Indeed, if ∣τ − σ∣ >τ̄, then (H1)–(H3) imply that Rτ̄(t, t,
τ − σ, x − y) = E[E(t, τ, x)⊗ E(t, σ, y)] = E[E(t, τ, x)]⊗ E[E(t, σ, y)] = 0. We end with the property (iv). Using properties (i) and (ii), we
obtain
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XT𝒟 τ̄X =∑
i,j

XiXj∫

τ̄

0
dσRτ̄ ij(t, t, σ, σv) =

1
2∑i,j

XiXj∫

τ̄

−τ̄
dσRτ̄ ij(t, t, σ, σv)

=
1
2∑i,j

XiXj∫

+∞

−∞
dσRτ̄ ij(t, t, σ, σv). (85)

Using Lemma 3.1 of Ref. 50, which states that for all g ∈ L1
(R), we have

∫

+∞

−∞
g(s)ds = lim

R→+∞

1
2R∫

R

−R
ds∫

R

−R
dt g(s − t),

we obtain from (85),

XT𝒟 τ̄X = lim
R→+∞

1
4R∑i,j

XiXj∫

R

−R
dσ∫

R

−R
dθE[Ei(t, σ, σv)Ej(t, θ, θv)]

= lim
R→+∞

1
4R∫

R

−R
dσ∫

R

−R
dθE[X ⋅ E(t, σ, σv)X ⋅ E(t, θ, θv)]

= lim
R→+∞

1
4R

E[(∫
R

−R
dσ X ⋅ E(t, σ, σv))

2
] ≥ 0,

which ends the Proof of Proposition 1. ◻

To end this section, it is worthwhile to compare the diffusion matrix obtained here for the stochastic case and the one obtained for the
deterministic case in Sec. III B. If ε is small enough such that t/ε2

> τ̄, then using (H3), (81), and the compact support of Rτ̄(⋅, ⋅, σ, ⋅) in the
variable σ (included in [−τ̄, τ̄]; see Proposition 1), the stochastic diffusion matrix 𝒟 τ̄, defined by (83), rewrites as

𝒟 τ̄(t, v) = lim
ε→0∫

τ̄

0
dσ E[Eε(t, x)⊗ Eε(t − ε2σ, x − σv)]

= lim
ε→0∫R+

dσ χ[0,t/ε2](σ)E[E
ε
(t, x)⊗ Eε(t − ε2σ, x − σv)]. (86)

Comparing the deterministic diffusion matrix (56) (obtained for the global-in-time approach in Sec. III B 1) and stochastic diffusion matrix
(86), we observe that they are the same except that the space average is replaced by the statistical average. If we suppose that in definition
(56) of the deterministic diffusion matrix, the electric field Eε is a random vector field and if we take the expectation value of (56), then
the homogeneity property (H3) implies that the space average is trivially the identity. Therefore, we recover the stochastic diffusion matrix
(86) or (83) from the “deterministic” one (56) by a statistical average and the homogeneity property. The link between the deterministic and
stochastic diffusion matrices is also reinforced by the following corollary:

Corollary 1. Let (t, k)↦ Ω(t, k) ∶= ω(k)t be a real-valued function, where the given real-valued function k↦ ω(k) is odd in the vari-
able k. Let (t, k)↦ Ê0(t, k) be a given real vector-valued function, which is even in the variable k and such that ∣k∥Ê0∣ ∈ L∞(R+; ℓ2

(Zd
)).

Then, there exists a matrix-valued function R0
τ̄ : R+ ×R+ ×R × Td

→ R2d such that the associated diffusion matrix, defined by formula (83)
of Theorem 2, is

𝒟 τ̄(t, v) =
τ̄
2∑k∈Zd

(
sin( τ̄2(∂tΩ(t, k) − k ⋅ v))

τ̄
2(∂tΩ(t, k) − k ⋅ v)

)

2

Ê0(t, k)⊗ Ê0(t, k). (87)

Moreover, the autocorrelation matrix R0
τ̄ and its associated diffusion matrix (87) satisfy properties (i)–(iv) of Proposition 1.

Before giving the proof of Corollary 1, we observe that the diffusion matrix (87) is the same as the diffusion matrix (80), obtained for the
local-in-time approach of the non-self-consistent deterministic case in Sec. III B 2.

Proof of Corollary 1. We consider the Fourier series decomposition of a given smooth electric field E,

E(t, τ, x) = ∑
k∈Zd

e ik⋅xÊ(t, τ, k),

where, without loss of generality, we take
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Ê(t, τ, k) = Ê0(t, τ, k)e−iΩ(τ,k)
= Ê0(t, τ, k)e−iω(k)τ ,

with the function Ω(t, k) [respectively, ω(k)] chosen like in the statement of Corollary 1. Since Ê(t, τ, k) is Hermitian [i.e., Ê∗(t, τ, k)
= Ê(t, τ,−k)] and because the function k↦ ω(k) is odd, we could choose either Ê0(t, τ, k) Hermitian or real and even in k. We restrict
ourselves to the case where Ê0(t, τ, k) is real and even in k. In order to be consistent with hypothesis (H3), using the real vector-valued
function Ê0(t, k) like in the statement of Corollary 1, we can choose Ê0(t, τ, k) such that

E[Ê0(t, τ, k)⊗ Ê0(t, σ, k′)] = Ê0(t, k)⊗ Ê0(t, k)Aτ̄(τ − σ)δ(k + k′), (88)

where s↦ Aτ̄(s) : R→ R+ is a real non-negative even bounded function. From (88), we obtain

E[E(t, τ, x)⊗ E(t, σ, y)] = ∑
k∈Zd

Ê0(t, k)⊗ Ê0(t, k)Aτ̄(τ − σ)e ik⋅(x−y)e−iω(k)(τ−σ),

and then from (82), we obtain

R0
τ̄(t, t, τ, x) = ∑

k∈Zd

Ê0(t, k)⊗ Ê0(t, k)Aτ̄(τ)e −i(ω(k)τ−k⋅x). (89)

The autocorrelation matrix R0
τ̄ given by (89) satisfies the property (i) of Proposition 1. Setting the resonance function

Rτ̄(ξ) ∶=
τ̄
2
(

sin(τ̄ξ/2)
τ̄ξ/2

)

2

,

we define the time autocorrelation function Aτ̄ as the inverse Fourier transform of the function 2Rτ̄, i.e.,

Aτ̄(σ) ∶=
1
π∫

+∞

−∞
eiξσRτ̄(ξ)dξ = Λ(σ/τ̄), (90)

where the function s ↦ Λ(s) is the triangular function of support [−1, 1]. As a consequence, ∥Aτ̄∥L∞(R) ≤ 1, and using ∣k∥Ê0∣

∈ L∞(R+; ℓ2
(Zd
)), we obtain that R0

τ̄ ∈ L∞(R+ ×R+ ×R; W2,∞
(Td
)). In addition, from (90), we deduce that supp(R0

τ̄) ⊂ R+ ×R+

× [−τ̄, τ̄] × Td. Therefore, the autocorrelation matrix R0
τ̄ given by (89) and (90) satisfies the property (ii) of Proposition 1. Finally, let us

compute the diffusion matrix 𝒟 τ̄ from (83), (89), and (90). Using parity properties of the functions ω, Aτ̄, and Ê0, we obtain

𝒟 τ̄(t, v) = ∫
τ̄

0
dσR0

τ̄(t, t, σ, σv)

= ∑
k∈Zd

Ê0(t, k)⊗ Ê0(t, k)∫
τ̄

0
dσ e i(ω(k)−k⋅v)σAτ̄(σ)

= ∑
k∈Zd

Ê0(t, k)⊗ Ê0(t, k)∫
R+

dσ e i(ω(k)−k⋅v)σΛ(σ/τ̄)

=
1
2∑k∈Zd

Ê0(t, k)⊗ Ê0(t, k)∫
R

dσ e i(ω(k)−k⋅v)σΛ(σ/τ̄)

=
τ̄
2∑k∈Zd

Ê0(t, k)⊗ Ê0(t, k)(
sin( τ̄2(ω(k) − k ⋅ v))

τ̄
2(ω(k) − k ⋅ v)

)

2

, (91)

which is (87). By a direct differentiation of (91) with respect to v, we verify easily the property (iii) of Proposition 1, while the property (iv) of
Proposition 1 is obvious from the structure of (91).

C. Proof of theorem 2
Let us rewrite the Vlasov equation (17) in the following form:
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∂t f ε +
1
ε2 L f ε = N ε

t f ε, (92)

f ε
∣t=0
= f ε0, (93)

where the linear operators L and N ε
t are defined by

L = v ⋅ ∇x, N ε
t = −

1
ε

Eε(t, x) ⋅ ∇v = −
1
ε

E(t, t/ε2, x) ⋅ ∇v . (94)

Obviously, the operators L and N ε
t are skew-adjoint for the scalar product of L2

(Q), while the operator L and the deterministic group Sεt ,
generated by ε−2L (see Sec. II B), commute with E. Of course, space and statistical averages commute. From hypothesis (H2), the random
operators N ε

t and N ε
s are independent as soon as ∣t − s∣ > ε2τ̄.

The next useful proposition states that time decorrelation of the stochastic electric field also entails time decorrelation between the
distribution function and the electric field.

Proposition 2 (time decorrelation property between f ε and Eε). Assume (H2). Suppose that the random initial data f ε0 and the electric field
Eε are independent. Then, N ε

s is independent of f ε(t) as soon as s ≥ t + ε2τ̄.

Proof. From the Duhamel formula

f ε(t) = Sεt f ε0 + ∫
t

0
dσ Sεt−σN ε

σ f ε(σ),

where t ↦ Sεt is the deterministic group generated by ε−2L (see Sec. II B), we observe that f ε(t) depends only on f ε0 and N ε
σ [or Eε(σ, ⋅)]

for σ ≤ t. Since f ε0 is independent of Eε(t, ⋅) ∀t ∈ R, and since the electric fields Eε(s, ⋅) and Eε(t, ⋅) are independent as soon as s > t + ε2τ̄
[assumption (H2)], we obtain from the Duhamel formula the desired result. ◻

We start our analysis by recalling basic statements that we collect in the following proposition:

Proposition 3. Assume (H4) and consider a sequence { f ε0}ε>0 of initial data such that

f ε0 ≥ 0, and for a.e.ϖ ∈ 𝒪 , ∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0 <∞.

Then, for any ε > 0, the Cauchy’s problem (92) and (93) has a unique non-negative solution f ε ∈ 𝒞 (R+, L1
∩ L∞(Q)), which is given by

f ε(t, x, v) = f ε0(X
ε
(0; t, x, v), Vε

(0; t, x, v)), (95)

where the characteristic curves (Xε, Vε
) are solutions to the ODEs,

dXε

dt
(t) =

1
ε2 Vε
(t),

dVε

dt
(t) =

1
ε

Eε(t, X(t)), Xε
(0; 0, x, v) = x, Vε

(0; 0, x, v) = v. (96)

Moreover, we have the a priori estimates

∥ f ε(t)∥Lp(Q) = ∥ f ε0∥Lp(Q), 1 ≤ p ≤∞.

In addition, there exist a function f 0 ∈ L1
∩ L∞(Rd

) and a function f ∈ L∞(R+; L1
∩ L∞(Rd

)), such as, up to subsequences,

E[ f ε0]⇀ f 0 in L∞(Q) weak−∗ and E[ f ε]⇀ f in L∞(R+; L∞(Q)) weak−∗.

The limit point f is such that ⨏dx f = f ∈ L∞(R+; L1
∩ L∞(Rd

)). The function E[⨏dx f ε] is the solution of

∂tE[∫ dx f ε] +∇v ⋅ E[∫ dx
Eε f ε

ε
] = 0 in D′(R+ ×Rd

), (97)

E[∫ dx f ε]
∣t=0

= E[∫ dx f ε0]. (98)

Proof. Since ∥E[ f ε0]∥L1(Q) + ∥E[ f ε0]∥L∞(Q) ≤ E[∥ f ε0∥L1(Q)] + E[∥ f ε0∥L∞(Q)] ≤ C0 <∞, by weak compactness arguments, there exists a
function f 0 ∈ L1

∩ L∞(Q) such that E[ f ε0] (up to a subsequence) converges in L∞(Q) weak–∗ to f 0. Using the regularity hypothesis (H4)
for the electric field E, the Cauchy–Lipschitz–Picard theorem for ODEs gives existence and uniqueness of a regular Lagrangian flow (Xε, Vε

),
which is a solution of (96). It follows from standard results on first-order transport equations (see, e.g., Ref. 12) that the Lagrangian solution
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to (92) and (93) is given by (95). From (95), we obtain ∥E[ f ε]∥L∞(Q) = ∥E[ f ε0]∥L∞(Q) ≤ C0 <∞. Moreover, using skew-adjointness of L and
N ε

t , we can prove, following standard lines, that ∂t∥ f ε(t)∥Lp(Q) = 0 for 1 ≤ p ≤∞. This leads to E[∥ f ε∥L∞(R+ ;Lp(Q))] = E[∥ f ε0∥Lp(Q)] ≤ C0

<∞ and ∥E[ f ε]∥L∞(R+ ;Lp(Q)) ≤ E[∥ f ε∥L∞(R+ ;Lp(Q))] ≤ C0 <∞. By weak compactness arguments, there exists a function f ∈ L∞(R+; L1

∩ L∞(Q)) such that E[ f ε] (up to a subsequence) converges in L∞(R+; L∞(Q))weak–∗ to f . Now, we claim that ε2N ε
t f ε → 0 in D′(R+ ×Q)

as ε tends to zero. Indeed, we have for all φ ∈ D(R+ ×Q),

∣⟨ε2N ε
t f ε,φ⟩∣ = ε2

∣⟨ f ε,Nε ∗
t φ⟩∣ ≤ ε∥ f ε0∥L∞(Q)∥φ∥L∞(R+ ;W1,1(Q))∥E∥L∞(R+×R+×Td) → 0

as ε→ 0. Then, multiplying the Vlasov equation (92) by ε2, taking its expectation value, and letting ε go to zero, we find

L f = 0 in D′(R+ ×Q), (99)

where we have used the commutation property between E and L. From Lemma 1 and (99), we infer that f is independent of x and ⨏dx f
= f ∈ L∞(R+; L1

∩ L∞(Rd
)). Finally, the Vlasov equation (92) is averaged in space and then rewritten in a weak form. Taking the expectation

value of the result, we obtain (97) and (98). ◻

The rest of the proof is devoted to pass to the limit in Eq. (97). For this, we can first start with a simple iteration of the Duhamel formula
as it was done in Sec. III B 2 for the deterministic case. As explained in Sec. IV C 1, this method fails. To solve this problem, we use the method
of Ref. 50, which consists to apply a double iteration of the Duhamel formula for f . This is described in Sec. IV C 2.

1. Simple iteration of the Duhamel formula
Following what we have done in Sec. III B 2, where a simple iteration of the Duhamel formula is used, we obtain, for all

φ ∈ D(R+ ×Rd
),

∫
R+

dt∫
Rd

dv φ(t, v)
E[ /∫ dx f ε(t + θ)] − E[ /∫ dx f ε(t)]

θ
= T ε

1 (φ) + T ε
2 (φ), (100)

where

T ε
1 (φ) ∶= ∫

R+
dt∫

Rd
dv∫

t+θ

t
ds∫ dx

1
εθ

E[Eε(s) ⋅ ∇vφ(t, v)Sεs−t+θ̂ f ε(t − θ̂)] (101)

and

T ε
2 (φ) ∶=J ε

(φ) +Mε
(φ),

with

J ε
(φ) ∶= ∫

R+
dt∫

Rd
dv

∫

t+θ

t
ds∫

s

t−θ̂
dσ

1
ε2θ

f (t, v)∇v ⋅ (∫ dxE[Sεs−σEε(σ, x)⊗ Eε(s, x)∇vφ(t, v)]) (102)

and

Mε
(φ) ∶= ∫

R+
dt∫

Rd
dv∫

t+θ

t
ds∫

s

t−θ̂
dσ

1
ε2θ∫

dxE[(Sεs−σ f ε(σ) − f (t, v))∇v ⋅ (Sεs−σEε(σ, x)⊗ Eε(s, x)∇vφ(t, v))].

By choosing θ̂ ≥ ε2τ̄, we can use the time decorrelation hypothesis (H2), Proposition 2, and assumption (H1) to show that for Eq. (101), we
have T ε

1 (φ) = 0. The termJ ε
(φ), defined by Eq. (102), can be treated as it was done in Sec. III B and it gives the diffusion term. It remains to

deal with the error term Mε
(φ), which is of order zero with respect to ε, i.e., Mε

(φ) = O(ε0
). For this, we observe that we have to evaluate
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the expectation of a cubic product between f ε(σ) − f (t), Eε(σ) and Eε(s), i.e., schematically E[( f ε(σ) − f (t))Eε(σ)Eε(s)]. Using hypotheses
(H2) and (H3) and Proposition 2, we would like to replace an expression of the form E[( f ε(σ) − f (t))Eε(σ)Eε(s)] by an expression of
the form E[ f ε − f ]E[EεEε] because from Proposition 3, we know that E[ f ε − f ]⇀ 0 in L∞(R+; L∞(Q)) weak–∗. Unfortunately, it is not
possible, since f ε(σ) and Eε(σ) are evaluated at the same time σ. To remedy this problem, we follow the procedure of Ref. 50, which consists
of using a double iteration of the Duhamel formula for f . A double instead of a simple iteration of the Duhamel formula is used to go back in
time far enough in order to use the time decorrelation property (H2). The price of this procedure is the introduction of a second error term,
namely, μεt [defined by (108)]. For the error term μεt , we face the same problem as for the term Mε, i.e., we cannot use the time decorrelation
hypotheses (H2) and (H3) and Proposition 2. Nevertheless, the error term μεt is of the order O(ε). Therefore, to show that limε→0μεt = 0 in
the distributional sense, we do not use time decorrelation hypotheses (which are useless), but we appeal to the regularity hypotheses on the
electric field Eε, namely, (H4).

2. Double iteration of the Duhamel formula
First, we recall that t ↦ Sεt is the (deterministic) group on Lp

(Q), 1 ≤ p ≤∞, generated by ε−2L [see Eq. (20)]. Using the group Sεt and the
Duhamel formula, the formal solution to (92) is given by

f ε(t) = Sεt−s f ε(s) + ∫
t

s
dτ Sεt−τN ε

τ f ε(τ). (103)

Taking s = t − ε2τ̄ in (103) and making the change of variable τ = t − σ, we obtain from (103),

f ε(t) = Sεε2 τ̄ f ε(t − ε2τ̄) + ∫
ε2 τ̄

0
dσ SεσN ε

t−σ f ε(t − σ). (104)

In the integral term of (104), we observe that the electric field and the distribution function are evaluated at the same time t − σ. As a conse-
quence, if we substitute (104) to f ε in the right-hand side of (97) (like it was done in Sec. IV C 1), we obtain a quadratic term with respect to
the electric field that we cannot decorrelate in time from the distribution function. For this reason and following Ref. 50, we iterate a second
time the Duhamel formula. In the same way that we obtained (103), we obtain

f ε(t − σ) = Sε2ε2 τ̄−σ f ε(t − 2ε2τ̄) + ∫
2ε2 τ̄−σ

0
ds SεsN ε

t−σ−s f ε(t − σ − s). (105)

Substituting the right-hand side of (105) to f ε(t − σ) in the right-hand side of (104) and using the properties of the group Sεt , we obtain

f ε(t) = Sεε2 τ̄ f ε(t − ε2τ̄) + ∫
ε2 τ̄

0
dσ SεσN ε

t−σSε−σSε2ε2 τ̄ f ε(t − 2ε2τ̄)

+ ∫

ε2 τ̄

0
dσ∫

2ε2 τ̄−σ

0
ds SεσN ε

t−σSεsN ε
t−σ−s f ε(t − σ − s). (106)

Applying the operator N ε
t to (106) and then applying successively the average in space and the expectation value, we obtain

−∇v ⋅ E[∫ dx
Eε(t) f ε(t)

ε
] =∫ dxE[N ε

t Sεε2 τ̄ f ε(t − ε2τ̄)]

+ ∫

ε2 τ̄

0
dσ∫ dxE[N ε

t SεσN ε
t−σSε−σSε2ε2 τ̄ f ε(t − 2ε2τ̄)] + μεt , (107)

with

μεt = ∫
ε2 τ̄

0
dσ∫

2ε2 τ̄−σ

0
ds∫ dxE[N ε

t SεσN ε
t−σSεsN ε

t−σ−s f ε(t − σ − s)]. (108)

Using Proposition 2, we obtain that f ε(t) is independent of N ε
s as soon as s ≥ t + ε2τ̄. Then, using hypothesis (H1), we obtain

E[N ε
t Sεε2 τ̄ f ε(t − ε2τ̄)] = E[N ε

t ]S
ε
ε2 τ̄E[ f ε(t − ε2τ̄)] = 0. (109)
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We note that the analysis of the term (109) is the same as the one done for the term (101). Therefore, the first term of the right-hand side of
(107) vanishes. Since Proposition 2 implies that N ε

t and N ε
t−σ are independent of f ε(t − 2ε2τ̄) for 0 ≤ σ ≤ ε2τ̄, we obtain from (107),

−∇v ⋅ E[∫ dx
Eε(t) f ε(t)

ε
] = ∫

ε2 τ̄

0
dσ∫ dxE[N ε

t SεσN ε
t−σSε−σ]E[S

ε
2ε2 τ̄ f ε(t − 2ε2τ̄)] + μεt

= ∫

ε2 τ̄

0
dσ∫ dxE[N ε

t SεσN ε
t−σSε−σ]E[ f ε(t)]

+ ∫

ε2 τ̄

0
dσ∫ dxE[N ε

t SεσN ε
t−σSε−σ]E[S

ε
2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)]

+ μεt .

(110)

In fact, we have to consider a weak form of (110), which is given by the following proposition:

Proposition 4. We define the differential operator Θε
t as

Θε
tφ = ∫

τ̄

0
dσ (σ∇x ⋅ +∇v ⋅ )E[Eε(t − ε2σ, x − σv)⊗ Eε(t, x)]∇vφ, φ ∈ D(R+ ×Rd

), (111)

and the bilinear form νεt as

νεt(ψ,φ) = ∫
R+

dt∫
Rd

dv∫ dx ψΘε
tφ, ∀ψ ∈ L∞(R+ ×Q), ∀φ ∈ D(R+ ×Rd

). (112)

Then, the weak formulation of (110) reads ∀φ ∈ D(R+ ×Rd
),

∫
R+

dt∫
Rd

dv∇vφ ⋅ E[∫ dx
f ε(t)Eε(t)

ε
]

= νεt(E[ f ε(t)],φ) + νεt(E[S
ε
2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)],φ) + μεt(φ), (113)

where the remainder term μεt(φ) is given by

μεt(φ) = −ε
4
∫

R+
dt∫

Rd
dv∫

τ̄

0
dσ∫

2τ̄−σ

0
ds∫ dx

E[ f ε(t − ε2
(σ + s))Nε

t−ε2(σ+s)S
ε
−ε2sN

ε
t−ε2σSε−ε2σN

ε
t φ]. (114)

Proof. We have to show that the weak formulation of (110) is given by (113). The left-hand side of (113) is obtained straightforwardly
from the left-hand side of (110). The first two terms of the right-hand side of (113) can be obtained in a similar way from the first two terms
of the right-hand side of (110), respectively. Indeed, we consider a non-random function ψ = ψ(t, x, v), which can be either E[ f ε(t)] or
E[Sε2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)]. Then, the quantity of interest is

∫

ε2 τ̄

0
dσ∫ dxE[N ε

t SεσN ε
t−σSε−σ]ψ. (115)

Multiplying (115) by a test function φ ∈ D(R+ ×Rd
) and integrating with respect to the time and velocity variables, we obtain, after expanding

all operators,

1
ε2∫R+

dt∫
Rd

dv φ(t, v)∫ dx∫
ε2 τ̄

0
dσ

∇v ⋅ (E[Eε(t, x)⊗ Eε(t − σ, x − σv/ε2
)](

σ
ε2∇x +∇v)ψ(t, x, v)). (116)

Using integrations by parts with respect to the variables x and v and making the change of time variable σ′ = σ/ε2, we obtain from (116),
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∫
R+

dt∫
Rd

dv∫ dx ψ(t, x, v)∫
τ̄

0
dσ(σ∇x ⋅ +∇v ⋅ )(E[Eε(t − ε2σ, x − σv)⊗ Eε(t, x)]∇vφ(t, v))

= ∫
R+

dt∫
Rd

dv∫ dx ψΘε
tφ = ν

ε
t(ψ,φ). (117)

The first two terms of the right-hand side of (113) follow by replacing, respectively, ψ by E[ f ε(t)] and E[Sε2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)] in (117).
To obtain the weak formulation of the remainder term μεt , we use the skew-adjointness of N ε

t and the dual of Sεt given by Sε ∗t = Sε−t . Using
multiple velocity integrations by parts, several changes of variables in space and the changes of time variables σ′ = σ/ε2 and s′ = s/ε2, we obtain
from the third term of the right-hand side of (113),

μεt(φ) = ∫
R+

dt∫
Rd

dv φμεt

= ∫
R+

dt∫
Rd

dv φ∫
ε2 τ̄

0
dσ∫

2ε2 τ̄−σ

0
ds∫ dxE[N ε

t SεσN ε
t−σSεsN ε

t−σ−s f ε(t − σ − s)]

= ∫
R+

dt∫
ε2 τ̄

0
dσ∫

2ε2 τ̄−σ

0
dsE[∫

Rd
dv∫ dx φN ε

t SεσN ε
t−σSεsN ε

t−σ−s f ε(t − σ − s)]

= −∫

ε2 τ̄

0
dσ∫

2ε2 τ̄−σ

0
dsE[∫

Rd
dv∫ dx f ε(t − σ − s)N ε

t−σ−sS
ε
−sN ε

t−σSε−σN ε
t φ]

= −ε4
∫

R+
dt∫

Rd
dv∫

τ̄

0
dσ∫

2τ̄−σ

0
ds∫ dx

E[ f ε(t − ε2
(σ + s))Nε

t−ε2(σ+s)S
ε
−ε2sN

ε
t−ε2σSε−ε2σN

ε
t φ],

which is (114). This ends the Proof of Proposition 4. ◻

The next lemma states the limit of the operator Θε
t as ε→ 0.

Lemma 4. Under hypothesis (H3), for all φ ∈ D(R+ ×Rd
), the operator Θε

t defined by (111) becomes

Θε
tφ = ∇v ⋅ ((∫

τ̄

0
dσRτ̄(t − ε2σ, t,−σ,−σv))∇vφ), (118)

and we obtain

Θε
tφ→ Θ0

t φ in L1
(R+ ×Rd

), (119)

where the operator Θ0
t is defined by

Θ0
t φ = ∇v ⋅ ((∫

τ̄

0
dσRτ̄(t, t,−σ,−σv))∇vφ). (120)

Proof. Using assumption (H3), i.e., E[E(t, τ, x)⊗ E(s, σ, y)] = Rτ̄(t, s, τ − σ, x − y), for all φ ∈ D(R+ ×Rd
), we obtain from (111),

Θε
tφ = ∫

τ̄

0
dσ (σ∇x ⋅ +∇v ⋅ )E[Eε(t − ε2σ, x − σv)⊗ Eε(t, x)]∇vφ

= ∫

τ̄

0
dσ (σ∇x ⋅ +∇v ⋅ )Rτ̄(t − ε2σ, t,−σ,−σv)∇vφ

= ∫

τ̄

0
dσ∇v ⋅ (Rτ̄(t − ε2σ, t,−σ,−σv)∇vφ)

= −∫

τ̄

0
dσ σ(∇x ⋅Rτ̄)(t − ε2σ, t,−σ,−σv) ⋅ ∇vφ + ∫

τ̄

0
dσRτ̄(t − ε2σ, t,−σ,−σv) : ∇2

vφ.

Since Rτ̄ ∈ L∞(R+ ×R+ ×R; W2,∞
(Td
)) and because τ̄ is bounded, we obtain

∫

τ̄

0
dσ σ(∇x ⋅Rτ̄)(t − ε2σ, t,−σ,−σv) ⋅ ∇vφ→ ∫

τ̄

0
dσ σ(∇x ⋅Rτ̄)(t, t,−σ,−σv) ⋅ ∇vφ,
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for almost every (t, v) ∈ R+ ×Rd as ε→ 0 and

∫

τ̄

0
dσRτ̄(t − ε2σ, t,−σ,−σv) : ∇2

vφ→ ∫
τ̄

0
dσRτ̄(t, t,−σ,−σv) : ∇2

vφ,

for almost every (t, v) ∈ R+ ×Rd as ε→ 0. Moreover, using the regularity of Rτ̄, we obtain

∣Θε
t φ∣ ≤ ∥σ∇xRτ̄∥L∞(R+t ×R

+
t ;L1([−τ̄,τ̄]σ ;L∞(Td)))∣∇vφ∣ + ∥Rτ̄∥L∞(R+t ×R

+
t ;L1([−τ̄,τ̄]σ ;L∞(Td)))∣∇

2
vφ∣, (121)

where the right-hand side of (121) defines a function in L1
(R+ ×Rd

) independent of ε. Therefore, using the Lebesgue dominated convergence
theorem, we obtain the limit (119), where the limit point is given by (120). This ends the proof. ◻

To deal with the second term of right-hand side of (113), we use the following lemma:

Lemma 5. Under hypothesis (H3), for all φ ∈ D(R+ ×Rd
), we obtain

lim
ε→0

νεt(E[S
ε
2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)],φ) = 0.

Proof. Using definitions (112) and (118) of, respectively, the bilinear form νεt and the operator Θε
t , we obtain

νεt(E[S
ε
2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)],φ) = ∫

R+
dt∫

Rd
dv∫ dxE[Sε2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)]Θε

tφ

= ∫
R+

dt∫
Rd

dvΘε
tφ E[∫ dx f ε(t − 2ε2τ̄) −∫ dx f ε(t)]. (122)

On the one hand, from Proposition 3, we obtain E[⨏dx f ε] = ⨏dxE[ f ε]⇀ ⨏dx f = f in L∞(R+ ×Rd
) weak–∗ as ε→ 0. Then, E[⨏dx f ε(t

− 2ε2τ̄) − ⨏dx f ε(t)]⇀ 0 in L∞(R+ ×Rd
)weak–∗ as ε→ 0. On the other hand, from Lemma 4, we obtainΘε

tφ→ Θ0
t φ in L1

(R+ ×Rd
) strong

as ε→ 0. Therefore, we can pass to the limit ε→ 0 in (122), and we obtain the desired result. ◻

The asymptotic behavior of the term μεt is given by the following lemma:

Lemma 6. Under hypothesis (H4), for all φ ∈ D(R+ ×Rd
), we obtain

∣μεt(φ)∣ ≤ ετ̄
4C0CE∥φ∥L∞(R+ ;W3,1(Rd)). (123)

Proof. Introducing the operator Γεt,σ , defined by

Γεt,σ = N ε
t−ε2σSε−ε2σ , (124)

we obtain from definition (114) of μεt(φ),

∣μεt(φ)∣ ≲ ε
4τ̄2
∥ f ε(t − ε2

(σ + s))∥L∞(R+t ×[0,τ̄]σ×[0,2τ̄]s×Q)

E[∥Γεt−ε2σ,sΓ
ε
t,σN ε

t φ∥L∞(R+t ×[0,τ̄]σ×[0,2τ̄]s ;L1(Q))]

≲ C0ε4τ̄2E[∥Γεt−ε2σ,sΓ
ε
t,σN ε

t φ∥L∞(R+t ×[0,τ̄]σ×[0,2τ̄]s ;L1(Q))]. (125)

Introducing the translation operator T−σv in the x-direction, defined by

T−σvψ(t, x, v) = ψ(t, x + σv, v),

we obtain for any smooth function ψ = ψ(t, x, v),
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Γεt,σψ = −ε
−1Eε(t − ε2σ, x) ⋅ ∇v(T−σvψ)

= −ε−1E(t − ε2σ, t/ε2
− σ, x) ⋅ (σT−σv∇xψ + T−σv∇vψ). (126)

Using (124) and (126), we obtain for any smooth function ψ = ψ(t, x, v),

Γεt−ε2σ,sΓ
ε
t,σψ = N ε

t−ε2(σ+s)S
ε
−ε2sΓ

ε
t,σψ

= −ε−1N ε
t−ε2(σ+s)(T−svEε(t − ε2σ, x)) ⋅ T−(σ+s)v(σ∇xψ +∇vψ)

= ε−2
∑
i,j

Eεi (t − ε
2
(σ + s), x){sT−sv∂xi E

ε
j (t − ε

2σ, x)[σT−(σ+s)v∂xjψ

+ T−(σ+s)v∂vjψ] + T−svEεj (t − ε
2σ, x)[σ(σ + s)T−(σ+s)v∂

2
xixjψ

+ σT−(σ+s)v∂
2
vixjψ + (σ + s)T−(σ+s)v∂

2
xivjψ + T−(σ+s)v∂

2
vivjψ]}. (127)

Using (127), we obtain for all ψ ∈ L∞(R+; W2,1
(Q)),

∥Γεt−ε2σ,sΓ
ε
t,σψ∥L∞(R+t ×[0,τ̄]σ×[0,2τ̄]s ;L1(Q)) ≲

τ̄2

ε2 ∥E∥
2
L∞(R+×R+ ;W1,∞(Td))∥ψ∥L∞(R+ ;W2,1(Q)). (128)

Using (128), we obtain for all φ ∈ L∞(R+; W3,1
(Rd
)),

∥Γεt−ε2σ,sΓ
ε
t,σN ε

t φ∥L∞(R+t ×[0,τ̄]σ×[0,2τ̄]s ;L1(Q)) ≲
τ̄2

ε3 ∥E∥
3
L∞(R+×R+ ;W2,∞(Td))∥φ∥L∞(R+ ;W3,1(Rd)). (129)

Combining (125) and (129), we obtain from hypothesis (H4) the final estimate (123), which ends the Proof of Lemma 6.

We are now able to conclude the Proof of Theorem 2 by showing that we can pass to the limit ε→ 0 in (97). From (97) and (113), we
have for all φ ∈ D(R+ ×Rd

),

∫
R+

dt∫
Rd

dv E[∫ dx f ε]∂tφ − ∫
R+

dt∫
Rd

dv∇vφ ⋅ E[∫ dx
f εEε

ε
] = 0, (130)

with

∫
R+

dt∫
Rd

dv∇vφ ⋅ E[∫ dx
f εEε

ε
]

= νεt(E[ f ε],φ) + νεt(E[S
ε
2ε2 τ̄ f ε(t − 2ε2τ̄) − f ε(t)],φ) + μεt(φ). (131)

From Proposition 3, we have E[ f ε]⇀ f in L∞(R+ ×Q) weak–∗ as ε→ 0. Then, we obtain E[⨏dx f ε] = ⨏dxE[ f ε]⇀ ⨏dx f = f in L∞(R+

×Rd
) weak–∗ as ε→ 0. Using this weak limit, we obtain for the first term of (130),

∫
R+

dt∫
Rd

dv E[∫ dx f ε]∂tφÐ→ ∫
R+

dt∫
Rd

dv f ∂tφ as ε→ 0. (132)

Using definitions (112) and (118) of, respectively, the bilinear form νεt and the operator Θε
t , we obtain

νεt(E[ f ε],φ) = ∫
R+

dt∫
Rd

dv∫ dxE[ f ε]Θε
tφ

= ∫
R+

dt∫
Rd

dv E[∫ dx f ε]Θε
tφ. (133)

Moreover, from Lemma 4, we obtain Θε
tφ→ Θ0

t φ in L1
(R+ ×Rd

) strong as ε→ 0. Using the weak limit E[⨏dx f ε]⇀ f in L∞(R+ ×Rd
)

weak–∗ as ε→ 0, we can then pass to the limit in (133) or in the first term of the right-hand side of (131), and we obtain
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νεt(E[ f ε],φ)→ ∫
R+

dt∫
Rd

dv fΘ0
t φ as ε→ 0. (134)

Using Lemma 5, the second term of the right-hand side of (131) vanishes as ε→ 0. Finally, for the third term of the right-hand side of (131),
we obtain from Lemma 6 that μεt ⇀ 0 in D′(R+ ×Rd

) as ε→ 0. Therefore, we obtain from (131) and (134),

∫
R+

dt∫
Rd

dv∇vφ ⋅ E[∫ dx
f εEε

ε
]→ ∫

R+
dt∫

Rd
dv fΘ0

t φ as ε→ 0, (135)

where

∫
R+

dt∫
Rd

dv fΘ0
t φ = ∫

R+
dt∫

Rd
dv φ∇v ⋅ ((∫

τ̄

0
dσRτ̄(t, t, σ, σv))∇v f ). (136)

Passing to the limit ε→ 0 in (130) and using (132)–(136), we obtain

∂t f −∇v ⋅ ((∫

τ̄

0
dσRτ̄(t, t, σ, σv))∇v f ) = 0 in D′(R+ ×Rd

),

which shows (84) with (83).
It remains to show time continuity of the limit point f . From (97) and the convergence result (135), we have for all φ ∈ D(Rd

),

d
dt∫Rd

dv φE[∫ dx f ε] = ∫
Rd

dv∇vφ ⋅ E[∫ dx
f εEε

ε
] ≤ C(φ), ∀t ∈ R+,

where the constant C(φ) > 0 depends on φ but not on t and ε. Therefore, we obtain

∣∫
Rd

dv (E[∫ dx f ε(t)] − E[∫ dx f ε(t − 2ε2τ̄)])φ∣

≤ ∣∫

t

t−2ε2 τ̄
ds∫

Rd
dv∫ dx ε−1E[Eε(s, x) ⋅ ∇v f ε(s, x, v)]φ(v)∣

≤ ε−1
∥ f ε0∥L∞(Q)∫

t

t−2ε2 τ̄
ds∫

Rd
dv∫ dx ∣∇vφ(v)∣E[∣Eε(s, x)∣]

≤ 2ετ̄C0CE∥φ∥W1,1(Rd) Ð→ 0 as ε→ 0.

Therefore, the set {∫Rd dv E[⨏dx f ε(t)]φ}ε>0 is uniformly equi-continuous in time, and by Ascoli–Arzela theorem, this set is relatively compact
in 𝒞 ([0, T]). Then, there exists a subsequence, still labeled by ε, such that ∫Rd dv E[⨏dx f ε(t)]φ converges uniformly in time to ∫Rd f (t)φdv,
with, in particular, f ∣t=0 = ⨏dx f 0. Finally, the bound

∥E[∫ dx f ε]∥
L∞(0,T;Lp(Rd))

≤ (2π)−d/p E[∥ f ε∥L∞(0,T;Lp(Q))]

= (2π)−d/p E[∥ f ε0∥Lp(Q)] ≤ (2π)
−d/pC0 <∞

(obtained by using Hölder’s inequality) and the density of D(Rd
) in Lq

(Rd
) with 1/p + 1/q = 1 and 1 < q <∞ imply by standard arguments

that E[⨏dx f ε(t)]⇀ f in 𝒞 ([0, T]; Lp
(Rd
) −weak) for all T > 0 and 1 < p <∞. This completes the Proof of Theorem 2.
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D. Links with some kinetic turbulence theories of plasma physics
In this section, we relate the results of Sec. IV B to two kinetic turbulence theories of plasma physics. First, when the autocorrelation time

of particles τ̄ is finite, our result leads to a diffusion matrix, which is reminiscent of the diffusion matrix of the resonance broadening the-
ory,1,21,27,51,58 a refinement of the quasilinear theory. This diffusion matrix falls into the framework of Theorem 2. Second, even if Theorem 2
and, in particular, hypothesis (H2) hold only for τ̄ finite, it is worthwhile to pass, at least formally, to the limit τ̄→ +∞. When the autocor-
relation time of particles τ̄ tends to infinity, we recover formally the structure of the diffusion matrix of the quasilinear theory26,57 from the
diffusion matrix (83).

1. Resonance broadening like theory: Finite τ̄

Here, we show how to relate the diffusion matrix (83) to the diffusion matrix obtained in the resonance broadening theory.1,21,27,51,58 The
diffusion matrix (83), obtained in Theorem 2, can be recast as

𝒟 τ̄(t, v) = ∫
τ̄

0
dσ E[E(t, 0, x)⊗ E(t,−σ, x − σv)]. (137)

Introducing the Fourier series decomposition of E,

E(t, τ, x) = ∑
k∈Zd

e ik⋅xÊ(t, τ, k),

we can suppose without loss of generality that Ê(t, τ, k) = e−iω(k)τẼ(t, τ, k) where the real-valued function Zd
∋ k↦ ω(k) ∈ R is odd, i.e.,

ω(−k) = −ω(k) for all k ∈ Zd. This transformation, which can be seen as a WKB ansatz, is just a change of unknown functions. In dimensional
variables, ω(k) should scale as ωp, which means that τ (respectively, t) represents the fast (respectively, slow) time variable. In the framework
of the resonance broadening theory of plasma physics, which is self-consistent, frequencies ω(k) are given by the resolution of the dispersion
relation (4) or by its approximation (5). Since here we work in a non-self-consistent frame, we suppose that frequencies ω(k) are simply given
by a suitable function of k, which is regular and bounded with respect to k. In the same spirit as assumption (H3), we now make the following
assumption:

(H3′) There exist a non-negative real-valued function E(t, k) : R+ × Zd
→ R+, with E(t, k) = E(t,−k) and ∣k∣2∣E(t, k)∣1/2 ∈ L∞(R+; ℓ1

(Zd
)),

and a bounded function Aτ̄(τ, k) : [−τ̄, τ̄] × Zd
→ R+, even and compactly supported in τ, such that

E[Ẽ(t, τ, k)⊗ Ẽ(t, σ, k′)] = Aτ̄(τ − σ, k)E(t, k)
k⊗ k
∣k∣2

δ(k + k′).

The term δ(k + k′), which provides spatial homogeneity, is reminiscent of what plasma physicists call the random phase approximation.
Indeed, the random phase approximation assumes that Ẽ(t, τ, k)∝ exp( iϕk), where (ϕk)k∈Zd are independent random variables equidis-
tributed on [0, 2π] such that ϕ−k = −ϕk. The matrix k⊗ k/∣k∣2 means that we choose an electric field which is the gradient of an electric
potential. The function Aτ̄ corresponds to a time autocorrelation function. We suppose that the function τ ↦ Aτ̄(τ, k) is bounded, even, and
with compact support included in [−τ̄, τ̄] for all k ∈ Zd. The function E(t, k) corresponds to the energy of the kth mode of the electric field,
whose time scale of evolution in dimensional variables is τL, i.e., a slow time scale in comparison to 1/ωp [remember that 1/(ωpτL) = ε2]. In
the self-consistent framework of resonance broadening theory, the function E(t, k) are given by Eq. (2) in which the energy of the kth mode
of the electric field, ∣E(t, k)∣2, is replaced by E(t, k) and the grow rate γ(t, k) is given by a d-dimensional version of (4) [or its approximation
(6)]. Since here we work in a non-self-consistent frame, we also suppose that energy amplitudes E(t, k) are simply given by a suitable bounded
function, which decreases fast enough in the variable k to satisfy hypothesis (H4). Hypothesis (H3′), which is a particular case of hypothesis
(H3), is consistent with the spatiotemporal homogeneity property of the turbulence. Actually, the property (H3′) implies the property (H3),
in other words, the property (H3′) is less general than the property (H3). Indeed, we obtain from (H3′),

E[E(t, τ, x)⊗ E(t, σ, y)] = ∑
k∈Zd

Aτ̄(τ − σ, k)E(t, k)
k⊗ k
∣k∣2

e ik⋅(x−y)e−iω(k)(τ−σ),

from which we easily observe that the spatiotemporal autocorrelation function E[E(t, τ, x)⊗ E(t, σ, y)] is invariant under time and space
translations. In terms of the autocorrelation matrix Rτ̄, hypothesis (H3′) is equivalent to

Rτ̄(t, t, σ, x) = ∑
k∈Zd

e −iω(k)σAτ̄(σ, k)E(t, k)
k⊗ k
∣k∣2

e ik⋅x. (138)

Using assumption (H3′) in (137), where the electric field E is written in terms of its Fourier series decomposition, we obtain
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𝒟 τ̄(t, v) = ∑
k∈Zd

E(t, k)
k⊗ k
∣k∣2 ∫

τ̄

0
dσ e−i(ω(k)−k⋅v)σAτ̄(σ, k). (139)

The diffusion matrix (139) can be rewritten as

𝒟 τ̄(t, v) = ∑
k∈Zd

E(t, k)
k⊗ k
∣k∣2

Rτ̄(ω(k) − k ⋅ v, k), (140)

where the resonance function Rτ̄ is given by

Rτ̄(ω(k) − k ⋅ v, k) = Re∫
τ̄

0
dσ e−i(ω(k)−k⋅v)σAτ̄(σ, k)

=
1
2∫

+∞

−∞
dσ e−i(ω(k)−k⋅v)σ Aτ̄(σ, k). (141)

In (141), we have used the even parity and the compact support (included in [−τ̄, τ̄]) of the real function τ↦Aτ̄(τ, k) to obtain the last equality.
Substituting hypothesis (H3′) for hypothesis (H3) in Theorem 2, we obtain the following corollary:

Corollary 2. Let E be an integrable random vector field satisfying assumptions (H1) and (H2) and (H3′) and (H4), and let Eε be given
by (81). Let { f ε0}ε>0 be a sequence of independent random non-negative initial data and C0 be a positive constant such that for a.e. ϖ ∈ 𝒪 ,
∥ f ε0∥L1(Q) + ∥ f ε0∥L∞(Q) ≤ C0 <∞. Let 𝒟 τ̄ be the matrix-valued function defined by (140) and (141). Let f ε be the unique weak solution of the
Vlasov equation (17), with initial data f ε

∣t=0
= f ε0. Then, we have the following:

1. Up to extraction of a subsequence, E[ f ε0] converges in L∞(Q) weak–∗ to a function f 0 ∈ L1
∩ L∞(Q), E[ f ε] converges in

L∞(R+; L∞(Q)) weak–∗ to a function f ∈ L∞(R+; L1
∩ L∞(Rd

)), and E[⨏dx f ε] converges in L∞(R+; L∞(Rd
)) weak–∗ to f . More-

over, E[⨏dx f ε] converges in 𝒞 (0, T; Lp
(Rd
) −weak) to f for 1 < p <∞ and for all T > 0. The limit point f = f (t, v) is solution of the

following diffusion equation in the sense of distributions:

∂t f −∇v ⋅ (𝒟 τ̄∇v f ) = 0 in D′(R+ ×Rd
),

f ∣t=0 =∫ dx f 0.

2. The diffusion matrix 𝒟 τ̄ is symmetric, non-negative, and analytic in the velocity variables.

Proof. The proof of point 1 of Corollary 2 is the same as the Proof of Theorem 2. It remains to deal with the proof of point 2. Sym-
metry of the diffusion matrix 𝒟 τ̄ is obvious, while reality of the function Rτ̄ defined by (141) follows from the parity (even) of the function
σ ↦ Aτ̄(σ, k). Non-negativeness of the diffusion matrix 𝒟 τ̄ comes from the non-negativeness of the function Rτ̄, which results from both the
Bochner theorem (see, e.g., Theorem 2 p. 346 in Ref. 60) and the fact that the function σ ↦ Aτ̄(σ, k) is positive definite in the following sense:

∫
R

dτ∫
R

dσAτ̄(τ − σ, k)φ(τ)φ(σ) ≥ 0 (142)

for every continuous function φ with compact support. Indeed, from assumption (H3′) and using Ẽ(t, τ,−k) = Ẽ∗(t, τ, k), for all vector
X ∈ Rd

/{0, k�} and φ∈ 𝒞 0
c(R;R) (the set of continuous and compactly supported functions from R to R), we obtain

∣k ⋅ X∣2

∣k∣2
E(t, k)∫

R
dτ∫

R
dσAτ̄(τ − σ, k)φ(τ)φ(σ)

= E[(∫
R

dτẼ(t, τ, k) ⋅ Xφ(τ))(∫
R

dσẼ(t, σ, k) ⋅ Xφ(σ))
∗

] ≥ 0,

which implies (142). Finally, 𝒟 τ̄(t, v), defined by (140) and (141), is an analytic function in v because the function Rτ̄ is the Fourier transform
of the compactly supported function Aτ̄. ◻
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The diffusion matrix (140) is reminiscent of the diffusion matrix of resonance broadening theory.21,27,58 In Remark 13, we present very
briefly the result of the resonance broadening theory to point out the similarities and the differences between the resonance broadening effect
of Corollary 2 and that of the resonance broadening theory. As already mentioned in Sec. III B 2, from a mathematical point of view, the
consequence of the finite-τ̄ or resonance broadening effect of Corollary 2 is a regularity improvement of the diffusion matrix in the velocity
variables (by comparison with the diffusion matrix of the quasilinear theory, see Sec. IV D 2). From a physical point of view, our broadening
resonance effect corresponds to a broadening in time frequency of a width Δω = 1/τ̄ for the resonance ω(k) − k ⋅ v = 0 (Δω = 0 for the
quasilinear theory, see Sec. IV D 2). Here, up to hypothesis (H3′), we can choose freely the time autocorrelation function Aτ̄. From (141), we
observe that the resonance function Rτ̄ is obtained as the Fourier transform of Aτ̄/2. In particular, we can recover diffusion matrices (80) and
(87) obtained, respectively, in Sec. III B 2 and Corollary 1.

Remark 13 (resonance broadening theory). The finite-τ̄ or resonance broadening effect obtained in Corollary 2 is reminiscent of the reso-
nance broadening theory1,21,27,51,58, but it is not exactly the same since the derivation of resonance broadening theory is quite different and more
involved. The resonance broadening theory is a correction to the quasilinear theory, which takes into account the particle diffusion coming from
𝒟 τ̄ for calculating 𝒟 τ̄ itself. Indeed, in the original derivation of the quasilinear theory, the diffusion matrix of the quasilinear is obtained by
assuming that the perturbed dynamics of particles (called fluctuations) can be approximated by the ballistic motion or the free flow because
fluctuations are small enough. This approximation is consistent with the limit τ̄ → +∞ (or τD → +∞ in dimensional variables) since for such
limit, particles follow almost straight lines. If the fluctuation amplitude is sufficiently large and/or the wave spectrum is sufficiently narrow in
k-space, the diffusion of particle trajectories can produce an appreciable broadening of wave–particle resonances ω(k) − k ⋅ v ≃ 0, even when
Eel/Ekin ≪ 1. To take these effects into account, the resonance broadening theory aims at modifying appropriately the diffusion matrix from
the particle dynamics in a self-consistent way, i.e., by incorporating the diffusion of particle trajectories. Using a statistical approach,21,27,58 the
broadening resonance theory states that the autocorrelation function should be given by

Aτ̄(σ, k) = exp(−(σ/τ̄)3
/3), with τ̄ = (k⊗ k : 𝒟 rb(σ, v))−1/3, i.e.,

Aτ̄(σ, k) = Arb(σ, k,𝒟 rb(σ, v)) ∶= exp(−
1
3

k⊗ k : 𝒟 rb(σ, v)σ3
).

(143)

We refer the reader to Remark 14 for a rough but short explanation of this kind of result in one dimension (see Refs. 27 and 58 for an origi-
nal and detailed derivation). We now observe that the autocorrelation time τ̄ is no more a free parameter but is determined by the diffusion
matrix 𝒟 rb. Likewise, the time autocorrelation function Arb can no more be chosen freely but is an explicit function of the diffusion matrix
𝒟 rb. According to the resonance broadening theory, the diffusion matrix 𝒟 rb is now a solution to the nonlinear functional integral equation
given by

𝒟 rb(t, v) = ∑
k∈Zd

E(t, k)
k⊗ k
∣k∣2

Re∫
∞

0
dσ e−i(ω(k)−k⋅v)σArb(σ, k,𝒟 rb(σ, v)) (144)

= ∑
k∈Zd

E(t, k)
k⊗ k
∣k∣2

Rrb(ω(k) − k ⋅ v, k,𝒟 rb).

The resonance function Rrb can no more be seen as the Fourier transform (problem of convergence for negative time) of the time autocorrelation
function Arb but as the Laplace transform of it. The broadening of wave–particle resonance is produced by the term k⊗ k : 𝒟 rb(σ, v)σ3

/3, which
can be seen an approximation of the ensemble-average mean square deviation from the mean of particle trajectories in the turbulent electric
field (see Remark 14 for a rough but short explanation and Refs. 27 and 58 for a more rigorous and exhaustive one). Resonance broadening
theory would certainly deserve a rigorous mathematical treatment, but it is out of the scope of this paper. This remark just aims at enlightening
similarities and differences with the resonance broadening effect obtained in Corollary 2.

Remark 14. In this remark, we roughly explain where typical expression (143) comes from. Here, we give a short and simplified derivation
of (143) just to give a flavor. A more involved and detailed derivation can be found in Refs. 27 and 58. In addition, without loss of generality,
we consider the dimension d = 1 to simplify the calculation. In (141) or (144), the term exp(ikvσ) can be seen as the result of approximating
characteristic curves by the ballistic motion (like in the quasilinear theory), i.e., X(σ; 0, x, v) ≃ x + vσ and V(σ; 0, x, v) ≃ v. Indeed, we observe
that

exp(ikvσ) = E[exp(ikΔX(σ))],

with (ΔX(σ),ΔV(σ)) = (X(σ) − X(0), V(σ) − V(0)) = (vσ, v). Considering a higher approximation of the characteristic curves (in par-
ticular, an approximation that takes into account the diffusion of particles), we should add to the free-flow approximation a correction
(δX(σ), δV(σ)) such that we have X(σ; 0, x, v) ≃ x + vσ + δX(σ) and V(σ; 0, x, v) = v + δV(σ). The autocorrelation function σ ↦ Arb(σ, k) is
then defined by
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Arb(σ, k) ∶= E[exp(ikδX(σ))] = E[exp(ik∫
σ

0
ds δV(s))]. (145)

We now suppose that δV(σ) is a Gaussian random function, with a probability distribution P given by

P(δV(σ)) =
1

√
2π𝒟 (v)σ

exp(−
(δV(σ))2

2𝒟 (v)σ
),

where the standard deviation or the diffusion coefficient 𝒟 (v) is constant in time. Therefore, we have

E[δV(σ)] = 0, E[(δV(σ))2
] = 𝒟 (v)σ, and E[δV(σ)δV(σ′)] = 𝒟 (v)min(σ, σ′), (146)

which means that particle velocity follows a diffusion process characterized by the diffusion coefficient 𝒟 . Since δV(σ) is a Gaussian random
function, using (146), we obtain from (145),

Arb(σ, k) = E[exp(ik∫
σ

0
δV(s)ds)]

= exp(−
1
2

k2
∫

σ

0
ds∫

σ

0
ds′ E[δV(s)δV(s′)])

= exp(−
1
2

k2
∫

σ

0
ds∫

σ

0
ds′𝒟 (v)min(s, s′))

= exp(−
1
6

k2𝒟 (v)σ3
),

which gives, up to a mutiplicative constant in the exponential, the same result as (143).

2. Quasilinear theory: Infinite τ̄

Here, we show that we can retreive formally the diffusion matrix of the quasilinear theory21,26,57 from the diffusion matrix (83) or (140)
by taking the formal limit τ̄ → +∞. For this, we choose an autocorrelation function Aτ̄ such that Aτ̄ → 1 a.e. as τ̄ → +∞ [e.g., Aτ̄(σ, k)
= 𝟙[−τ̄,τ̄](σ)]. Then, letting τ̄ go to infinity, we obtain in the sense of distributions

lim
τ̄→+∞∫

τ̄

0
dσ e−i(ω(k)−k⋅v)σAτ̄(σ, k) = πδ(ω(k) − k ⋅ v) − i p.v.(

1
ω(k) − k ⋅ v

)

and

lim
τ̄→+∞

Rτ̄(ω(k) − k ⋅ v, k) = πδ(ω(k) − k ⋅ v). (147)

Therefore, the diffusion matrix (140) becomes the quasilinear diffusion matrix of plasma physics literature (see, e.g., Refs. 21 and 39),

𝒟∞(t, v) = π∑
k∈Zd

E(t, k)
k⊗ k
∣k∣2

δ(ω(k) − k ⋅ v). (148)

The diffusion matrix (148) seems not very regular, since it involves a sum of Dirac masses, namely, resonances δ(ω(k) − k ⋅ v). Then, well-
posedness of the diffusion equation (84) with such a diffusion matrix remains an open issue at least for non-smooth distribution functions.
We note that we can also recover the quasilinear diffusion matrix (148) from the diffusion matrix 𝒟 rb of the resonance broadening theory
(see Remark 13) by observing that Rrb(ω(k) − k ⋅ v, k, 0) = δ(ω(k) − k ⋅ v). From (143), this still corresponds to an infinite autocorrelation
time τ̄. The limit τ̄→ +∞ is a singular limit from different points of view:

1. When τ̄→∞, the autocorrelation matrix (138) is no more integrable with respect to correlation time σ but only locally integrable. This
is the same for the autocorrelation matrix Rτ̄ constructed in the Appendix. This loss of integrability entails a loss of regularity in the
velocity variables for the diffusion matrix. This loss of regularity in velocity variables is even more striking when we observe the singular
limit (147) for a smooth resonance function Rτ̄.

2. When τ̄→∞, hypothesis (H2) does not hold anymore. Indeed the stochastic electric field defined in Sec. IV A no longer satisfies a time
decorrelation property since its decorrelation time tends to infinity. It is like falling back to the deterministic case.
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When τ̄ →∞, the autocorrelation time of particles tends to infinity and the time decorrelation of the electric field defined in Sec. IV A
occurs at infinite time. This can be interpreted as follows: The electric field becomes deterministic and particles trajectories are almost
straight lines. This seems consistent with the fact that the original derivation of the QL theory performed by physicists26,57 is determin-
istic. Indeed, this deterministic derivation is based on two main ingredients. First, the wave–particle interaction is assumed perturbative,
and the perturbed dynamics of particles is approximated by the free flow or the ballistic motion. Second, all nonlinear wave–wave inter-
actions, except for their effect on the space-averaged distribution function, are neglected. After the original 1962 derivation, which is
deterministic, other derivations of the QL theory (see, e.g., Refs. 3, 5, and 21) appeal to some statistical arguments and decorrelation
hypotheses to establish the QL diffusion. Therefore, considering quasilinear theory as a probabilistic or deterministic theory remains an open
question.

Finally, we note that the resonance broadening theory27,58 is actually a statistical (probabilistic) theory of the Vlasov equation and does
not have a deterministic counterpart in the plasma physics literature. Nevertheless, in Sec. III B 2 for the deterministic case, we have been able
to introduce a finite autocorrelation time of particles τ̄ and to derive formally a diffusion matrix that is consistent with the quasilinear one in
the limit τ̄→∞.
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APPENDIX: AN EXAMPLE OF A RANDOM FIELD E

In this appendix, we construct an example of random electric field E = E(t, τ, x) that satisfies hypotheses (H1)–(H4) of Sec. IV A. For
this, we are inspired by the Example 2 in Ref. 50. Let r and 𝜚 be positive real numbers such that 𝜚 ≥ 1/r and r ≥ 1. We set τ̄ = 1/r + 𝜚.
With this decomposition of the autocorrelation time τ̄, we can choose τ̄ as small as we want by taking finite but large r and choose also τ̄
as large as we want by taking any fixed r and 𝜚 large enough. Let (Tn

k , Xn
k) ∈ R

1+d with (n, k) ∈ Z × Zd be independent random variables
equidistributed in

{
n
r
+ [−

1
2r

,
1
2r
]} × {k + [−1/2, 1/2]d}.

We consider also other independent random variables αn
k , with (n, k) ∈ Z × Zd, such that E[αn

k] = 0 and E[(αn
k)

2
] = 1. Let η∈ 𝒞∞c (R+ ×R

×Rd;R) be a real scalar function that is compactly supported in R+ × [−𝜚/2,𝜚/2] ×Rd. We define the random function E = E(t, τ, x) by

E(t, τ, x) = ∑
(n,k)∈Z1+d

αn
kη(t, τ − Tn

k , x − Xn
k).

Since η has a compact support, the sum defining E in this equation is finite. Obviously, E ∈ 𝒞∞c (R+ ×R ×Rd;R) and E[E] = 0, which means
that hypotheses (H1) and (H4) are satisfied. For a fixed τ ∈ R, the function E(t, τ, x) depends only on (Tn

l , Xn
l ,αn

l ) with

n ∈ [τ −
1
2r
−
𝜚
2

, τ +
1
2r
+
𝜚
2
].

Similarly, we define

E′(s, σ, y) = ∑
(n,k)∈Z1+d

αn
kη
′
(s, σ − Tn

k , y − Xn
k),

with η′ ∈ 𝒞∞c (R+ ×R ×Rd;R) being a real scalar function, which is also compactly supported in R+ × [−𝜚/2,𝜚/2] ×Rd. For a fixed σ ∈ R,
the function E′(s, σ, x) depends only on (Tm

k , Xm
k ,αm

k ) with

m ∈ [σ −
1
2r
−
𝜚
2

, σ +
1
2r
+
𝜚
2
].

Then, as soon as ∣τ − σ∣ ≥ 1/r + 𝜚 =:τ̄, the random functions E(t, τ, x) and E′(s, σ, y) are independent, which means that hypothesis (H2) is
satisfied. It remains to show hypothesis (H3). For this, we estimate E[E(t, τ, x)E′(s, σ, y)] as follows: Using the independence of random
variables (Tn

k , Xn
k) and αn

k and using E[αn
kα

m
l ] = δmnδkl, we obtain
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E[E(t, τ, x)E′(s, σ, y)] = ∑
(n,k)∈Z1+d

∑
(m,l)∈Z1+d

E[αn
kα

m
l ]

E[η(t, τ − Tn
k , x − Xn

k)η
′
(s, σ − Tm

l , y − Xm
l )]

= ∑
(n,k)∈Z1+d

E[(αn
k)

2
]E[η(t, τ − Tn

k , x − Xn
k)η

′
(s, σ − Tn

k , y − Xn
k)]

= ∑
(n,k)∈Z1+d

∫
[−1/2,1/2]d

dz∫
1
2r

− 1
2r

dθ

η(t, τ − n/r − θ, x − k − z)η′(s, σ − n/r − θ, y − k − z)

= ∑
(n,k)∈Z1+d

∫
k+[−1/2,1/2]d

dz∫
(n+1/2)/r

(n−1/2)/r
dθ

η(t, τ − θ, x − z)η′(s, σ − θ, y − z)

= ∫
Rd

dz∫
R

dθ η(t, τ − θ, x − z)η′(s, σ − θ, y − z)

= ∫
Rd

dz∫
R

dθ η(t, τ − σ + θ, x − y + z)η′(s, θ, z)

=: R̃η,η′(t, s, τ − σ, x − y).

We then obtain R̃η,η′ ∈ 𝒞∞c (R+ ×R+ ×R ×Rd;R). To construct the autocorrelation matrix (Rτ̄ ij)(i,j), we first choose real scalar functions
ηi∈ 𝒞∞c (R+ ×R ×Rd;R) for i ∈ {1, . . . , d}, which are compactly supported in R+ × [−𝜚/2,𝜚/2] ×Rd. Second, we define the i-th component
of the random electric field E by

Ei(t, τ, x) = ∑
(n,k)∈Z1+d

αn
kηi(t, τ − Tn

k , x − Xn
k).

Finally, the autocorrelation matrix Rτ̄ is defined by

Rτ̄ ij(t, s, τ − σ, x − y) ∶= R̃ηi ,ηj(t, s, τ − σ, x − y).

Another way to obtain the autocorrelation matrix Rτ̄ is to take the gradient of R̃η,η′(t, s, τ − σ, x − y) with respect to the variables x
and y, i.e.,

Rτ̄ ij(t, s, τ − σ, x − y) ∶= ∂xi∂yjR̃η,η′(t, s, τ − σ, x − y) = R̃∂xi η,∂yj η
′(t, s, τ − σ, x − y)

= E[∂xiE(t, τ, x)∂yjE
′
(s, σ, y)].
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