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In this paper we prove the existence and uniqueness of classical solution for a system of PDEs
recently developed in Refs. 60, 8, 10 and 11 to modelize the nonlinear gyrokinetic turbulence in

magnetized plasma. From the analytical and numerical point of view this model is very promising

because it allows to recover kinetic features (wave�particle interaction, Landau resonance) of the

dynamic °ow with the complexity of a multi-°uid model. This model, called the gyro-water-bag
model, is derived from two-phase space variable reductions of the Vlasov equation through the

existence of two underlying invariants. The ¯rst one, the magnetic moment, is adiabatic and

the second, a geometric invariant named \water-bag", is exact and is just the direct consequence
of the Liouville theorem.
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1. Introduction

It is generally recognized that the anomalous transport observed in nonuniform

magnetized plasmas is related to the existence of turbulent low-frequency electro-

magnetic °uctuations, i.e. with frequency much lower than the ion gyrofrequency.
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The presence of density, temperature and velocity gradients in the transverse

direction of the magnetic con¯nement ¯eld, generates micro-instabilities which give

rise to this turbulent transport. Low frequency ion-temperature-gradient-driven

instability is one of the most serious candidates to account for the anomalous

transport,74 as well as the so-called trapped electron modes.62 As the main energy loss

in a controlled fusion devices is of conductive nature, the energy con¯nement time is

of the same order as the di®usion time a 2=�T where �T is the thermal di®usivity and

\a" the transverse plasma size. Therefore it is crucial to determine this transport

coe±cient by computing the turbulent nonlinear di®usivities in fusion plasmas.

During recent years, ion turbulence in tokamaks has been intensively studied

both with °uid26,37,56 and gyrokinetic simulations using Particle-In-Cell (PIC)

codes46,47,52,53,63,68 or Vlasov codes.20,23,27,43

As far as the turbulent di®usion is concerned, it is commonly observed24 that there

exists a factor 2 between kinetic and °uid simulations (�fluid > 2�kinetic). Therefore

the kinetic or °uid description may signi¯cantly impact the instability threshold as

well as the predicted turbulent transport. The reasons of this observation is not really

well understood: nonlinear Landau e®ects or nonlinear resonant wave�particle

interaction, damping of poloidal velocity °uctuations, and so on.

Consequently, it is important that gyrokinetic simulations measure the dis-

crepancy between the local distribution function and a Maxwellian one, which is the

main assumption of °uid closures.

In a recent paper Ref. 67 a comparison between °uid and kinetic approach has

been addressed by studying a three-dimensional kinetic interchange. A simple

driftkinetic model is described by a distribution depending only on two spatial

dimensions and parametrized by the energy. In that case it appears that the distri-

bution function is far from a Maxwellian and cannot be described by a small number

of moments. Wave�particle resonant processes certainly play an important role and

most of the closures that have been developed will be ine±cient.

On the other hand, although more accurate, the kinetic description of turbulent

transport is much more demanding in computer resources than °uid simulations.

This motivated us to revisit an alternative approach based on the water-bag-like

weak solution of Vlasov-gyrokinetic equations.

The water-bag model was introduced initially by DePackh,22 Hohl, Feix and

Bertrand,5,6,30 next extended to a double water-bag by Berk and Roberts2 and ¯nally

generalized to the multiple water-bag by Finzi.3,4,7,31,61 The water-bag model was

shown to bring the bridge between °uid and kinetic description of a collisionless

plasma, allowing to keep the kinetic aspect of the problem (wave�particle inter-

action, Landau resonance) with the same complexity as a multi-°uid model. The aim

of this paper is to use the water-bag description for gyrokinetic modeling. In order to

understand the nature of the transport, the weak-turbulence theory of the gyro-

water-bag has been developed in Ref. 8 leading to nonlinear Fokker�Planck

equations for the bags (revealing the di®usive nature of the transport in the radial
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direction) coupled to a di®usion equation for the mean °ow (zonal °ow) which

constitutes the back reaction (inverse energy cascade) of turbulent di®usion (direct

energy cascade). Indeed there is an energy transfer from the turbulent low-frequency

electromagnetic (drift waves) °uctuations to these periodic zonal °ow °uctuations

via either local or nonlocal interactions in Fourier space. The back reaction of self-

generated shear °ow (such as both radially sheared parallel and poloidal °ows), on

pressure-gradient-driven turbulence, is a key mechanism that governs the turbulent

state and the transport, especially it can lead to the formation of transport barriers

which participates to a better con¯nement of the plasma. Through a quasilinear

analysis it has been derived semi-analytical transport coe±cients to predict the level

of the turbulence. In Ref. 10 another quasilinear model, well-suited for numerical

simulation of weak turbulence of magnetized plasma in a cylinder, is derived. This

quasilinear model is solved using a numerical approximation scheme based on

discontinuous Galerkin methods. Finally the full nonlinear gyro-water-bag model is

solved numerically in Ref. 9 by the means of Runge�Kutta semi-Lagrangian

methods. The comparison of numerical results between nonlinear and quasilinear

simulations10 show that the quasilinear approach proves to be a good approximation

of the full nonlinear one as the quasilinear estimate of the turbulent transport is of the

same order as the nonlinear one. In order to show the relevance of the gyro-water-bag

model for describing plasma nonlinear gyrokinetic turbulence, we are now making

numerical comparisons between the nonlinear gyro-water-bag model (for which we

will prove well-posedness below) and the Vlasov-gyrokinetic equations thanks to the

GYSELA43 code developed at the CEA-Cadarache. After a brief introduction of the

well-known gyrokinetic equations hierarchy, we present the derivation of the gyro-

water-bag model. We next show the existence and uniqueness of classical solution of

the gyro-water-bag model.

2. The Gyro-Water-Bag Model

2.1. The gyrokinetic equation

Predicting turbulent transport in collisionless fusion plasmas requires to solve the

gyrokinetic equations for all species coupled to Darwin or Poisswell equations (low-

frequency approximations of Maxwell equations in the asymptotic limit of in¯nite

speed of light11). This gyrokinetic approach has been widely used in recent years to

study low-frequency micro-instabilities in magnetically con¯ned plasmas which are

known for exhibiting a wide range of spatial and temporal scales. Gyrokinetic

ordering employs the fact that the characteristic frequencies of the waves and

gyroradii are small compared with the gyrofrequencies and unperturbed scale

lengths, respectively, and that the perturbed parallel scale lengths are of the order of

the unperturbated scale length. Such an ordering enables one to be rid of the explicit

dependence on the phase angle of the Vlasov equation through gyrophase-averaging

while retaining the gyroradius e®ects to the arbitrary values of the gyroradius over
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the perturbated perpendicular scale length. The conventional approach36 to derive

the gyrokinetic Vlasov equation is based on a maximal multiple-scale-ordering

expansion involving a single ordering parameter, which consists in computing an

iterative solution of the gyroangle-averaged Vlasov equation perturbatively expan-

ded in powers of a dimensionless parameter �=L, where � is the Larmor radius and

L, the characteristic background magnetic-¯eld or plasma density and temperature

nonuniformity length scale. A modern foundation of nonlinear gyrokinetic the-

ory19,28,44 is based on a two-step Lie-transform approach. The ¯rst step consists in

the derivation of the guiding-center Hamilton equations, from the Hamiltonian

particle dynamics, through the elimination of the gyroangle associated with the

gyromotion time-scale of charged particles. If one takes into account ¯nite gyroradius

e®ects, one needs to reintroduce the gyroangle dependence into the perturbated

guiding-center Hamiltonian dynamics which results that the magnetic moment � is

only conserved at ¯rst order in the dimensionless ordering parameter featuring

electrostatic perturbations. Therefore one needs to perform a second-order pertur-

bation analysis to derive the nonlinear gyrocenter dynamics. As a result, the second

step consists in deriving a new set of gyrocenter Hamiltonian equations from the

perturbated guiding-center equations, through a time-dependent gyrocenter phase-

space transformation and gyroangle elimination. Finally, a reduced variational

principle18,19 enables to derive self-consistent expressions for the nonlinear gyroki-

netic Vlasov Maxwell equations. Within gyrokinetic Hamiltonian formalism, the

Vlasov equation expresses the fact that the ions gyrocenter distribution function

f ¼ f ðt; r; vjj; �Þ is constant along gyrocenter characteristic curves in gyrocenter

phase-space ðt; r; vjj; �Þ:

Dtf ¼ @t f þ _X? � r?f þ _X jj � rjjf þ v
:
jj@vjj f ¼ 0; ð2:1Þ

with

_X jj ¼ vjjb; _X? ¼ vE þ vrB þ vc;

vE ¼ 1

B �
jj
b�rJ��;

vrB ¼ �

qiB
�
jj
b�rB;

vc ¼
miv

2
jj

qiB
�
jj

b�rB

B
þ ðr �BÞ?

B

� �
¼

miv
2
jj

qiB
�
jj
b� N

Rc

;

v
:
jj ¼ � 1

mi

bþ
mivjj
qiB

�
jj
b� N

Rc

 !
� ð�rB þ qirJ��Þ;

B� ¼ Bþ
mivjj
qi

r� b; B �
jj ¼ B� � b;
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where b ¼ B=B denotes the unit vector along magnetic ¯eld line, J� denotes the

gyroaverage operator, N=Rc is the ¯eld line curvature, qi ¼ Zie, e > 0 being the

electron Coulomb charge and � ¼ miv
2
?=ð2BÞ is the ¯rst adiabatic invariant of

the ion gyrocenter. If we now suppose k?�i small and neglecting all terms smaller

than Oðk 2
?�

2
i Þ, we then obtain the Poisson equation

�Ziqir? � ni�
2
i

kBTi

r?�

� �
¼ �2

Di
Ziqi

ni
kBTi

��þ Zi

Z
2�

�i

qi
d�dvjjJ�f � ne; ð2:2Þ

where �2
i ¼ v 2

thi=�
2
i ¼ kBTi=ðmi�

2
i Þ is the ion Larmor radius, � 2

Di
¼ kBTi"0=ðZ 2

i e
2niÞ

is the ion Debye length and J0 is the Bessel function of zero order. The left-hand side

of Eq. (2.2) corresponds to the di®erence between the gyroaveraged density �i

qi
�R

d�dvjjJ� f and the laboratory ion density Ni which is the lowest contribution to the

density °uctuations provided by the polarization drift. Firstly, we are interested in

the e®ects of the transversal drift velocity E�B coupled to the parallel dynamics

while the curvature e®ects are considered as a next stage of the study. As a result, in

the sequel we deal with a reduced driftkinetic model in cylindrical geometry by

making the following approximations.

. In addition of cylindrical geometry, we suppose that the magnetic ¯eld B is uni-

form and constant along the axis of the column (z-coordinate, B ¼ Bb ¼ Bez). It

follows the perpendicular drift velocity does not admit any magnetic curvature or

gradient e®ect and especially B� ¼ B.

. Some ¯nite Larmor radius e®ects are neglected. Namely we consider only one

adiabatic invariant �i ¼ �2
i�iqi=2 and set J�i ¼ 1 which means that the asymp-

totic k?�i ! 0 is considered and thus the guiding center and the gyrocenter merge.

. We linearize the expression for the polarization density, npol, in Eq. (2.2),

npol ¼ r? � ni
B�ci

r?�

� �
;

by approximating ni to the background density of the Maxwellian distribution

function ni0, and by assuming that the ion cyclotron frequency, �i is a constant �0.

Moreover we assume that the ion Debye length �Di
is small compared to the ion

Larmor radius �i.

. The electron inertia is ignored, i.e. we choose an adiabatic response to the low

frequency °uctuations for the electrons. In other words the electron density follows

the Boltzmann distribution

ne ¼ ne0 exp
e

kBTe

ð�� �h�iMÞ
� �

;

where h�iM denotes the average of the electrical potential � over a magnetic ¯eld

line. Moreover we assume that the electrical potential is small compared to the

electron kinetic energy e�=ðkBTeÞ � "� � 1.
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Under these assumptions the evolution of the ion guiding-center distribution function

f ¼ f ðt; r?; z; vjjÞ obeys the driftkinetic Vlasov equation

@t f þ vE � r?f þ vjj@z f þ
qi
mi

Ejj@vjj f ¼ 0; ð2:3Þ

for the ions (qi,Mi), coupled to an adiabatic electron response via the quasi-neutrality

assumption

�r? � ni0
B�0

r?�

� �
þ e�ni0

Ti0

ð�� �h�iMÞ ¼
Z
R

f ðt; r; vjjÞdvjj � ni0: ð2:4Þ

Here qi ¼ Zie, Zini0 ¼ ne0, Te ¼ Te0, � ¼ Ti0=Te0, � 2 f0; 1g, E ¼ �r� and vE is the

E�B=B 2 drift velocity. The most important and interesting feature is that f

depends, through a di®erential operator, only on the velocity component vjj parallel

to B. Let us note that rigorous mathematical justi¯cations of Vlasov-gyrokinetic

models (with the full three-dimensional Poisson equation) in simpli¯ed geometry

(with no magnetic curvature neither magnetic gradient drift velocity) with various

time and space scales ordering have been performed recently in di®erent con¯gur-

ations (\transverse guiding center approximation", \parallel approximation", \¯nite

Larmor radius approximation", \quasi-neutral limit").16,32�35,41,42,65,66

2.2. The gyro-water-bag model

Let us now turn back to the driftkinetic equation (2.3). Since the distribution f ðt;
r?; z; vjjÞ takes into account only one velocity component vjj a water-bag solution can

be considered.3 Let us consider 2N non-closed contours in the ðr; vjjÞ-phase space

labeled vþ
j and v�

j (where j ¼ 1; . . . ;N ) such that � � � < v�
jþ1 < v�

j < � � � < 0 < � � � <
vþ
j < vþ

jþ1 < � � � and some strictly positive real numbers fAjgj2½1;N � that we call bag

heights. Since the bagsAjðvþ
j � v�

j Þ, for j ¼ 1; . . . ;N , are exact geometric invariants,

which are reminiscent to the geometric Liouville invariant, we then de¯ne fgwb ¼
f ðt; r?; z; vjjÞ as

f ðt; r?; z; vjjÞ ¼
XN
j¼1

Aj ½Hðvjj � v�
j ðt; r?; zÞÞ �Hðvjj � vþ

j ðt; r?; zÞÞ�; ð2:5Þ

where H is the Heaviside unit step function. The function (2.5) is an exact solution of

the driftkinetic Vlasov equation (2.3) in the sense of distribution theory if and only if

the set of following equations are satis¯ed:

@tv
�
j þ vE � r?v

�
j þ v�

j @zv
�
j ¼ qi

mi

Ejj: ð2:6Þ

The quasi-neutrality coupling can be rewritten as

�r? � ni0
B�0

r?�

� �
þ e�ni0

Ti0

ð�� �h�iMÞ ¼
XN
j¼1

Ajðvþ
j � v�

j Þ � ni0: ð2:7Þ

Let us introduce for each bag j the density nj ¼ ðvþ
j � v�

j ÞAj and the average vel-

ocity uj ¼ ðvþ
j þ v�

j Þ=2. After a little algebra, Eq. (2.6) leads to continuity and Euler
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equations namely

@tnj þr? � ðnjvEÞ þ @zðnjujÞ ¼ 0; ð2:8Þ

@tðnjujÞ þ r? � ðnjujvEÞ þ @z nju
2
j þ

pj
mi

� �
¼ qi

mi

njEjj; ð2:9Þ

where the partial pressure takes the form pj ¼ min
3
j =ð12A2

j Þ. The connection between

kinetic and °uid description clearly appears in the previous multi-°uid equations.

The case of one bag recovers a °uid description (with an exact adiabatic closure with

	 ¼ 3) and the limit of an in¯nite number of bags provides a continuous distribution

function.

To complete the system (2.6)�(2.7) we need to supply an initial condition v�
j ðt ¼

0; r?; zÞ ¼ v�
0jðr?; zÞ for j 2 ½1;N �. In fact, the problem of determinating the water-

bag parameters (fAjgj2½1;N �, fv�
0jgj2½1;N �) is not a trivial task. From a general fra-

mework point of view, we can minimize a distance, which has to be suitably de¯ned,

between any given distribution function belonging to some functional spaces and the

water-bag distribution function (2.5) under some appropriate constraints (for

example, on the sign of the parameters fAjgj2½1;N � which must lead to the de¯nition of

a positive measure in velocity space). For example, we can decide to minimize the

distance between the moments of any given distribution function and the water-bag

decomposition (2.5). This kind of moment problem under constraints can be recast in

a general nonlinear optimization problem with constraints. As an example, to

determine physically relevant gyro-water-bag equilibrium to describe ion-tempera-

ture-gradient modes, we can choose to construct radial pro¯les in terms of tem-

perature and density pro¯les only. The continuous equilibrium distribution function

can be assumed as

feqðr; vjjÞ ¼
ni0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p F
vjjffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p !
; ð2:10Þ

where ni0ðrÞ and Ti0ðrÞ are normalized radial pro¯les of ion density and temperature,

and r ¼ jr?j. We can suppose that the normalized function F is an even function,

which leads to consider symmetric pro¯les such that v�
0j ¼ �v0jðr0Þ. As an example

for a local Maxwellian distribution, we get FðxÞ ¼ expð�x 2=2Þ=
ffiffiffiffiffiffi
2�

p
. The ¯rst stage

can then consist in constructing the gyro-water-bag equilibrium function at

r ¼ r0 2 ½rmin; rmax�, while a second one can consist in extending it on the whole radial

domain ½rmin; rmax�. To this aim, as in Refs. 60, 9, 21, we can use the method of

equivalence between the moments of the stepwise gyro-water-bag function (2.5) and

the corresponding continuous function (2.10). If for a given set of contours

fv0jðr0Þgj2½1;N �, with ‘ ¼ 0; 2; . . . ; 2ðN � 1Þ, we equalize M‘ðfeqÞ, the ‘-moment in

velocity of feq, and M‘ðf 0gwbÞ, the ‘-moment in velocity of the gyro-water-bag func-

tion f 0gwb ¼ fgwbðt ¼ 0Þ (see de¯nition (2.5)), at r ¼ r0, we obtain a N -dimensional

linear problem where the unknowns are the parameters fAjgj2½1;N � and the matrix L†

of the linear problem is the Vandermonde-type matrix fL†
ij ¼ 2v 2i�1

0j ðr0Þgi;j2½1;N �,
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while the right-hand side involves the moments M‘ðfeqÞ. At this point there are

several strategies to extend the contours fv0jgj2½1;N � on the whole radial domain. One

strategy is to follow the level lines of the distribution function F , determinated by

the method of moments equivalence at r ¼ r0, which leads to the de¯nition

v0jðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p
F �1ðfj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti0ðrÞ

p
=ni0ðrÞÞ, with fj ¼ feq r0; v0jðr0Þ

� �
. If ni0ðrÞ, Ti0ðrÞ

and F are enough regular, then it will be also the case for the initial contours

fv0jgj2½1;N �. A second strategy can consist in di®erentiating with respect to the radial

variable r the moments equivalence M‘ðf 0gwbÞ ¼ M‘ðfeqÞ at r ¼ r0, which leads to a

N -dimensional linear problem where the unknowns are now the radial derivatives of

the contours f@rv0jðr0Þgj2½1;N � and the matrix of the linear problem is the Vander-

monde-type matrix fL‡
ij ¼ 2Ajv

2ði�1Þ
0j ðr0Þgi;j2½1;N �, while the right-hand side involves

now the known quantities ð@rM‘ðfeqÞÞðr0Þ, and fv0jðr0Þgj2½1;N �. By di®erentiating the

moments equivalence a second time with respect to radius r, we still obtain a

N -dimensional linear problem of matrix L‡, where the unknowns are now the second-

order radial derivatives of the contours f@ 2
rv0jðr0Þgj2½1;N �, while the right-hand side

involves now the known quantities ð@ k
rM‘ðfeqÞÞðr0Þ and f@ l

rv0jðr0Þgj2½1;N � with k 	 2

and l 	 1. Following the same previous procedure we can obtain any high-order

radial derivatives of the contours f@m
r v0jðr0Þgj2½1;N � by solving N -dimensional linear

problems of matrix L‡, where the right-hand side involves the radial derivatives

ð@ k
rM‘ðfeqÞÞðr0Þ and f@ l

rv0jðr0Þgj2½1;N � with k 	 m and l 	 m � 1. Using the mth ¯rst

radial derivatives of the contours fv0jðr0Þgj2½1;N � at r ¼ r0 we can extrapolate the

values of fv0jðr0 þ �rÞgj2½1;N � at r0 þ �r by using a Taylor expansion. Finally, we can

repeat the whole previous process at the point r ¼ r0 þ �r. Knowing the values of the

contours and their radial derivatives at any order on a grid of the radial domain, i.e.

f@ k
rv0jðriÞgj2½1;N �;i2½1;M �, with k 	 m, we can use an interpolation scheme of high

regularity (such that Hermite or B-splines interpolation) to construct initial contours

with the desired regularity.

Let us notice that after a ¯nite time, Eq. (2.6) or the system (2.8)�(2.9) will

generate shocks, namely discontinuous gradients in z for v�
j , nj and uj . Nevertheless

the concept of entropic solution is not well-suited here because the existence of an

entropy inequality means that a di®usion-like (or scattering-like) process in velocity

occurs on the right-hand side of the Vlasov equation. This observation has been

developed in the theory of kinetic formulation of scalar conservation laws. In fact it

was established in Refs. 13�15 and 38 that scalar conservation laws can be lifted as

linear hyperbolic equations by introducing an extra variable 
 2 R which can be

interpreted as a scalar momentum or velocity variable. The author of Ref. 15 pro-

posed a numerical scheme, known as the transport-collapse method to solve this

linear kinetic equation. In fact the solution of this numerical scheme can be seen as

the solution of a variant version of the linear Bhatnagar�Gross�Krook (BGK)

kinetic model. The authors of Refs. 14, 15 and 38 have proved, using BV estimates

and Kruzhkov-type analysis, that this numerical solution converges to the entropy

solution of scalar conservation laws. This result was also shown in Ref. 72 using
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averaging lemmas39,40,25,12 without bounded variation (BV) estimates. In Ref. 64 the

authors also consider the BGK-like approximation, and using again BV estimates,

they prove the convergence of the approximate solution to the right entropy solution

when the relaxation time (the inverse of the collisional frequency) tends to zero.

Right after, it was observed by the authors of Refs. 64 and 54 that, without any

approximations, entropy solutions of scalar conservation laws can be directly for-

mulated in kinetic style, known as kinetic formulation. Its generalization to systems

of conservation laws seems impossible except for very peculiar systems.17,55,73

Actually velocity derivatives of non-negative bounded measure appear in the right-

hand side of these linear kinetic equations (free streaming terms), which is the sig-

nature of di®usion-like processes in velocity. In order that the water-bag model

should be equivalent to the Vlasov equation (without any di®usion-like term on the

right-hand side of the Vlasov equation) we must consider multivalued solution of the

water-bag model beyond the ¯rst singularity. The appearance of a singularity (dis-

continuous gradients in z due to the Burgers term) is linked to appearance of trapped

particles which is characterized by the formation of vortices and the development of

the ¯lamentation process in the phase space. From the study of particles dynamic,45

in a cylinder (the geometry for which the gyro-water-bag equations (2.6)�(2.7) are

valid) the particles are not trapped but only passing. However, this model is relevant

for studying gyrokinetic turbulence in magnetically con¯ned thermonuclear fusion

plasmas, because, in cylindrical geometry, wave breaking or ¯lamentation process are

not dominant mechanisms.

To the best of my knowledge, until now there is no analytical result concerning the

well-posedness of the Vlasov-gyrokinetic equations (2.3)�(2.4) because it is a hard

problem to deal with the strong coupling � ¼ n along the parallel direction (loss of

z-derivatives). It is still an open problem to prove the existence of classical and weak

solutions (even locally in time) for the system (2.3)�(2.4). Concerning weak sol-

utions, it seems that traditional techniques, for getting compactness of sequences of

approximated solutions, such as averaging lemmas or compensated compactness

tools, fail. Maybe the use of relative entropy method would allow to pass to the limit.

Therefore the present analytical result constitutes a ¯rst step to prove the existence

of weak solutions (at least for a special class) for the Vlasov-gyrokinetic equations

(2.3)�(2.4). Let us notice that from the physical point of view, any Lebesgue

integrable distribution function f , having a ¯nite number of bounded moments, can

be approximated by a water-bag distribution function by equating their moments up

to a ¯xed order.9,21,59 In order to recover some regularity in the parallel direction and

then prove the existence of global weak solutions an interesting idea might be to add

a di®usion (collision) term in the direction of parallel velocity on the right-hand side

of the Vlasov equation (2.3) such as Fokker�Planck-like collision operators. Another

way could be to consider a non-Boltzmannian electrons distribution function. In this

case the Debye length are comparable to the electrons Larmor radius so that we

cannot neglect the Laplacian operator in Eq. (2.2).
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3. Existence of Classical Solution for the Gyro-Water-Bag Model

In this section we want to study the existence and uniqueness of the system (2.6)�
(2.7). In general the density ni0 and the temperature Ti0 appearing in Eq. (2.7) are

smooth given functions of the radius r. To simplify the proof and without loss of

generality we can suppose that the density ni0 and the temperature Ti0 are uniform

and take � ¼ 0 in Eq. (2.7). Therefore the dimensionless equations (2.6)�(2.7) read

in R3 as follows:

@tv
�
j �r?

?� � r?v
�
j þ v�

j @zv
�
j þ @z� ¼ 0; v�

j ð0; �Þ ¼ v�
0jð�Þ; j ¼ 1; . . . ;N ; ð3:1Þ

��?�þ � ¼
XN
j¼1

Ajðvþ
j � v�

j Þ � 1: ð3:2Þ

In the transverse r?-direction the contours follow the dynamics of the inviscid

incompressible Euler equations written in vorticity formulation. In the longitudinal

z-direction the contours follow the dynamics of Burgers-type equations, where the

°ux functions involve a nonlocal term only in the transverse direction which couples all

the equations. The loss of derivatives is in the z-direction while the gain is in the

r?-direction, which makes the problem quite challenging. In order to prove the exist-

ence and uniqueness of the gyro-water-bag system (3.1)�(3.2) we split the global

dynamic system into the transverse dynamic system and the longitudinal one. For each

systemwe then prove the existence and uniqueness of classical solutions and get a priori

estimates on this solution. The idea of the proof then consists to construct an

approximate solution sequence for the global dynamic system and, thanks to a priori

estimates on the transverse and longitudinal systems, show that there exists a unique

limit which satis¯es the exact global dynamic system. The main di±culty of the proof

comes from the loss of z-derivatives on the electrical potential � in Eq. (3.2) which leads

to a loss of regularity in the z-direction. To overcome this di±culty the trick is to recast

the longitudinal dynamic equations into a hyperbolic system of conservation laws.

3.1. The transverse dynamic system

In this section, we consider the initial value problem in R3,

@tv
�
j �r?

?� � r?v
�
j ¼ 0; v�

j ð0; �Þ ¼ v�
0jð�Þ; j ¼ 1; . . . ;N ;

��?�þ � ¼
XN
j¼1

Ajðvþ
j � v�

j Þ � 1:
ð3:3Þ

Therefore we have the following existence theorem.

Theorem 3.1. (Local classical solution) Assume v�
0j 2 H sðR3Þ with s > n=2þ 1,

n ¼ 3. Then for all N there exists a time T > 0 that depends only on jjv�
0j jjH s , N and

A ¼ maxj	N jAj j, such that Eq. (3.3) have a unique solution

v�
j 2 L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ; j ¼ 1; . . . ;N :
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Proof. The proof is based on the Banach's ¯xed-point theorem. We ¯rst rewrite the

system (3.3). Using the Green function Gðx?; y?Þ ¼ K0ðjx? � y?jÞ=ð2�Þ where K0 is

the modi¯ed Bessel function of the second kind of order zero, i.e. the fundamental

solution of the di®erential operator ð1��Þ in R2, we can reconsider the problem

(3.3) as

@tv
�
j þ u½fv�

j gj	N � � r?v
�
j ¼ 0;

where

u½fv�
j gj	N �ðt; xÞ ¼ ðK �? A# � V Þðt; xÞ ¼

XN
j¼1

AjK �? ðvþ
j ðt; xÞ � v�

j ðt; xÞÞ: ð3:4Þ

In expression (3.4) we have used the notations of Sec. 3.2 and we de¯ne Kðx?; y?Þ ¼
Kðjx? � y?jÞ ¼ �r?

?Gðx?; y?Þ ¼ K1ðjx? � y?jÞðx? � y?Þ?=ð2�jx? � y?jÞ, where K1

is the modi¯ed Bessel function of second kind of order one. Let us note that Kiðj � jÞ 2
L1ðR2Þ for i ¼ 1; 2. We now de¯ne the set WT as

WT :¼ w�
j 2 L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ; j ¼ 1; . . . ;N j

�
sup

t2½0;T �
jjfw�

j ðt; �Þgj	N jjH s :¼ sup
t2½0;T �

XN
j¼1

jjwþ
j ðt; �ÞjjH sðR3Þ þ jjw�

j ðt; �ÞjjH sðR 3Þ

	 Kjjfv�
0jgj	N jjH s

�
;

with K > 1 a numerical constant. We then de¯ne the iteration map F as follows.

For any sequence fw�
j gj	N 2 WT the image Fðfw�

j gj	N Þ is the unique solution

fv�
j gj	N of

@tv
�
j þ u½fw�

j gj	N � � r?v
�
j ¼ 0; ð3:5Þ

with v�
0j as initial condition. We ¯rst show that F maps WT onto itself for T small

enough. If we apply the operator @� to (3.5) for j�j 	 s and take the L2-scalar

product with @�v�
j then we get

1

2

d

dt
jj@�v�

j jj2L2ðR 3Þ þ
Z
R 3

@�ðu½fw�
j gj	N � � r?v

�
j Þ@�v�

j dx ¼ 0: ð3:6Þ

Let us estimate the second term of (3.6). For i ¼ 1; 2, using Leibniz rules, we haveZ
R3

@�ðui½fw�
j gj	N �@iv�

j Þ@�v�
j dx

¼
Z
R 3

@�v�
j

X
�

�

�

 !
@�ui½fw�

j gj	N �@���@iv�
j dx: ð3:7Þ

The sum in (3.7) is made over all the terms with � ¼ f�ig3
i¼1, such that 0 	 �i 	 �i

and the combination ð�� Þ are positive constant. Distinguishing the case � ¼ 0 from
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others, equality (3.7) becomes for i ¼ 1; 2,Z
R 3

@�ðui@iv�
j Þ@�v�

j dx ¼ 1

2

�

0

 !Z
R3

ui@ið@�v�
j Þ2dx

þ
Z
R 3

@�v�
j

X
�>0

�

�

 !
@��	@ 	ui@

���@iv
�
j dx; ð3:8Þ

with 	 such that j	j ¼ 1. Using integration by parts the ¯rst term of the right-hand

side of (3.8) can be estimated as

1

2

�

0

� � Z
R3

ui@ið@�v�
j Þ2dx

���� ���� 	 Cð�ÞjjuijjW 1;1ðR 3Þjjv�
j jj2H sðR 3Þ:

Using the Cauchy�Schwarz inequality and the interpolation inequality (see

Proposition 3.6, Chap. 13 of Ref. 70)

jj@��	@ 	f @���@igjjL2ðR 3Þ 	 C ðsÞðjj@	f jjL1ðR 3ÞjjgjjH sðR 3Þ þ jjf jjH sðR 3Þjj@igjjL1ðR 3ÞÞ;

the second term of the right-hand side of (3.8) can be estimated asZ
R 3

@�v�
j

X
�>0

�

�

 !
@��	@ 	ui@

���@iv
�
j

�����
�����dx

	 CðsÞjjv�
j jj2H sðR 3Þjj@iuijjL1ðR 3Þ þ jjv�

j jjH sðR3Þjj@iv�
j jjL1ðR 3ÞjjuijjH sðR 3Þ

	 CðsÞjjv�
j jj2H sðR 3ÞjjuijjH sðR 3Þ; ð3:9Þ

where we have used the Sobolev imbedding H sðR3Þ ,!W 1;1ðR3Þ for s > n=2þ 1,

with n ¼ 3. Gathering (3.6)�(3.9) we get

d

dt
jjv�

j jjH sðR 3Þ 	 C ðsÞjjv�
j jjH sðR 3Þðjju1jjH sðR 3Þ þ jju2jjH sðR 3ÞÞ;

j ¼ 1; . . . ;N : ð3:10Þ

Let us now estimate the term jjuijjH sðR 3Þ. For i ¼ 1; 2 we get

ui fw�
j gj	N

	 
�� ��2

H sðR 3Þ ¼
X
j�j	s

Ki �
?
@�
XN
j¼1

Ajðwþ
j � w�

j Þ
�����

�����
2

L2ðR 3Þ

	 A2jjKijj2L1ðR 2Þ
XN
i¼1

X
j�j	s

ðjjwþ
j jj2H �ðR 3Þ þ jjw�

j jj2H �ðR 3ÞÞ

	 A2jjKijj2L1ðR 2Þ
XN
i¼1

ðjjwþ
j jj2H sðR 3Þ þ jjw�

j jj 2H sðR3ÞÞ

	 A2jjKijj2L1ðR 2Þjjfw�
j gj	N jj2H s : ð3:11Þ
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Plugging (3.11) into (3.10), and summing over j in (3.10) we ¯nally obtain the

di®erential inequality

d

dt
jjfv�

j ðtÞgj	N jjH s 	 C ðs;A; jjKjjL1ðR 2ÞÞjjfw�
j ðtÞgj	N jjH s jjfv�

j ðtÞgj	N jjH s : ð3:12Þ

A Gronwall lemma then shows that jjfv�
j ðtÞgj	N jjH s 	 Kjjfv�

0jgj	N jjH s for all

t 2 ½0;T �, T small enough. From (3.5) we have v�
j 2 Lipð0;T ;H s�1ðR3ÞÞ for

1 	 j 	 N . We then conclude that the application F maps WT into itself. We now

need to prove that F is a contraction. We consider two set of functions fw�;1
j gj	N

and fw�;2
j gj	N belonging to WT . We set fv�;1

j gj	N :¼ Fðfw�;1
j gj	N Þ,

fv�;2
j gj	N :¼ Fðfw�;2

j gj	N Þ, v�
j ¼ v�;1

j � v�;2
j and w�

j ¼ w�;1
j � w�;2

j for all 1 	
j 	 N and u ¼ u 1 � u 2. The di®erence of Eq. (3.5) for fv�;1

j g and fv�;2
j g gives

@tv
�
j þ u � r?v

�;1
j þ u 2 � r?v

�
j ¼ 0; v�

j ðt ¼ 0Þ ¼ 0: ð3:13Þ

In the same manner we obtained (3.6), we deduce from (3.13)

1

2

d

dt
jj@�vj jjL2ð�Þ þ

Z
R 3

@�ðu � r?v
�;1
j Þ@�v�

j dx þ
Z
R 3

@�ðu 2 � r?v
�
j Þ@�v�

j dx ¼ 0:

ð3:14Þ

Using the estimates of Proposition 3.7, Chap. 13 of Ref. 70 the second term of the
left-hand side of (3.14) for j�j 	 s � 1 is bounded as follows:Z

R 3

@�ðu � r?v
�;1
j Þ@�v�

j dx

���� ����
	 jj@�v�

j jjL2ðR 3Þjj@�ðu � r?v
�;1
j ÞjjL 2ðR 3Þ

	 C ðsÞjjv�
j jjH s�1ðR 3ÞðjjujjL1ðR 3Þjjv�;1

j jjH sðR3Þ þ jjujjH s�1ðR 3Þjjv�;1
j jjW 1;1ðR3ÞÞ

	 C ðs;A; jjKjjL1ðR 2ÞÞjjv�
j jjH s�1ðR3Þjjv�;1

j jjH sð�Þjjfw�
j gj	N jjH s�1 :

For the second term of the left-hand side of (3.14) we proceed similarly to (3.9).
Using the fact that r? � u 2 ¼ 0 and provided that s > 5=2 we getZ

R 3

@�ðu 2 � r?v
�
j Þ@�v�

j dx

���� ���� 	 1

2

�

0

� � Z
R 3

u 2 � r?ð@�v�
j Þ2dx

���� ����
þ
Z
R 3

@�v�
j

X
�>0

�

�

� �
@��	@ 	u 2 � @���r?v

�
j

�����
�����dx

	 C ðsÞjjv�
j jj2H s�1ðR 3Þjju 2jjH sðR 3Þ

	 C ðs;A; jjKjjL1ðR 2ÞÞjjv�
j jj2H s�1ðR 3Þjjfw

�;2
j gj	N jjH s :

Since jjfv�;1
j ðtÞgj	N jjHm , jjfw�;2

j ðtÞgj	N jjHm 	 Kjjfv�
0jgj	N jjHm , we ¯nally obtain

d

dt
jjfv�

j ðtÞgj	N jjH s�1 	 C ðs;A;K; jjKjjL1ðR 2Þ; jjfv�
0jgj	N jjHm Þ

� ðjjfv�
j ðtÞgj	N jjH s�1 þ jjfw�

j ðtÞgj	N jjH s�1Þ:
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Once again, a Gronwall lemma shows that F is a contraction provided that T is
small enough.

Remark 3.1. We can also prove the global existence of regular solution of the

system (3.3), but it is not necessary for the further proof of regular solution for the

gyro-water-bag model. The crucial ingredient for proving the global existence and

uniqueness of classical (and weak) solution for the system (3.3) is the log-Lipschitz

(or quasi-Lipschitz) estimates on the kernel K which can be e®ectively proved by

using the properties of the modi¯ed Bessel function. Due to the log-Lipschitz

condition on the kernel K, we can then adapt the method developed for inviscid

incompressible Euler equations58,48,1,57 by using the Lagrangian representation of the

contours which remain constant along the incompressible Lagrangian °ow de¯ning a

volume preserving map.

3.2. The longitudinal dynamic system

In this section, we consider the initial value problem in R3,

@tv
�
j þ v�

j @zv
�
j þ @z� ¼ 0; v�

j ð0; �Þ ¼ v�
0jð�Þ; j ¼ 1; . . . ;N ;

��?�þ � ¼
XN
j¼1

Ajðvþ
j � v�

j Þ � 1:
ð3:15Þ

Therefore we have the existence theorem.

Theorem 3.2. (Local classical solution) Assume v�
0j 2 H sðR3Þ with m > n=2þ 1,

n ¼ 3 and Aj strictly positive real numbers, 1 	 j 	 N . Then for all N there exists a

time T > 0 that depends only on jjv�
0j jjH sðR 3Þ, N , and A ¼ maxj	N jAj j, such that

Eq. (3.15) has a unique solution

v�
j 2 L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ; j ¼ 1; . . . ;N :

Proof. If we set V ¼ ðvþ
1 ; . . . ; v

þ
N ; v

�
1 ; . . . ; v

�
N ÞT the system of equations (3.15) can

be recast in the quasilinear system

@tV þOpðBðV ðt; xÞ; 
ÞÞV ¼ 0; ð3:16Þ

where the pseudo-di®erential operator Opðqðt; x; 
ÞÞ of symbol qðt; x; 
Þ ¼ BðV ðt; xÞ;

Þ is de¯ned by

Opðqðt; x; 
ÞÞ ¼
Z
R 3

qðt; x; 
ÞF ð
Þ expðix � 
Þd
;

for every smooth function  , with F the Fourier transform of  . The symbol

qðt; x; 
Þ is de¯ned as

qðt; x; 
Þ ¼ q1ðt; x; 
Þ þ q2ðt; x; 
Þ ¼ i
zð~q1ðt; x; 
Þ þ ~q2ðt; x; 
ÞÞ;
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where

~q1ðt; x; 
Þ ¼ diagðV ðt; xÞÞ; and ~q2ðt; x; 
Þ ¼
1AT

#

1þ j
?j2
;

with

A ¼ ðA1; . . . ;AN ÞT; A# ¼ ðAT;�ATÞT; and 1¼ ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
2N times

ÞT:

Let us ¯rst show that the matrix-symbol q has 2N distinct purely imaginary

eigenvalues. To this purpose it is equivalent to show that the matrix-symbol ~q has 2N
distinct real eigenvalues. Let � be a number; then after some rearrangement of the

line of ~q � �I , the latter matrix take the form

vþ
1 � � �vþ

2 þ �

. .
. . .

.
0

vþ
N � � �v�

1 þ �

v�
1 � � �v�

2 þ �

0 . .
. . .

.

v�
N�1 � � �v�

N þ �

A1

1þ j
?j2
; . . . ;

AN
1þ j
?j2

; � A1

1þ j
?j2
; . . . ;� AN�1

1þ j
?j2
; v�

N � �� AN
1þ j
?j2

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
:

ð3:17Þ

If we take the determinant of (3.17) we get the polynomial of degree 2N

P2N ð�Þ ¼
YN
j¼1

ðvþ
j � �Þðv�

j � �Þ 1�
XN
j¼1

njð1þ j
?j2Þ�1

ðvþ
j � �Þðv�

j � �Þ

 !
; ð3:18Þ

where ni ¼ Ajðvþ
j � v�

j Þ 
 0, Aj 
 0 and � � � < v�
j < � � � < v�

1 < vþ
1 < � � � <

vþ
j < � � � . We then observe that

signðP2N ð0ÞÞ ¼
positive if N even;

negative if N odd

�
and

signðP2N ðv�
j ÞÞ ¼

ð�1Þ j if N odd;

ð�1Þ jþ1 if N even;

�
j ¼ 1; . . . ;N :

Consequently the polynomial P2N oscillates 2N � 2 times around zero and has

2N � 2 roots, N � 1 positive f�þ
j g1	j	N�1, and N � 1 negative f��

j g1	j	N�1.

Therefore we can factorize P2N as follows:

P2N ð�Þ ¼ Q2N�2ð�ÞS2ð�Þ;
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with Q2N�2ð�Þ ¼
QN�1

j¼1 ð�� �þ
j Þð�� ��

j Þ and S2ð�Þ ¼ �2 þ a�þ b. If N is even

then P2N ð0Þ > 0 and Q2N�2ð0Þ < 0. Therefore S2ð0Þ < 0 and S2ð�Þ has two distinct

real roots of opposite sign. If N is now odd then P2N ð0Þ < 0 and Q2N�2ð0Þ > 0.

Therefore S2ð0Þ < 0 and S2ð�Þ has again two distinct real roots of opposite sign.

Finally we conclude that P2N ð�Þ has 2N distinct real roots, N positive and N
negative. Since P2N ð�Þ � �2N > 0 when � � �1 and as P2N ðv�

N Þ < 0 when N is

even or odd therefore we have �v�
N < ���

N <1. Therefore the 2N � 2 other

eigenvalues are such that �v�
j < ���

j < �v�
jþ1. Therefore the matrix-symbol q is

diagonalizable and has distinct purely imaginary eigenvalues i�ðV ; 
Þ, smooth in V

and 
 such that �1ðV ; 
Þ < � � � < �jðV ; 
Þ < � � � < �2N ðV ; 
Þ. Therefore the system

(3.15) is strictly hyperbolic. Instead of building a symbolic symmetrizer by spectral

projections onto the �ðV ; 
Þ-eigenspaces of B (see Refs. 49, 51 and 69�71) thanks

to the Dunford formula (a Cauchy integral formula-type29) and spectral separation

(cf. Theorem 6, Chap. 17 of Ref. 50), we can directly construct the symbolic

symmetrizer by ¯nding an entropy of the transverse system. We will see below that

the energy will supply a convex entropy. If we set

ej ¼
Aj

3
ðvþ 3

j � v� 3

j Þ ¼ nju
2
j þ

n 3
j

12Aj

;

and use Eqs. (2.8)�(2.9) without the transverse terms, we obtain for all j 2 ½1;N �

@t
ej
2

� �
þ @z uj

ej
2
þ uj

n 3
j

12A2
j

 !
þ njuj@z� ¼ 0: ð3:19Þ

Summing over all the bags, and using the continuity equation we obtain from

Eq. (3.19)

@t
XN
j¼1

ej
2

 !
þ @z

XN
j¼1

uj
ej
2
þ uj

n 3
j

12A2
j

 !

¼ �@z�
XN
j¼1

njuj ¼ @z �
XN
j¼1

njuj

 !
þ �@t

XN
j¼1

nj : ð3:20Þ

Using the quasi-neutrality equation (3.2) and integration by parts, the second term

of the right-hand side of Eq. (3.20) becomesZ
R 2

dx?�@t
XN
j¼1

nj ¼
1

2
@t

Z
R 2

dx?ðjr?�j2 þ j�j2Þ;

with � ¼ G �?
PN

j¼1 nj . Therefore the longitudinal system conserved the total energy

1

2

Z
R 3

dx
XN
j¼1

ej þ jr?�j2 þ j�j2
 !

: ð3:21Þ

If we now drop the term corresponding to the transverse gradient of the electric

potential in the energy density (the integrand of (3.21)), which means that we
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remove the polarization term (the transverse Laplacian operator) in the quasi-

neutrality equation, we obtain the entropy

�ðV Þ ¼ 1

2

XN
j¼1

nj

 !2

þ
XN
j¼1

ej
2
;

and its Hessian

r2�ðV Þ ¼ DðA#ÞDðV Þ þ A#AT
#; ð3:22Þ

where DðV Þ ¼ diagðV ðt; xÞÞ and DðA#Þ ¼ diagðA#Þ. Using (3.22) we de¯ne

SðV ; 
Þ ¼ DðA#ÞDðV Þ þ
A#AT

#

1þ j
?j2
¼ S1 þ S2:

We obviously observe that S is a Hermitian matrix and that Sq is a skew-Hermitian

matrix. Moreover the operator OpðSÞ is Hermitian, i.e. OpðSÞ ¼ OpðSÞH, since it is

easily veri¯ed by a direct check that OpðSiÞ ¼ OpðSiÞH for i ¼ 1; 2. Therefore

the operator OpðSÞ will be a good candidate for the symmetrizer. Let us note that

S1 2 C 1S 0
cl \ H sS 0

cl as long as V 2 C 1 \ H s. Let us now obtain a priori estimates.

We now set

Q ¼ OpðSÞ þ ���1; ð3:23Þ

with the de¯nition �s ¼ ð1��Þs=2 and where ð�ÞH denotes the transconjugate of a

matrix or the dual of an operator. The constant � > 0 is chosen such that Q is a

positive de¯nite operator on L2; hence invertible, since for Hermitian operator the

origin is an isolated point of the spectrum of ¯nite multiplicity.51 In other words, it

means that there exists a constant c0 > 0 such that hQ ;  i 
 c0jj jj2L 2ðR 3Þ where

h�; �i stands for the L2-Hermitian scalar product. Let us notice that jj�s � jjL 2 de¯nes

a norm which is equivalent to the H s-norm. We aim to estimate jj�sV jjL2ðR 3Þ. Let

us note ¯rst that

@thQ�sV ;�sV i ¼ h@tQ�sV ;�sV i þ 2<ehQ@t�sV ;�sV i: ð3:24Þ

Let us ¯rst estimate the ¯rst term of the right-hand side of (3.24):

h@tQ�sV ;�sV i 	 jhOpð@tSÞ�sV ;�sV ij
	 jjOpð@tSÞ�sV jjL2ðR 3Þjj�sV jjL2ðR 3Þ

	 C ðjj@tV jjC ðR 3ÞÞjj�sV jj2L2ðR3Þ

	 C ðjjV jjC 1ðR3ÞÞjj�sV jj 2L2ðR 3Þ: ð3:25Þ

Using Eq. (3.16), we get the following decomposition for the second term of the

right-hand side of (3.24):

Q@t�
sV ¼ �Q�sOpðqÞV

¼ �QOpðqÞ�sV þQ½OpðqÞ;�s�V : ð3:26Þ
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Let us ¯rst estimate the commutator ½OpðqÞ;�s� in the second term of the right-

hand side of (3.26). Since the commutator can be decomposed as ½OpðqÞ;�s� ¼
½Opðq1Þ;�s� þ ½Opðq2Þ;�s� and ½Opðq2Þ;�s� ¼ ½1AT

#@z�
�2
? ;�s� ¼ 0 where � s

? ¼
ð1��?Þs=2 with s 2 R, then it remains to estimate ½Opðq1Þ;�s�. Since the

di®erential operator �s 2 OpS s
1;0 and the symbol S1 2 C 1S 0

cl \ H sS 0
cl, using the

Kato�Ponce estimate 3.6.1, Chap. 3 of Ref. 71 or its generalization (for pseudo-

di®erential operator with symbol in C 1S 0
cl \H sS 0

cl) given by the Proposition 4.1.F,

Chap. 4 of Ref. 71, we have the estimate

jj½Opðq1Þ;�s� jjL2ðR 3Þ

	 C ðjj jjH sðR 3Þjj@zV jjL1ðR 3Þ þ jj jjLipðR 3Þjj@zV jjH s�1ðR 3ÞÞ: ð3:27Þ

Moreover we claim that we have

jjQ jjL 2ðR 3Þ 	 C ðjjV jjC ðR 3ÞÞjj jjL2ðR3Þ 	 c1jj jjL2ðR3Þ: ð3:28Þ

Indeed, using the decomposition (3.23) we get

jjQ jjL 2ðR 3Þ 	 jjOpðSÞ jjL 2ðR 3Þ þ jj���1 jjL2ðR3Þ
	 CðjjV jjC ðR 3ÞÞjj jjL2ðR 3Þ þ C jj jjL2ðR 3Þ
	 CðjjV jjC ðR 3ÞÞjj jjL2ðR 3Þ;

which proves estimate (3.28). Now using estimate (3.27) and (3.28) we obtain

hQ½OpðqÞ;�s�V ;�sV i 	 jjQ½OpðqÞ;�s�V jjL2ðR 3Þjj�sV jjL2ðR 3Þ

	 CðjjV jjC ðR 3ÞÞjj½OpðqÞ;�s�V jjL2ðR3Þjj�sV jjL2ðR3Þ

	 CðjjV jjC ðR 3ÞÞjj�sV jjL2ðR3Þ

� fjj@zV jjL1ðR 3ÞjjV jjH sðR 3Þ þ jj@zV jjH s�1ðR 3ÞjjV jjLipðR 3Þg
	 CðjjV jjC 1ðR 3ÞÞjjV jj2H sðR 3Þ: ð3:29Þ

Let us now estimate the ¯rst term of the right-hand side of (3.26).We ¯rst observe that

hQOpðqÞ�sV ;�sV i¼ hOpðSÞOpðqÞ�sV ;�sV iþh���1OpðqÞ�sV ;�sV i: ð3:30Þ

The second term of the right-hand side of (3.30) can be bounded as

h���1OpðqÞ�sV ;�sV i 	 C jj��1OpðqÞ�sV jj2L 2ðR 3Þjj�sV jj2L2ðR 3Þ

	 C jjOpðqÞ�sV jj2H �1ðR 3Þjj�sV jj2L2ðR3Þ

	 C ðjjV jjC ðR3ÞÞjjV jj2H sðR 3Þ: ð3:31Þ

To get a bound on the ¯rst term of the right-hand side of (3.30), we can proceed as

follows. After a little algebra, we have

OpðSÞOpðqÞ ¼
X2
i;j¼1

OpðSiÞOpðqjÞ

¼ DðA#ÞDðV Þ2@z þA#AT
#DðV Þ��2

? @z þA#AT
#�

�2
? DðV Þ@z ; ð3:32Þ
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while

OpðSqÞ ¼ Op
X2
i;j¼1

Siqj

 !
¼ DðA#ÞDðV Þ2@z þ 2A#AT

#DðV Þ��2
? @z

¼ OpðSÞOpðqÞ � R; ð3:33Þ

where the di®erential operatorR and its dual are given by

R ¼ A#AT
#½��2

? ;DðV Þ�@z and RH ¼ RþA#AT
#½��2

? ;Dð@zV Þ�: ð3:34Þ

A direct computation of the dual operator of OpðSqÞ gives

OpðSqÞH ¼ OpððSqÞHÞ � 2ðR þ DðA#ÞDðV ÞDð@zV Þ þ A#AT
#�

�2
? Dð@zV ÞÞ: ð3:35Þ

Now using (3.32)�(3.35), and the fact that Sq is skew-Hermitian, we get

2<ehOpðSÞOpðqÞ�sV ;�sV i
¼ hðOpðSqÞ þOpðSqÞHÞ�sV ;�sV i þ hðR þRHÞ�sV ;�sV i
¼ �hð2DðA#ÞDðV ÞDð@zV Þ þ 2A#AT

#�
�2
? Dð@zV Þ

þ A#AT
#½Dð@zV Þ;��2

? �Þ�sV ;�sV i: ð3:36Þ

From (3.36) we get

2<ehOpðSÞOpðqÞ�sV ;�sV i 	 C ðjjV jjC 1ðR 3ÞÞjjV jj2H sðR 3Þ: ð3:37Þ

Using expressions (3.24), (3.26) and (3.30) andgathering estimates (3.25), (3.29), (3.31)

and (3.37) we ¯nally obtain

d

dt
hQ�sV ;�sV i 	 C2ðjjV jjC 1ðR 3ÞÞjjV jj2H sðR3Þ: ð3:38Þ

Therefore integrating the di®erential inequality (3.38) between time zero and t, using

the property hQ ;  i 
 c0jj jj2L2ðR3Þ and estimate (3.28), a Gronwall lemma and

Eq. (3.16) conclude that we have

V 2 L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ: ð3:39Þ

The estimate (3.39) can just give a weak convergence of the solution sequence of a

regularization ofEq. (3.16) since compact Sobolev embeddings failed in thewhole space.

Therefore we will obtain strong convergence of solution sequence in L1ð0;T ;L2ðR3ÞÞ
by proving that this sequence is a Cauchy sequence. Let us now consider the sequence of

following regularized problem:

QðV kÞ@tV kþ1 þQðV kÞOpðBðV k ; 
ÞÞV kþ1; V kþ1ðt ¼ 0Þ ¼ ��kþ1
� V0; ð3:40Þ

where the molli¯er �� ¼ �ðx=�Þ=�3 (0 < � < 1,
R
�dx ¼ 1) has the following property:

jj@��� �  jjH sðR 3Þ 	 C� r�s�1jj jjH r ðR 3Þ 8 r; s: ð3:41Þ
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Following the proof of the estimate (3.39) we ¯nd that

V k 2 L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ: ð3:42Þ

Therefore there exists a subsequence still noted fV kg such that

V k * V weakly in L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ:

By subtraction of Eq. (3.40) we obtain

QðV kÞ@tðV kþ1 � V kÞ þQðV kÞOpðBðV k ; 
ÞÞðV kþ1 � V kÞ
¼ FðV k ;V k�1Þ
¼ �½QðV kÞ �QðV k�1Þ�@tV k

� ½QðV kÞOpðBðV k ; 
ÞÞ �QðV k�1ÞOpðBðV k�1; 
ÞÞ�V k ;

ðV kþ1 � V kÞðt ¼ 0Þ ¼ ð��kþ1
� ��k Þ � V0:

ð3:43Þ

Multiplying Eq. (3.43) by ðV kþ1 � V kÞ and integrating on the whole space, using

estimate (3.42), following the energy estimate procedure leading to (3.39) andobserving

the fact that

hFðV kðtÞ;V k�1ðtÞÞ;V kþ1ðtÞ � V kðtÞi
	 C ðjjV k jjL1ð0;T ;H sðR 3ÞÞ; jjV k jjLipð0;T ;H s�1ðR 3ÞÞÞ

� jjV kþ1ðtÞ � V kðtÞjjL 2ðR 3ÞjjV kðtÞ � V k�1ðtÞjjL2ðR 3Þ;

we obtain for T small enough the estimate

jjV kþ1 �V k jjL1ð0;T ;L2ðR 3ÞÞ

	 C jjð��kþ1
� ��k Þ � V0jjL2ðR3ÞÞ þ CT jjV k � V k�1jjL1ð0;T ;L2ðR 3ÞÞ:

Using (3.41) we obtain

�k ¼ jjð��kþ1
� ��k Þ � V0jjL2ðR 3ÞÞ 	 C� s�1

k j�kþ1 � �k jjjV0jjH sðR 3Þ:

and it results that any good choice of �k (for example, �k ¼ 1=k) makes the series
P

k �k
convergent. Consequently if T is small enough there exists a constant C < 1 such that

jjV kþ1 � V k jjL1ð0;T ;L 2ðR 3ÞÞ 	 C jjV k � V k�1jjL1ð0;T ;L2ðR 3ÞÞ þ �k ;

which proves that jjV kþ1 � V k jjL1ð0;T ;L 2ðR 3ÞÞ is bounded for any k. Therefore we obtain

jjV p � V qjjL1ð0;T ;L 2ðR 3ÞÞ 	
Xp
k¼qþ1

jjV k � V k�1jjL1ð0;T ;L 2ðR 3ÞÞ 	 C jp� qj;

whichproves that the sequencefV kg is aCauchy sequencewhichhasa strong limit point

inL1ð0;T ;L2ðR3ÞÞ. SinceV kðt; �Þ is bounded inH s andstrongly converge inL2 toward

V ðt; �Þ we have in fact V 2 L1ð0;T ;H sðR3ÞÞ. Indeed following classical argument

there exists a subsequence still noted fV kðt; �Þg weakly convergent in H s toward

V ðt; �Þ 2 H sðR3Þ. As the limit inD0 is unique we haveV ¼ V . FromEq. (3.40) we have

also V 2 Lipð0;T ;H s�1ðR3ÞÞ. Since V k ! V strongly in L1ð0;T ;L2ðR3ÞÞ, we also
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haveQðV kÞ ! QðV Þ andBðV k ; 
Þ ! BðV ; 
Þ strongly inL1ð0;T ;L2ðR3ÞÞ. AsV k *

V weakly in L1ð0;T ;H sðR3ÞÞ we have

QðV kÞOpðBðV k ; 
ÞÞV kþ1 * QðV ÞOpðBðV ; 
ÞÞV ;
weakly-� in L1ð0;T ;L1ðR3ÞÞ:

As @tV
kþ1 * @tV weakly-� in L1ð0;T ;L1ðR3ÞÞ we have

QðV kÞ@tV kþ1 * QðV Þ@tV ; weakly-� in L1ð0;T ;L1ðR3ÞÞ;

which means that the limit point V satis¯es Eq. (3.15).

3.3. The gyro-water-bag model

In this section, we consider the initial value problem in R3,

@tv
�
j �r?

?� � r?v
�
j þ v�

j @zv
�
j þ @z� ¼ 0; v�

j ð0; �Þ ¼ v�
0jð�Þ; j ¼ 1; . . . ;N ;

��?�þ � ¼
XN
j¼1

Ajðvþ
j � v�

j Þ � 1: ð3:44Þ

Therefore we have the existence theorem.

Theorem 3.3. (Local classical solution) Assume v�
0j 2 H sðR3Þ with s > n=2þ 1,

n ¼ 3 and Aj strictly positive real numbers, 1 	 j 	 N . Then for all N there exists a

time T > 0 that depends only on jjv�
0j jjH sðR 3Þ, N , A ¼ maxj	N jAj j, such that

Eq. (3.44) has a unique solution

v�
j 2 L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;H s�1ðR3ÞÞ \ C ð0;T ;H s�1ðR3ÞÞ; j ¼ 1; . . . ;N :

Proof. The idea of the proof is to construct an approximate solution sequence of

the problem (3.44) by splitting the global evolution operator S associated to the

transport equation (3.44) into the longitudinal evolution operator SL associated to

the transport equation (3.15) and the transversal evolution operator ST associated to

the transport equation (3.3). If we set �t ¼ T=N , and t n ¼ n�t, then our

construction can be summarized asbV nþ1ðt nþ1Þ ¼ Sðt n; t nþ1Þ bV nðt nÞ
¼ ST ðt n; t nþ1Þ � SLðt n; t nþ1Þ bV nðt nÞ
¼ ST ðt n; t nþ1Þ eV nþ1ðt nþ1Þ; ð3:45Þ

where bV nþ1ðtÞ (respectively eV nþ1ðtÞ) is the solution of Eq. (3.3) (respectively (3.15))

in the time interval ½t n; t nþ1� with the initial condition bV nþ1ðt nÞ ¼ eV nþ1ðt nþ1Þ
(respectively, eV nþ1ðt nÞ ¼ bV nðt nÞ). Thus for t 	 T we de¯ne

eV N ðtÞ ¼
XN�1

n¼0

eV nþ1ðtÞ�nþ1ðtÞ; bV N ðtÞ ¼
XN�1

n¼0

bV nþ1ðtÞ�nþ1ðtÞ;
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with the function �nþ1ðtÞ equal to one on �t n; t nþ1� and zero elsewhere. From Sec. 3.1

(respectively, Sec. 3.2) we know that for �t small enough there exists a unique

regular solution bV nþ1ðtÞ (respectively, eV nþ1ðtÞ) on the interval ½t n; t nþ1� launched by

the initial condition eV nþ1ðt nþ1Þ (respectively, bV nðt nÞ). On the one hand using (3.38)
we have

hQ�s eV N ðt nþ1Þ;�s eV N ðt nþ1Þi	 hQ�s bV N ðt nÞ;�s bV N ðt nÞi

þ
Z t nþ1

t n
C2ðjj eV N ð�ÞjjC 1ðR 3ÞÞjj eV N ð�Þjj2H sðR 3Þd�: ð3:46Þ

On the other hand, applying the operator Q to Eq. (3.3), recasted as a system, and
following energy estimate procedure leading to the di®erential inequality (3.12) we
obtain

hQ�s bV N ðt nþ1Þ;�s bV N ðt nþ1Þi

	 hQ�s eV N ðt nþ1Þ;�s eV N ðt nþ1Þi

þ
Z t nþ1

t n
C1ðjj eV N ð�ÞjjC 1ðR 3Þ; jj bV N ð�ÞjjC 1ðR 3ÞÞjj bV N ð�Þjj3H sðR 3Þd�: ð3:47Þ

Let us set

�N ðtÞ ¼ jj eV N ðtÞjj2H sðR 3Þ þ jj bV N ðtÞjj2H sðR 3Þ;

and

�N ðtÞ ¼ hQ�s eV N ðtÞ;�s eV N ðtÞi þ hQ�s bV N ðtÞ;�s bV N ðtÞi:

If we combine both estimates (3.46) and (3.47) and sum over n we obtain

�N ðt N Þ 	 �N ðt 0Þ þ
Z T

0

Cðjj eV N ð�ÞjjC 1ðR 3Þ; jj bV N ð�ÞjjC 1ðR 3ÞÞð�N ðtÞÞ3=2dt: ð3:48Þ

Using inequality (3.48), and the following estimate:

c0jj jjL2ðR 3Þ 	 hQ ;  i 	 c1jj jjL2ðR 3Þ;

aGronwall lemma implies that there exists a timeT > 0 such that the sequences f bV Ng
and f eV Ng have a weak limit point V † in the space L1ð0;T ;H sðR3ÞÞ \ Lipð0;T ;

H s�1ðR3ÞÞ. The estimate (3.48) can just give a weak convergence of the solution

sequences fbV Ng and feV Ng since compact Sobolev embeddings failed in the whole

space. Let � be a compact subset of R3 with smooth boundary. As @t bV N
and @t eV N

remain in a bounded set of L1ð0;T ;H s�1ðR3ÞÞ, then for t, t 0 > 0, and for all N we get

jj bV N ðtÞ � bV N ðt 0ÞjjH s�1ð�Þ 	 C jt � t 0j and jj eV N ðtÞ � eV N ðt 0ÞjjH s�1ð�Þ 	 C jt � t 0j:

Using the interpolation inequality

jjf jjH ð�Þ 	 C jjf jj1��H sð�Þjjf jj�H s�1ð�Þ;
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with � 2 ð0; 1Þ and  ¼ �s þ ð1� �Þðs � 1Þ, and since bV N
and eV N

belongs to

L1ð0;T ;H sð�ÞÞ \ Lipð0;T ;H s�1ð�ÞÞ, then the sequences fbV Ng and feV Ng are

bounded in C �ð0;T ;H ð�ÞÞ. As the embedding H sþ"ð�Þ ,!H sð�Þ is compact, with

" > 0, then by Ascoli theorem the sequences fbV Ng and feV Ng are compact in

C ð0;T ;H s�1ð�ÞÞ. Then we can extract from sequences fbV Ng and feV Ng subsequences
still denoted by fbV Ng and feV Ng such thatbV N ! V † in C ð0;T ;H s�1ð�ÞÞ;eV N ! V ‡ in C ð0;T ;H s�1ð�ÞÞ:

Let f�kg be a countable increasing sequence of compact subsets of R3, with smooth
boundarywhich coverR3. Then for each k successively, using the previous compactness

result, we can extract from sequences f bV NðkÞg and f eV NðkÞg, subsequences which

converge in C ð0;T ;H s�1ð�kÞÞ. Therefore using the diagonal extraction procedure, we

obtain subsequences, still denoted by f bV Ng and f eV Ng such that

bV N ! V † in C ð0;T ;H s�1
loc ðR3ÞÞ; ð3:49ÞeV N ! V ‡ in C ð0;T ;H s�1
loc ðR3ÞÞ: ð3:50Þ

Next we can check that V †, V ‡ 2 C ð0;T ;H s�1ðR3ÞÞ. Given any bounded subset

� 2 R3 and any t 2 ½0;T �, it follows from bV N
, eV N 2 C ð0;T ;H s�1ðR3ÞÞ, that

jj bV N ðtÞjjH s�1ð�Þ and jj eV N ðtÞjjH s�1ð�Þ are bounded independently of N and from (3.49)�
(3.50), we get that jjV †ðtÞjjH s�1ð�Þ and jjV ‡ðtÞjjH s�1ð�Þ are bounded. Since this is true for
any � we obtain V †, V ‡ 2 C ð0;T ;H s�1ðR3ÞÞ.

Let us now show that V † ¼ V ‡ :¼ V . For each N we consider the increasing

sequence t n ¼ nT=N . Therefore for each t 2 ½0;T � we can extract a subsequence t nðNÞ

such that t nðNÞ ! t when N ! þ1. Consequently, we obtain in L2
loc

V †ðtÞ ¼ lim
N!þ1

bV N ðt nðNÞÞ ¼ lim
N!þ1

bV nðNÞðt nðNÞÞ

¼ lim
N!þ1

ðST ðt nðNÞ � T=N ; t nðNÞÞ � I Þ eV nðNÞðt nðNÞÞ þ lim
N!þ1

eV nðNÞðt nðNÞÞ

¼ lim
N!þ1

eV nðNÞðt nðNÞÞ ¼ lim
N!þ1

eV N ðt nðNÞÞ ¼ V ‡ðtÞ

and

V ‡ðtÞ ¼ lim
N!þ1

eV N ðt nðNÞÞ ¼ lim
N!þ1

eV nðN Þðt nðNÞÞ

¼ lim
N!þ1

ðSLðt nðNÞ � T=N ; t nðNÞÞ � I Þ bV nðNÞ�1ðt nðNÞ�1Þ

þ lim
N!þ1

bV nðNÞ�1ðt nðNÞ�1Þ

¼ lim
N!þ1

bV nðNÞ�1ðt nðNÞ�1Þ ¼ lim
N!þ1

bV N ðt nðN Þ � T=NÞ ¼ V †ðtÞ;

which proves that V † ¼ V ‡ ¼ V . We are now able to show that the limit point V

satis¯es Eq. (3.44). To this purpose we introduce the characteristic curves X N
? ðtÞ
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associated to the transport equation (3.3)

d

dt
X N

? ðt; t n; xÞ ¼ ðK �?A# � bV N Þðt;X N
? ðtÞ; zÞ; t 2 ½t n; t nþ1�; ð3:51Þ

X N
? ðt n; t n; xÞ ¼ x?:

If we integrate the characteristic curves X N
? ðtÞ between time t n and t nþ1 then we get

X N
? ðt nþ1; t n; xÞ

¼ x? þ
Z t nþ1

t n
ðK �?A# � bV N Þð�;X N

? ð� ; t n; xÞ; zÞd�

¼ x? þ
Z t nþ1

t n
ðK �?A# � eV N Þðt nþ1; xÞ
�

þ
Z t nþ1�s

�t

d

d�
½ðK �?A# � bV N Þðt nþ1 � �;X N

? ðt nþ1 � � ; t n; xÞ; zÞ�d�
�
ds

¼ x? þ�tðK �?A# � eV N Þðt nþ1; xÞ þ R1: ð3:52Þ

Let us show that R1 is bounded and scales like Oð�t 2Þ.

R1 ¼
Z t nþ1

t n
ds

Z t nþ1�s

�t

d�
d

d�
½ðK �?A# � bV N Þðt nþ1 � �;X N

? ðt nþ1 � � ; t n; xÞ; zÞ�

¼
Z t nþ1

t n

Z �t

t nþ1�s

ðK �?A# � @t bV N Þðt nþ1 � �;X N
? ðt nþ1 � � ; t n; xÞ; zÞ

n
þ
X2
‘¼1

K �?A# � @x ‘?
bV N ðt nþ1 � �;X N

? ðt nþ1 � � ; t n; xÞ; zÞ

� ðK‘ �
?A# � bV N Þðt nþ1 � �;X N

? ðt nþ1 � � ; t n; xÞ; zÞ
o
d�ds

	 CðAmaxÞ
Z t nþ1

t n
ds

Z �t

t nþ1�s

d�fjjK �? @t bV N jjL 1 ð½0;T ��R 3Þ

þ jjK �?rx?
bV N jjL 1 ð½0;T ��R 3ÞjjK �? bV N jjL1 ð½0;T ��R3Þg

	 CðAmax; jjKjjL 1
?
; jj bV N jjL1

t H
s
x
; jj@t bV N jjL1

t H
s�1
x

Þ�t 2: ð3:53Þ

Using (3.52)�(3.53), we can Taylor expand bV N ðt nþ1;X N
? ðt nþ1; t n; xÞ; zÞ to getbV N ðt nþ1;X N

? ðt nþ1; t n; xÞ; zÞ

¼ bV N ðt nþ1; xÞ þ�tðK �?A# � ~V
N Þðt nþ1; xÞ � @x? bV N ðt nþ1; xÞ

þ
Z x?þ�tðK �?A#� ~V N Þðt nþ1;xÞþR1

x?

@ 2
x?
bV N ðt nþ1; y?; zÞ

� ðx? þ�tðK �?A# � eV N Þðt nþ1; xÞ þ R1 � y?Þdy? þR1 � @x? bV N ðt nþ1; xÞ

¼ bV N ðt nþ1; xÞ þ�tðK �?A# � eV N Þðt nþ1; xÞ � @x? bV N ðt nþ1; xÞ þ R2 þR3:

ð3:54Þ

1862 N. Besse



By the fact that bV N ðtÞ is constant along characteristic curves, and using an inte-

gration in time of Eq. (3.16) on the interval ½t n; t nþ1� we get

bV N ðt nþ1;X N
? ðt nþ1; t n; xÞ; zÞ

¼ eV N ðt nþ1; xÞ

¼ bV N ðt n; xÞ �
Z t nþ1

t n
OpðBð eV N ðt; xÞ; 
ÞÞ eV N ðt; xÞdt

¼ bV N ðt n; xÞ ��tOpðBð bV N ðt n; xÞ; 
ÞÞ bV N ðt n; xÞ

þ
Z t nþ1

t n

Z s

t n

d

d�
fOpðBð eV N ð�; xÞ; 
ÞÞ eV N ð�; xÞgd�ds

¼ bV N ðt n; xÞ ��tOpðBð bV N ðt n; xÞ; 
ÞÞ bV N ðt n; xÞ þ R4: ð3:55Þ

Equating (3.54) and (3.55), multiplying the result by �t�1
R t nþ1

t n ’ðt; xÞdt, where
’ðt; xÞ 2 C 1

0ð½0;T � � R3Þ, integrating in space all over R3 and summing over n from 0

to N � 1, we get

XN�1

n¼0

Z t nþ1

t n

Z
R 3

’ðt; xÞ Dþ
�t
bV N ðt n; xÞ
�t

þ ðK �?A# � eV N Þðt nþ1; xÞ � @x? bV N ðt nþ1; xÞ
(

þOpðBð bV N ðt n; xÞ; 
ÞÞ bV N ðt n; xÞ
)
dxdt

¼ �t�1
XN�1

n¼0

X4
i¼2

Z t nþ1

t n

Z
R 3

’ðt; xÞRidxdt ¼ RN ; ð3:56Þ

where Dþ
�t
bV N ðtÞ ¼ bV N ðt þ�tÞ � bV N ðtÞ. As we have

Dþ
�t
bV N ðt nÞ
�t

�����
�����
L1ð½0;T ��R 3Þ

	 jj bV N jjLipð0;T ;H s�1ðR 3ÞÞ 	 C ;

therefore we get

Dþ
�t
bV N ðt nÞ
�t

* @tV ; weakly-� in L1ð0;T ;L1ðR3ÞÞ: ð3:57Þ

Since we have seen that the sequences (up to extraction of subsequences) bV N
and eV N

converge weakly in L1ð0;T ;H sðR3ÞÞ and also converge strongly in L1ð0;T ;L2ðR3ÞÞ
toward the limit pointV , in the weakly-� topology �ðL1

tx ;L
1
txÞ, we get

ðK �?A# � eV N Þ � @x? bV N
* ðK �?A# � V Þ � @x?V ; ð3:58Þ

OpðBð bV N ÞÞ bV N
* OpðBðV ÞÞV : ð3:59Þ
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If limN!1RN ¼ 0, then using (3.57)�(3.59), Eq. (3.56) becomes in the limitZ T

0

Z
R 3

’ðt; xÞf@tV ðt; xÞ þ ðK �?A# � V ðt; xÞÞ � @x?V ðt; xÞ

þOpðBðV ðt; xÞ; 
ÞÞV ðt; xÞgdxdt ¼ 0; ð3:60Þ

which means that the limit point V satis¯es Eq. (3.44). In fact, convexity of the norm

H s implies that jj bV N � V jjL1ð0;T ;H ðR3ÞÞ ! 0 and jj eV N � V jjL1ð0;T ;H ðR 3ÞÞ ! 0 for all

 < s. Since s > n=2þ 1 with n ¼ 3 we can choose  > n=2þ 1, which shows that

V 2 C ð0;T ;C 1ðR3ÞÞ is a classical solution of (3.44). In fact we can show that

V 2 C ð0;T ;H sðR3ÞÞ \ C 1ð0;T ;H s�1ðR3ÞÞ.
Let us now show that limN!1RN ¼ 0. Let us begin withR3. Using estimate (3.53)

we then have

�t�1
XN�1

n¼0

Z t nþ1

t n

Z
R 3

’ðt; xÞR3dxdt

	 �t�1
XN�1

n¼0

Z t nþ1

t n

Z
R3

j’ðt; xÞjjjR1@x?
bV N jjL1 ð½0;T ��R3Þdxdt

	 CðAmax; jjKjjL 1
?
; jj bV N jjL 1

t H s
x
; jj@t bV N jjL 1

t H s�1
x
; jj’jjL 1

tx
Þ�t: ð3:61Þ

Let us now deal with R4. Using Eq. (3.16) we get

�t�1
XN�1

n¼0

Z t nþ1

t n

Z
R 3

’ðt; xÞR4dtdx

¼ �t�1
XN�1

n¼0

Z t nþ1

t n

Z
R 3

Z t nþ1

t n

Z s

t n
’ðt; xÞ d

d�
OpðBð eV N ð�; xÞ; 
ÞÞ eV N ð�; xÞ

�
� ’ðt; xÞOpðBð eV N ð�; xÞ; 
ÞÞ2 eV N ð�; xÞ

�
d�dsdtdx ¼ R41 þR42: ð3:62Þ

The ¯rst term R41 of (3.62) can be estimated as follows:

R41 	 �t�1
XN�1

n¼0

Z t nþ1

t n
dt

Z
R 3

dxj’ðt; xÞj

�
Z t nþ1

t n
ds

Z s

t n
d�

d

d�
OpðBð eV N ÞÞ eV N

���� ����
L 1 ð½0;T ��R 3Þ

	 CðAmaxÞjj@z eV N jjL1 ð½0;T ��R 3Þjj@t eV N jjL1 ð½0;T ��R 3Þjj’jjL1ð½0;T ��R 3Þ�t

	 CðAmax; jj eV N jjL 1
t H s

x
; jj@t eV N jjL 1

t H s�1
x
; jj’jjL 1

tx
Þ�t: ð3:63Þ
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The second term R42 of (3.62) can be bounded as follows:

R42 	 �t�1
XN�1

n¼0

Z t nþ1

t n

Z t nþ1

t n

Z s

t n
jhOpðBð eV N ð�ÞÞÞ2 eV N ð�Þ; ’ðtÞijd�dsdt

	 �t�1
XN�1

n¼0

Z t nþ1

t n
dt

Z t nþ1

t n
ds

�
Z s

t n
d� jhOpðBð eV N ð�ÞÞÞ eV N ð�Þ;OpðBð eV N ð�ÞÞÞH’ðtÞij

	 T�tjjOpðBð eV N ÞÞ eV N jjL1 ð0;T ;L 2ðR 3ÞÞjjOpðBð eV N ÞÞH’jjL1 ð0;T ;L2ðR 3ÞÞ

	 T�tjjOpðeqð eV N ÞÞ@z eV N jjL1 ð0;T ;L2ðR 3ÞÞfjjOpðqHð eV N ÞÞ’jjL 1 ð0;T ;L2ðR 3ÞÞ

þ jjðOpðqð eV N ÞÞH �OpðqHð eV N ÞÞÞ’jjL 1 ð0;T ;L2ðR 3ÞÞg

	 C�tjj eV N jjL1 ð½0;T ��R 3Þjj@z eV N jjL 1 ð0;T ;L2ðR3ÞÞ

� fjj eV N jjL1 ð½0;T ��R 3Þjj@z’jjL1 ð0;T ;L2ðR 3ÞÞ

þ jj eV N jjL1 ð0;T ;C 1ðR 3ÞÞjj’jjL 1 ð0;T ;L2ðR 3ÞÞg

	 C ðAmax; jj eV N jjL 1
t H s

x
; jj’jjL 1

t H 1
x
Þ�t: ð3:64Þ

Let us show that error term associated toR2 is bounded and scales like Oð�t Þ. Using

estimate (3.53) we have

��N ðxÞ ¼ �tðK �?A# � eV N Þðt nþ1; xÞ þ R1

	 C ðAmax; jjKjjL 1
?
; jj bV N jjL 1

t H s
x
; jj eV N jjL 1

t H s�1
x
; jj@t bV N jjL 1

t H s�1
x

Þ�t

	 C\�t: ð3:65Þ

Using (3.65) we deduce

�t�1
XN�1

n¼0

Z t nþ1

t n

Z
R 3

’ðt n; xÞR2dxdt

¼ �t�1
XN�1

n¼0

Z t nþ1

t n
dt

Z
R 3

dx’ðt; xÞ

�
Z ��N ðxÞ

0

y?@
2
x?
bV N

t nþ1; x? þ��N ðxÞ � y?; z
� �

dy?

	 �t�1
XN�1

n¼0

Z t nþ1

t n
dt

Z
R 3

dxj’ðt; xÞj

�
Z C\�t

0

jy?j2dy?

 !1=2 Z
R 2

j@ 2
x?
bV N ðt nþ1; y?; zÞj2dy?

 !1=2

	
ffiffiffiffi
�

2

r
C 2
\ T�t jj’jjL1 ð0;T ;L2ðRz ;L1ðR 2

?ÞÞÞjj@
2
x?
bV N jjL1 ð0;T ;L 2ðR 3ÞÞ

	 C ðAmax; jjKjjL 1
?
; jj bV N jjL 1

t H s
x
; jj eV N jjL 1

t H s�1
x
; jj@t bV N jjL 1

t H s�1
x
; jj’jjL 1

t L 2
z L

1
?
Þ�t:

ð3:66Þ
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Finally using a priori estimates (3.61)�(3.64) and (3.66), we get

RN ¼ Oð�t Þ and thus lim
N!1

RN ¼ 0;

which ends the proof.
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