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Abstract
This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme.
Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent
behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the
initialization of full-F simulations is also discussed.

PACS numbers: 52.30.Gz, 52.35.Ra, 52.55.Fa

1. Introduction

Predicting turbulent transport in nearly collisionless fusion
plasmas requires solving the gyrokinetic equations for all
species coupled to the Maxwell equations. In spite of
considerable progress, several pending issues remain. In
particular, the choice of the method for solving the Vlasov
equation is subject to intense debate. On the one hand,
Eulerian codes have proved their efficiency, but are potentially
subject to numerical dissipation, therefore requiring high
order numerical schemes (see, e.g. [1]). On the other hand,
Lagrangian codes (typically particle in cell codes) benefit from
widespread experience, but may be affected by numerical
noise. The latter problem can be cured by techniques of
‘optimal loading’ [2] and filtering. This paper presents
an alternative method based on a semi-Lagrangian scheme
[3] applied to gyrokinetics [4, 5]. This technique allows
one to compute the full distribution function with moderate
dissipation and has been assessed in several ways. Here,
some physics issues are presented, namely, the intermittency
in flux driven systems, the comparison between kinetic and
fluid descriptions (including an alternative description based
on a water bag model, and the dynamics of flows in full torus
simulations of ion temperature gradient (ITG) turbulence.

2. Flux driven turbulence

Intermittency is addressed here in a system whose fluid
counterpart is known to exhibit intermittency when the system
is flux driven, namely, 2D interchange turbulence in the context
of turbulence in the scrape-off layer of tokamaks. The kinetic
version of this system is described by the drift-kinetic equation

∂tF + vE · ∇F + vD · ∇F = S, (1)

where F is a 3D distribution function, which depends on
two spatial dimensions (x, y) (y is 2π periodical) and the
energy E, S is a source term that depends on energy and
position, vE is the E × B electric drift velocity and vD is the
curvature drift velocity, which for this simplified system reads
vD = −E/eB0R0ey , where e is the ion charge, B0 the magnetic
field and R0 a characteristic curvature length (the major radius
in a tokamak). Self-consistency is ensured by coupling the
Vlasov equation equation (1) to the Poisson equation

neqe

T0
(φ − 〈φ〉) − ∇⊥ ·

(
neqmi

eB2
0

∇⊥φ

)
=

∫
dEF − neq, (2)

where the bracket indicates an average over the periodic
coordinate y, φ is the electric potential and neq is the
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Figure 1. Left panel: time evolution of the volume averaged energy contents of zonal flows, electric potential fluctuations and central
temperature T . Right panel: details of one relaxation (third time window in left panel).

density. Unless specified otherwise, the electron temperature
is supposed to be constant, Te = T0. A trapped ion turbulence
is also described by equations (1) and (2) when averaging the
Vlasov equation over the fast cyclotron and bounce motions,
up to an extra E1/2 factor in expression (2) of the density
[6]. The initial distribution function is a Maxwellian with
prescribed density and temperatures, while fluctuations are set
to zero.

The GYSELA code is usually run without sources.
In this case boundary conditions are set such that the
distribution function matches a Maxwellian with fixed density
and temperature at both radial ends of the simulation box.
However tokamak plasmas are flux driven, i.e. the temperature
is controlled by a heat source and not by fixed values at
the edges. Hence it is quite crucial to study systems where
turbulence is flux driven. This has been done for a trapped ion
turbulence (equations similar to equations (1) and (2), with an
extra E1/2 factor in the energy integration [6]) by implementing
an energy dependent source term in the Vlasov equation (1).
The source S is chosen of the form S = S0(x)(E/T − 1),
where S0(x) is a Gaussian located close to x = 0. The
dependence on energy (E/T − 1) is such that the particle
source is null while heat is injected in the system [7]. We
single out the evolution of the volume average energies of
zonal flow and fluctuating potential (without zonal flows), and
the central temperature. An example of the rich dynamics of
these three fields is reported in figure 1. When a large increase
in the magnitude of the zonal flows occurs, the fluctuations are
quenched and the core temperature builds up while the edge
temperature decreases, in agreement with the usual picture
for a transport barrier. In the first stage, the increase in the
temperature gradient through the system takes place at the
same time as the magnitude of the zonal flows decays away
until an abrupt relaxation event takes place.

In the second stage, the relaxation governs a significant
turbulence mixing during which the zonal flows are reduced,
the radial temperature gradient flattens out and a large energy
flux is transferred to the edge. The zonal flows build up
again, then starting over such a predator–prey cycle. In such
simulations the interplay between the zonal flows and the
turbulent drift transport generates two distinct behaviours. In
some cases there is a strong zonal flow overshoot that generates
a transient transport barrier, while in other cases the zonal
flows govern a saturation of the turbulent transport. This

Figure 2. Probability distribution function of the temperature at
x = 0.3 for flux driven kinetic interchange turbulence.

investigation of flux driven transport in a kinetic simulation
confirms previous findings with fluid simulations for edge
turbulence [8]. In particular the probability distribution
function of temperature fluctuations is non-Gaussian (figure 2).
Also it is found that a reduced description of the velocity
space does not capture the right physics of an interchange
turbulence described by equations (1) and (2). This motivates
a detailed comparison between fluid and kinetic descriptions
of interchange turbulence, presented in the next section.

3. Reduced 3D simulations: kinetic versus fluid
descriptions

The fluid equations for interchange turbulence are obtained by
computing the two first moments of equation (1), i.e.

∂tN + vE · ∇N + vD · ∇P = 0, (3)

∂tP + vE · ∇P + vD · ∇Q = 0, (4)

where N is the density, P the pressure and Q = ∫ +∞
0 dEE2F

is the heat flux. For kinetic and fluid descriptions to match,
an expression for Q, i.e. a closure, must be chosen. The
simplest one consists of setting Q = �PT , where � is the
adiabatic index (for a 2D system, a Maxwellian yields � = 2).
To minimize the numerical errors, the same semi-Lagrangian
scheme has been used to solve both the kinetic and the fluid
equations. For the fluid case, this is done by solving the Vlasov
equation for two energies E± :

∂tF± + vE · ∇F± + vD± · ∇F± = 0, (5)
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Figure 3. Heat flux versus distance to the threshold κc comparing a
3D kinetic interchange turbulence equation (1) to the fluid equations
(3) and (4) with diffusion added to match the instability threshold.
The comparison is done with and without zonal flows.

where vD± = −E±/eB0R0ey . The density and pressure are
defined as N = F+ + F− and P = F+E+ + F−E−. Using
these definitions, the fluid equations equations (3) and (4) are
recovered by summing the two equations (5) ruling F± with
appropriate energy weights (1 for the density equation and E±
for the pressure equation).

In this description, the heat flux is given by

Q = PT + 4(E+ − E−)2F+F−/N. (6)

Hence it is found that the adiabatic index is close to one,
� = 1, when E+ is close to E−. The advantage of this
procedure is that both fluid and Vlasov equations are solved
with the same solver, thus avoiding systematic errors due
to the choice of numerical scheme. It is well known that
the instability threshold derived from the fluid equations (3)
and (4) (or equivalently equation (5)) differs from the kinetic
value calculated from the Vlasov equation (1). To reduce this
source of discrepancy, a diffusion coefficient has been added
in equations (5), which is adjusted so that the kinetic and fluid
instability linear growth rates nearly coincide.

The simulations show that the kinetic fluxes are well below
the values calculated in the fluid approach, as shown in figure 3.
This difference is usually explained by the dynamics of zonal
flows [9] close to the instability threshold. However this is
not the only explanation, as a difference persists when zonal
flows are artificially suppressed (see figure 3). The remaining
difference likely comes from wave/particle resonances, which
are not well described by fluid equations. This can be seen
from figure 4, which shows that even if the difference between
the distribution function and the initial Maxwellian is small,
the shapes are quite different in the energy space and cannot
be described by a small number of moments [10]. It is
stressed here that some enforcement towards a Maxwellian
equilibrium comes from the boundary conditions at the edges
of the simulation box (Maxwellian with prescribed density
and temperature) and also from the initial state. One solution
would be to add collisions to impose a relaxation towards a
Maxwellian. Also it is possible that non-diffusive closure
schemes, which have proved their efficiency in the past for
δF codes [11, 12], would work [13]. An alternative solution,
based on a water bag representation, is currently investigated
and is presented in the next section.

Figure 4. Difference between the distribution function and the
initial Maxwellian distribution for the kinetic interchange case.

4. An alternative approach to kinetic versus fluid
descriptions: the water bag model

The water bag model provides a bridge between kinetic and
fluid descriptions. It offers an interesting alternative to the
usual kinetic description, using the conservation property of
the distribution function in the phase space. Accordingly, a
discrete distribution function is assumed along the velocity
direction, taking the form of a multi-step-like function. The
water bag model was previously used only for non-magnetized
plasmas because this model is well suited only for problems
involving phase space with one velocity component. This
model is applied for the first time to ITG modes in a cylinder.
Slab ITG turbulence is described by the following set of
equations:

∂tF + vE · ∇F + v‖∇‖F − e

mi
∇‖φ∂v‖F = 0, (7)

neqe

T0
(φ − 〈φ〉) − ∇⊥ ·

(neqmi

eB2
∇⊥φ

)
=

∫
dv‖J · F − neq.

(8)

The distribution function is now four-dimensional, with three
space coordinates (the minor radius r , poloidal angle θ and
coordinate along the cylinder axis), plus the velocity v‖ along
the magnetic field. In this case, the multi-step description of
the distribution function reads

F(x, v‖, t) =
N∑

j=1

Aj

{
�

[
v‖ + vj (x, t)

] − �
[
v‖ − vj (x, t)

]}
,

(9)

where N is the number of bags, Aj the height of the bag and �

is a step function. Distribution function (9) is an exact solution
of the Vlasov solution when the velocities vj (x, t) evolve as
follows:

∂tvj + vE · ∇vj + vj∇‖vj +
e

mi
∇‖φ = 0. (10)

These are fluid-like equations, which offer an alternative to
fluid equations with ad hoc closures. We note that the water bag
representation is able to deal with a distribution function that
is far from a Maxwellian. Nevertheless, as this is a rather new
technique in the context of magnetized plasmas, the method
has been tested first in a case where analytical results are
known, namely, the linear stability of cylinder ITG modes for a
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Figure 5. Instability diagram in the plane ωT ∗ = f (ωn∗) for a multi-water bag distribution function and a Maxwellian.

Maxwellian background distribution function. Linearizing the
set of equations (10), one gets the local dispersion relation of a
drift-kinetic multi-water bag plasma for equal ion and electron
temperatures, and hydrogenic species:

ε(ω) = 1 −
N∑

j=1

αj

k2
‖c

2
s − ωω∗

j

ω2 − k2
‖a

2
j

= 0, (11)

where aj is the initial (‘equilibrium’) parallel velocity vj ,
cs = (Teq/mi)

1/2 is the thermal velocity, αj = neq,j /neq is
related to the density of the j th bag neq,j = 2ajAj and the
diamagnetic frequency for each bag is defined as

ω∗
j = kθTeq

eB

∂rneq,j

neq,j

. (12)

Finding the complex roots of equation (11) provides the
linear growth rate, whose existence and value essentially
depend on the values of the density and temperature
diamagnetic frequencies ω∗

n = kθTeq∂r ln(neq)/eB and ω∗
T =

kθTeq∂r ln(Teq)/eB. The one bag case can be shown to
be equivalent to the adiabatic fluid description, without any
instability, and a constant ratio between temperature and
density gradients (Ln/LT = 2). The instability threshold for
ITG instability is found to be close to the results obtained from
continuous Maxwellian distribution function when N = 10,
except for large density gradients (see figure 5) [14]. The
method remains to be tested in the non linear regime, first for
the interchange turbulence described in section 2, second in
the 4D slab geometry where it will be compared with a 4D
version of the GYSELA code [5,15] and finally to the full 5D
toroidal case.

5. Global non-perturbative simulations of toroidal
ITG turbulence

The GYSELA code has been upgraded to run 5D simulations of
toroidal ITG turbulence [16]. The codes solves the gyrokinetic
equation

∂tF + vE · ∇F + vD · ∇F + v‖∇‖F + v̇‖∂v‖F = 0, (13)

Figure 6. Initial profile of R/LTi in GYSELA runs.

where

vE = B × ∇ (J · φ)

B2
; vD = miv

2
‖

eB

(
B
B

× N
R

)

+
µ

e

(
B
B

× ∇B

B

)
, (14)

miv̇‖ = −
[

B
B

+
miv‖
eB

(
B
B

× N
R

)]
. (µ∇B + e∇J.φ) , (15)

where N/R is the field line curvature. The Poisson equation
reads
neqe

T0
(φ − 〈φ〉) − ∇⊥ ·

(neqmi

eB2
∇⊥φ

)

=
∫

Bdµdv‖J · F − neq, (16)

where J is the gyroaverage operator (multiplication by
J0(k⊥ρc) in Fourier space, ρc is the gyroradius—the
present implementation of this operator is based on a Padé
representation of the Bessel function J0). The code uses a
simplified geometry based on a set of circular centred magnetic
surfaces with a magnetic field B = B0R0/R(eϕ + r/qR0eθ )

and R = R0 + r cos(θ). No source is added in this
version of the code. Boundary conditions are such that the
distribution function matches a Maxwellian with fixed density
and temperature at both radial ends of the simulation domain.

1209



X. Garbet et al

Figure 7. Poloidal cross section of the electric potential for an ITG turbulence simulation when zonal flows are artificially suppressed
(ρ∗ = 0.005).

The parameters of the simulation correspond to the Cyclone
base case [9] with a gyroradius normalized to the plasma size
ρ∗ equal to 0.005.

Several numerical tests have been done to check the
accuracy when solving the Vlasov equation, in particular
regarding the conservation of motion invariants [16]. Also
the linear growth rates agree well with the expected values,
and the n = 0, m = 0 component of the electric potential,
labelled φ00, evolves as expected. Namely, it decays while
emitting geodesic acoustic modes, with a damping rate that
agrees with the value calculated by Sugama and Watanabe [17].
The flow ultimately relaxes towards a non-zero residual value,
as prescribed by Rosenbluth and Hinton [18]. In the following
the non linear simulations are initiated with a quasi-parabolic
profile such that R/LTi = 12 at mid-radius, and Te = Ti

(figure 6). No source is added, so that the temperature gradient
decays slowly during the simulation.

For an initial distribution function is a Maxwellian of
the form

Feq(r, E) = neq(r)[
2πmTeq(r)

]3/2 exp

{
− E

Teq(r)

}
, (17)

where E = mv2
‖/2+µB, and in the case where φ00 is artificially

suppressed, a standard shearless ITG turbulence develops, as
shown in figure 7.

However when φ00 is self-consistently calculated, large
scale steady flows appear, which prevent the onset of
turbulence (see figure 8). This is a consequence of the
equilibrium distribution function not being a function of the
motion invariants. If the distribution function is a function of
the minor radius instead of the canonical toroidal moment, no
parallel flow exists initially to balance the charge separation
associated with the ion curvature drift. Hence a polarization
drift appears to ensure the charge balance. Parallel flows
develop in a second stage, but the shear flow is too strong
to allow a growth of turbulence [19, 20]. In some cases,
turbulence ultimately develops but on a slow time scale. It
is in fact much safer to ensure the charge balance by allowing
the development of parallel flows, in particular (n = 0, m = 1)

components (Pfirsch–Schlüter effect).
A similar problem was already mentioned by Idomura

et al [21] and by Angelino et al [22]. It is cured by prescribing
an equilibrium distribution function that is canonical, i.e. a
function of motion invariants. The choice here is the same

Figure 8. Poloidal cross section of the electric potential for an ITG
turbulence simulation when zonal flows are included and
non-canonical initial distribution function (ρ∗ = 0.005).

as the one proposed in the [22], that is a distribution function
of form (17), with the minor radius r replaced by the motion
invariant r̄ defined as

r̄ = r0 − q0

r0

∫ r

r0

rdr

q
+

q0

r0

m

eB0

(
Rv‖ − R0v̄‖

)
, (18)

where

v̄‖ = sign
(
v‖

) [
2

m
(E − µBm)

]1/2

� (E − µBm) (19)

and � is a step function, Bm is the maximum of magnetic field
in the whole box (all quantities with a label 0 are defined at
half-radius of the simulation box). With this prescription, the
average parallel velocity and electric potential evolve towards
steady values. The final state is turbulent, and the level of
fluctuations e(φ−φeq)/Teq lies in the expected range (figure 9)
(φeq is the time average of φ00). In this configuration the
corresponding E × B shear rate is small enough not to affect
the turbulent transport. When comparing figures 7 and 9,
it appears that the radial size of vortices is reduced by the
shearing effect of zonal flows, as expected [23]. Also the
thermal flux is in the right order of magnitude when compared
with the Cyclone curve giving the flux versus the normalized
temperature gradient (figure 10) [9]. The simulation shown in
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Figure 9. Poloidal cross section of the electric potential fluctuations e(φ − φeq)/Teq for an ITG turbulence with zonal flows included and an
initial distribution function that is canonical (ρ∗ = 0.005).

Figure 10. Time evolution of the calculated thermal flux at
mid-radius for the simulations with (full squares, green) and without
(open squares, yellow) zonal flows (ZF) corresponding to figure 7
(without ZF) and 9 (with ZF). The fluxes are compared with the
Cyclone results for fluid (crosses and circles) and kinetic (diamonds
and stars) simulations [9].

figure 9 was run on the BULL-TERA10 supercomputer, which
is a cluster of 9968 processors Novascale 5160 that offers a 60
Teraflops computing capability [24]. The number of mesh
points is (r, θ, ϕ, v‖, µ) = (256, 256, 64, 32, 8) (full torus
simulation), and the time step is �c�t = 5 for a normalized
gyroradius ρ∗ = 0.005. The CPU time needed to reach
�c�t = 20 000 is 70 h on 64 processors.

We note that the difference between r̄ and r is of the order
of ρs. Hence this procedure should not be necessary any more
for low enough values of ρ∗. Nevertheless it sounds safer to
choose an initial distribution function that is solution of the
Vlasov equation, i.e. [Heq, Feq] = 0.

Regarding this question, it appears that the prescription
equations (17) and (18) belongs to a larger class of equilibrium
distribution functions [25], defined for a general magnetic field
B = I (ψ)∇ϕ + ∇ψ × ∇ϕ as

Feq(ψ̄, E, w‖) = neq exp
(
eφeq/Teq

)
[
2πmTeq

]3/2 exp

{
− H

Teq

}

×
{

1 +
mv̄‖W‖eq

Teq

}
, (20)

where neq, Teq and W‖eq, are functions of the motion invariant
ψ̄ = ψ + mIv‖/eB, H = mv2

‖/2 + µB + eφeq is the energy
and v̄‖ is the motion invariant defined by equation (19), with a
slightly different definition of Bm

Bm = B
(
ψ̄, θ = π

)
(E − µBmax) . (21)

Developing equation (20) at first order in ρ∗ and calculating
the 2nd moment yield the fluid velocity

V = W‖eq (ψ)
B

Bmax (ψ)
+

(
dφeq

dψ
+

1

neqe

dpeq

dψ

)
R2∇ϕ.

(22)

This expression is fully consistent with the usual prescription
for the equilibrium velocity in a tokamak and satisfies the
force balance equation E + V × B − ∇p/ne = 0. In a
collisionless code, the choice of the function W‖eq is arbitrary.
The choice equation (20) minimizes the mean parallel velocity,
as mentioned in [22]. Adding collisions would lead to a
different result as the neoclassical viscous damping prescribes
a value of W‖eq that usually corresponds to a finite parallel
velocity. Hence the choice of the initial distribution function
is intimately related to the structure of the initial mean flow,
which can be chosen by prescribing the values of φeq and W‖eq.

6. Conclusion

A sequence of gyrokinetic codes with increasing dimension-
ality and based on a semi-Lagrangian scheme has been devel-
oped and used to clarify several physics issues related to the
interplay between flows and turbulence and the scale separa-
tion assumption. Flux driven interchange turbulence has been
simulated. As in previous fluid flux driven simulations, strong
intermittency is observed. It is related to abrupt relaxations of
the temperature profile, correlated with fast events in the zonal
flow and fluctuation dynamics. Also turbulent fluxes for a 3D
interchange turbulence are found to be different when using
fluid or kinetic equations. This discrepancy is partially due to
the different behaviour of zonal flows. Moreover the shape of
the distribution function in the energy space is found to dif-
fer significantly from a Maxwellian, suggesting that part of
the difference is due to resonant wave/particle interaction. An
alternative to fluid description that describes kinetic effects,
the water bag representation, has been studied. It is shown
to reproduce correctly the kinetic linear growth rate and fre-
quencies with a limited amount of bags. It remains, however,
to be tested in the non-linear regime. Finally a 5D version
of the GYSELA code has been developed to study toroidal
ITG turbulence. The linear growth rates agree with the values
expected for the Cyclone base case and zonal flows behave
as expected. The choice of the initial distribution function is
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crucial for the non-linear stage. The best option is to choose a
function of motion invariants to avoid the development of spu-
rious large scale flows, which may prevent the development
of turbulence. Once the distribution function is properly ini-
tialized, the simulations produce turbulent heat fluxes in the
expected range.
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