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We report in the present paper a new modeling method to study multiple species dynamics in
magnetized plasmas. Such a method is based on the gyrowater bag modeling, which consists in
using a multistep-like distribution function along the velocity direction parallel to the magnetic field.
The choice of a water bag representation allows an elegant link between kinetic and fluid
descriptions of a plasma. The gyrowater bag model has been recently adapted to the context of
strongly magnetized plasmas. We present its extension to the case of multi ion species magnetized
plasmas: each ion species being modeled via a multiwater bag distribution function. The water bag
modelization will be discussed in details, under the simplification of a cylindrical geometry that is
convenient for linear plasma devices. As an illustration, results obtained in the linear framework for
ion temperature gradient instabilities are presented, that are shown to agree qualitatively with older
works. © 2011 American Institute of Physics. �doi:10.1063/1.3565019�

I. INTRODUCTION

By definition, any plasma is a multispecies one, simply
regarding a pure case with electrons and just one ion popu-
lation. For the sake of simplicity, most of the studies have
been achieved by focusing on a given species, assuming for
example the other�s� adiabatic.

From a numerical point of view, the increase of the com-
putational power makes possible to study the coupling be-
tween different species. The limiting factor is given by the
mass ratio between the different species to take into account.
Even if the mass ratio between species is not so high the
coupling between species increase the numerical effort, so
that any alternative is welcome to decrease the dimension of
a given simulation. The water bag approach has recently
been demonstrated to provide such a decrease, and has mo-
tivated the present work.

From an experimental point of view strongly magnetized
plasmas always include many species due to particles eroded
from experiment’s wall �mainly tungsten and/or carbon�, that
can be carried until the plasma core. In the extensively in-
vestigated case of a fusion reactor, one has to deal with tri-
tium and deuterium for achieving the fusion reaction, and
with the helium produced. Independently of their origin,
such impurities could cause a non negligible loss in confine-
ment properties and their effects on the plasma stability re-
mains to be fully understood.

In this paper, we describe magnetically confined plas-
mas, characterized by negligible collision rate and high mag-
netic field. The toroidal version of the water bag model being
under development, we present here results obtained in cy-
lindrical geometry. Such a geometry is especially suitable for

linear plasma devices,1–5 that offer a simplified plasma ge-
ometry with an homogeneous axisymmetric magnetic field.
Moreover, such a simplification allows to recover major fea-
tures of the ion temperature gradient instability that bases our
investigations in the present work.

Two kinds of theoretical descriptions can be used in
plasma physics: the fluid and the kinetic ones. Despite lot of
progresses have been made until recent years by the use of
fluid numerical solvers for studying multispecies plasmas,6,7

a more accurate description of microinstabilities and anoma-
lous transport requires the use of nonlinear gyrokinetic
codes.8–11 In these works, the key question is about the modi-
fication of particles and heat nonlinear fluxes due to the pres-
ence of impurities and controlled by the density and tempera-
ture radial gradients. Older works concentrated on the linear
response of a multispecies plasma, especially on finding the
critical density and temperature gradients destabilizing the
plasma,12 and trying to give an expression for the fluxes from
quasilinear theory.13,14

Despite considerable progresses during last decades, gy-
rokinetic solvers require a huge numerical effort, and their
extension to multiple species study increases such a diffi-
culty. One can too point the fact that the operating cost of a
numerical simulation of a realistic plasma becomes compa-
rable to the one of a real experiment. Some alternative ways
to describe kinetic effects with a simplified formulation are
also useful, that could allow a less requiring numerical effort.
Such an effort in depicting multispecies plasma can be de-
creased by the use of quasilinear solvers15 or gyrofluid trans-
port models.16 The present work present another interesting
alternative, based on the water bag representation.

The gyrowater-bag equations are an exact reformulation
of the Vlasov Poisson system, in the case of a special form of
the distribution function: the water bag which takes the form
of a multistep-like distribution function along the velocity
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direction �each step representing a bag�. The interest of the
water bag formulation consists in the discrete summation
over the bags replacing the usual continuous distribution
function.17–21 The parallel velocity dependency and the par-
tial derivative along this direction do no more appear in
equations and are replaced with the coupling between each
bag dynamics ensured by a discrete summation in the quasi
neutrality equation. The Vlasov Poisson system can be refor-
mulated as a multifluid one, with an exact adiabatic
closure.22,23

Based on recent papers,23–26 that ensure the water bag
model to be an interesting approach to depict kinetic fea-
tures, our present work first consists in the generalization of
the water bag concept to the case of a multispecies plasma, in
the framework of a cylindrical geometry �Sec. II�. An inter-
esting result is that the water bag model easily offers an
analytical expression of the linear stability threshold, in place
of the usual Fried–Conte plasma dispersion function �Sec.
III�. As illustrations, linear stability frontiers are drawn in the
plane of the temperature and density gradients of main ions.
We then discuss the stability dependence on the nature, the
ratio and the radial density and temperature profile of impu-
rities �Sec. IV�.

II. A WATER BAG APPROACH TO MODEL
IMPURITIES

In the collisionless limit, each species s of a multispecies
plasma is described with a Vlasov equation acting on its
guiding centers distribution function fs= fs�R ,v� , t�, with R
defining the guiding center position, v� being the velocity
coordinate along the magnetic field line. We consider a cy-
lindrical geometry, assuming a constant magnetic field B ori-
ented along the azimuthal axis called z. We assume for sim-
plicity that the Larmor radius rLs=v�Ms /qsB and the
associated magnetic moment �=Msv�

2 /2B are constant for
each species �particles of mass Ms, charge qs=Zse �with e the
elementary charge� and perpendicular velocity v��, meaning
that all particles of a species have the same gyromotion. So
do we omit in the following the usual summation over dif-
ferent values of � for a given species �we refer the reader to
Ref. 26 for a water bag analysis of this problem�. For each
species s, the Vlasov equation then reads:

�t f s + �vE�r,t��s . ��fs + v��zfs +
Zs

Ms
�E�r,t��s�v�

fs = 0.

�1�

We note here that by using gyroaverage �denoted by � . �s�
and considering a constant perpendicular velocity associated
to gyromotion, only the parallel velocity remains an indepen-
dent variable.

The quasineutrality equation ensures the coupling be-
tween the different ion species and electrons, that are more-
over assumed adiabatic with a low electrostatic energy e�
�Te,

ne0	1 +
e��r,t�

Te

 = �

s

Zs	�� . �Msns0

qsB
2 ����r,t�


+ �
−�

+�

�fs�R,v�,t��sdv�
 . �2�

�, E, and vE are, respectively, electrostatic potential and
field, and the corresponding electric drift vE=−���B /B2.
Each ion species s is defined with its charge qs=Zse, mass
Ms and equilibrium density ns0. Te is the electron tempera-
ture, e their charge and ne0 their equilibrium density. Finite
Larmor Radius effects are contained in the gyroaveraged dis-
tribution function �fs�R ,v� , t��s, and in the first term of the
left-hand side of the quasi neutrality Eq. �2�, commonly
known as the polarization effect.

We now represent each species with a water bag distri-
bution function along the velocity parallel to the magnetic
field, given by the sum of Ns Heaviside step functions �,

fs = �
j=1

Ns

Asj���v� − vsj
− �R,t�� − ��v� − vsj

+ �R,t��� . �3�

Each bag j is enclosed by positive and negative velocity
contours vsj

� and has an height Asj �Fig. 1�, while the total
number of bags Ns is free for any species. Moreover and
accordingly to the conservation property of phase space mea-
sured by the distribution function, the height Asj of each bag
is a constant of motion. By inserting multiwater-bag distri-
butions Eq. �3� into Eqs. �1� and �2�, we obtain

�tvsj
��R,t� + �vE�r,t��s . ��vsj

��R,t� + vsj
��R,t��zvsj

��R,t�

=
qs

Ms
�E�r,t��s, �4�
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FIG. 1. �Color online� Maxwellian multiwater-bag distribution functions
plotted against the parallel velocity direction �case of deuterium �d� and
carbon �c�, vTD units�.
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ne0	1 +
e��r,t�

Te

 = �

s

Zs��� . �Msns0

qsB
2 ����r,t�


+ �
j=1

Ns

Asj�vsj
+ �R,t� − vsj

− �R,t��s� . �5�

We can rewrite these equations by defining for each spe-
cies a density nsj =Asj�vsj

+ −vsj
− �, an average velocity usj

= �vsj
+ +vsj

− � /2, and a partial pressure psj =Msnsj
3 /12Asj

2 rela-
tively to each bag,

�tnsj + �vE�s��nsj + �zusjnsj = 0, �6�

�tusj + �vE�s��usj + usj�zusj =
qs

Ms
�E�s −

1

Msnsj
�zpsj , �7�

ne0�1 +
e�

Te

 = �

s

Zs��� . 	Msns0

qsB
2 ���
 + �

j=1

Ns

�nsj�s� .

�8�

We recover the hydrodynamic formulation of the water
bag equations, providing a continuity Eq. �6� and a Euler Eq.
�7� equation for each bag with an exact closure given by the
partial pressures psj =Msnsj

3 /12Asj
2 . Such a formulation is a

typical feature of our modeling choice of a water bag distri-
bution function.22

III. LINEAR ANALYSIS

In the present section, we derive the expression of the
dielectric function 	�
� of a multispecies plasma, aiming for
obtaining a linear stability threshold. We assume an homo-
geneous equilibrium along the magnetic axis �z direction�
and the orthoradial coordinate ���, without any equilibrium
electric potential. Contours are expressed with an even equi-
librium �asj�r� and a fluctuating part wsj

�. Fluctuating quan-
tities are expanded on a Fourier basis for � and z,

vsj
� = � asj�r� + wsj

��r�ei�m�+k�z−
t�, �9�

� = 0 + ���r�ei�m�+k�z−
t�, �10�

where m is the orthoradial mode number and k� is the parallel
wave vector.

For simplicity, we neglect finite gyroradius effects by
considering for each species rLs=0, we then obtain the lin-
earized gyrowater-bag equations,

�
 
 k�asj�wsj
� = �k�

qs

Ms



m

rB
drasj
�� , �11�

ene0

Te
�� = �

s
�Zs�

j=1

Ns

Asj�wsj
+ − wsj

− �
 . �12�

The gyrowater-bag multispecies dielectric function is
obtained by eliminating contour fluctuations �wjs

�� given by
Eq. �11� into quasineutrality Eq. �12�,

	�
� = 1 −
Te

ene0
�

s
�Zsns0

qs

Ms
�
j=1

Ns

�sj

k�
2 − 
k��sj/�cs


2 − k�
2asj

2 
 ,

�13�

where we introduce the bag relative density �sj

=2asjAsj /ns0 and the radial derivative for each equilibrium
contour �sj =dr ln asj. More usual parameters are the poloidal
wave vector k�=m /r �r being the radial point considered�
and the cyclotron frequency �cs=qsB /Ms. Introducing the
parameters Zs

�=ZsTe /Ts and vTs
2 =Ts /Ms, the dielectric

plasma function can be written,

	�
� = 1 − �
s
�Zs

�Zsns0

ne0
vTs

2 �
j=1

Ns

�sj

k�
2 − 
k��sj/�cs


2 − k�
2asj

2 
 .

�14�

The linear stability threshold is defined with 	�
�=0 and
d
	�
�=0 �Ref. 24�. By applying these conditions to the
dielectric plasma function Eq. �14�, we obtain:

�
s

Zs
�Zsns0

ne0
vTs

2 ��
j=1

Ns

�sj

k�
2 − 
k��sj/�cs


2 − k�
2asj

2 
 = 1, �15�

�
s

Zs
�Zsns0

ne0
vTs

2 �
j=1

Ns

�sj

�
2 + k�
2asj

2 �k��sj/�cs − 2
k�
2

�
2 − k�
2asj

2 �2 = 0.

�16�

We can notice that the calculation of such a threshold is
a good illustration of the ability of the water bag model,
because in the general case of multiple continuous distribu-
tion functions, no analytic expression of the threshold can be
derived. In our case, the threshold is accessible very simply
by using a 
 parametrization of previous Eqs. �15� and �16�.

IV. LINEAR STABILITY

We will now focus on the case of a two species plasma
�indiced D for fixed deuterium and s for varying species in
the following�. In such a two species case, the linear thresh-
old of stability �Eqs. �15� and �16�� is a surface in a space of
four dimensions defined by the density ��nD ,�ns� and tem-
perature ��TD ,�Ts� gradients of each species. For representa-
tion facilities, we assume the same temperature profile for
each species. The density gradients are linked with respect to
the definition of the effective charge Zeff �introducing its ra-
dial derivative �Zeff

�,

Zeff =
ZD

2 nD0 + Zs
2ns0

ZDnD0 + Zsns0
, �17�

�Zeff
=

ZDnD0Zsns0�ZD − Zs���nD − �ns�
�ZDnD0 + Zsns0�2�ZD

2 nD0 + Zs
2ns0�

, �18�

and we will consider two different cases.

• The first one is to consider a flat impurity profile, with an
arbitrary density profile for the other species. The effective
charge profile �Zeff

is then
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�Zef f
=

ZDnD0Zsns0�ZD − Zs�
�ZDnD0 + Zsns0�2�ZD

2 nD0 + Zs
2ns0�

�nD. �19�

• The second case consists in forcing the impurities in
following main ions ��ns=��nD�, while the effective charge
radial profile is given by the definition of �Zeff

Eq. �18�.

We apply in the following the results of linear analysis
�Eqs. �14�–�16�� to three practical cases of mixed plasmas.
The main species is chosen to be deuterium while the other
one is detailed below.

• To ensure fusion reactions at low temperature, tritium must
be present in a Tokamak. Its properties �ZT=1 et MT

�3mp� are closed to the deuterium reference.
• Carbon �MC�12mp , Zc=6� often constitutes Tokamak

wall elements. It gives an interesting intermediary value of
charge and mass values.

• To study the effect of heavy particles the tungsten is cho-
sen �MW�184mp , ZW�40�,27 which is a good candidate
for long lifetime ITER divertor and first wall.28

A. Water bag parameters

The water bag model replaces an imaginary pole with a
finite number of real resonances that are associated to dis-
continuities of the water bag distribution function along the
velocity coordinate.21,29,30 Such discontinuities correspond to
values 
= �k�asj, as can be seen in the expression of the
dielectric plasma function Eq. �14�. As shown in Fig. 1, we
superpose discontinuities linked to each species by choosing
the same interval between two bags �a.

Such a superposition allows us to treat easily the real
poles of the dielectric plasma function, that can be expressed
as a rational function of two polynoms. The roots are degen-
erate in the velocity interval where the two species are de-
fined.

Practically, regarding the velocity grids relative to each
species, we use constant and equal interval lengths, �aD

=�as=�a. For each species s �including deuterium�, the cut-
off velocity aNss

is chosen to be equal to five thermal veloci-
ties,

∀ j � Ns, ajs = 	 j +
1

2

�as,

Ns: 5vTs = 	Ns +
1

2

�as.

The velocity equilibrium contours asj being fixed, the
bag densities �sj as well as the logarithmic gradients of equi-
librium velocities �sj remain to be given. As detailed in a
previous paper,31 we used a moment sense equivalence with
respect to Maxwellian distribution functions

fs =
ns0

�2�vTs
2

e−v�
2/vTs

2
, �20�

that allows us to link the unknown water bag parameters
�sj ,�sj to the Maxwellian moments.

In the following we will present stability diagrams in the
plane of density gradient ��nD� and temperature gradient
��TD� of the deuterium. As usual in the study of temperature
gradient modes, the unstable areas are the ones containing
second or fourth quarters of the stability plane. Such dia-
grams present a structure relative to our choice of water bag
distribution functions. For detailed explanations about the
specificity of a water bag representation, we refer the reader
to previous articles.23,24

The important information we need to precise is that
such water bag stability diagrams present a lobe-like struc-
ture, where each lobe is related to a given parallel velocity
population. The fastest particles are located near ��nD

=0, �TD=0� couples, while the slow ones follow the �
→2 asymptote in the case of a pure plasma �� being the ratio
between temperature and density gradients of main ions �
=�TD /�nD�.

It is important to notice that these two areas can be as-
sociated to fluid �for the � branch� and kinetic parts �region
close to zero� of the plasma response.24 By considering the
case of a one-bag plasma with one ion species, the ratio
between temperature and density gradients is fixed such that
� is strictly equal to 2. In that case no instability can de-
velop. On the contrary, the linear stability frontier of a single
ion plasma described by a multiwater-bag Maxwellian equi-
librium recovers the �=2 value as an asymptote for the large
density and temperature gradients limit.

In the numerical results presented in the following,
length are expressed in k� units, velocities are normalized
with respect to the deuterium thermal velocitiy, v̂=v /VTD,
and frequencies are consequently expressed in k� /vTD units.
Since there is no k� mode selection in the zero Larmor radius
approximation, we can take k�rLD=1 without a loss of gen-
erality.

B. Flat density profile of impurities

By considering a flat density profile, we simplify to di-
lution effects the impact of impurities on the linear stability
threshold. In the case of tritium, we are considering two
populations with comparable density values. We plot in Fig.
2�a� the linear stability thresholds of a mixed D-T plasma,
for different values of tritium relative density. We choose to
use a relatively large bag number �ND=30, NC=24�, in or-
der to neglect the water bag typical lobe-like structure.24 We
report in Fig. 2�b� the dependence of the linear growth rate
�� in k�vTD units� on the density gradient of main deuterium
ions �nD for a fixed value of temperature gradient �T.

The mixed deuterium–tritium plasma exhibits two kinds
of response �see upper part of Fig. 2�. We can distinguish
stabilized areas related to small values of the temperature
profile, linked to high velocities classes of particles. But the
plasma is more affected in the fluid branch, associated to
slow particles, where the tritium effect is to destabilize the
plasma. Regarding the linear growth rate �lower part of Fig.
2�, we observe quantitatively two antagonist effects: � de-
creases around �nD close to zero �kinetic branch�, while the
unstable domain increases for higher absolute values of the
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density gradient �fluid branch�. These effects become percep-
tible from values of the relative tritium density equal to 10%
of the main deuterium density.

Next, we represent in Fig. 3 the linear stability threshold
�a� and the associated linear growth rate �b� of a plasma with
deuterium and a relatively high population of carbon ions
�10% of the deuterium density, Zeff=2.875�. Effects ever ob-
served in the case of deuterium–tritium plasma are recov-
ered. The linearly unstable area is extended by adding carbon
to the deuterium plasma, proportionally to the relative carbon
density �nC0=0.1nD0 shows a stability diagram comparable
to nT0=ND0�.

Moreover the more unstable values of the linear growth
rate located around flat deuterium density profile, are de-
creased by more than 20%. That is very high when compared
to the case of tritium impurities �even with nT0=nD0� that
showed very similar values of growth rates.

Tungsten exhibits very high values of charge and mass.
To describe its effect on the linear stability threshold of a
deuterium plasma, we choose to deal with a very high num-

ber of bags in order to have a satisfying description of the
tungsten equilibrium distribution function, according to the
large mass ratio �ND=500, NW=52�.

We draw in Fig. 4 the linear stability threshold �a� and
the linear growth rate �b� of a deuterium–tungsten plasma. A
typical effect is that the addition of tungsten gives rise to a
secondary lobe-like structure, distinct from the deuterium
relevant one. Such a separation is due to the fact that the
distribution function of the tungsten population is very dif-
ferent from the deuterium one, especially the thermal veloci-
ties.

In the lower part of Fig. 4, we use a constant temperature
gradient �T=−20k�. That value is assumed different from
previous cases �Figs. 3 and 2� in order to be in the second
lobe relative to the tungsten ions. We observe that the growth
rate related to the second lobe takes very low values �less
than 10% of the maximum value�, while the maximum of
growth rate very slowly decreases around �nD=0 values.

Whatever the species we consider, we obtain two differ-
ent responses of the plasma, depending on the values of den-
sity and temperature profiles.
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FIG. 2. �Color online� Impact of relative density of impurities on the linear
threshold of stability �a� in the plane of deuterium gradients ��nD, �T in k�

units�, and on the linear growth rate � �b� along the density gradient �nD for
a given value of the temperature gradient �T=−10k�. Case of a deuterium–
tritium plasma �ND=30, NT=24, amax D=5vTD, amax T=4.08vTD, �nT=0�.
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FIG. 3. �Color online� Impact of relative density of impurities on the linear
threshold of stability �a� in the plane of deuterium gradients ��n ,�T�, and on
the linear growth rate � �b� along the density gradient �nD for a given value
of the temperature gradient �T=−10k�. Case of a deuterium–carbon plasma
�ND=30, NC=12, amax D=5vTD, amax C=2.04vTD, �nC=0�.
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• The first one, very low, is a stabilization for small values of
density gradients �kinetic branch�.

• The second effect is an important destabilization of the
mixed plasma, in regions with high values of temperature
and density profiles �fluid branch�.

These two effects are in agreement with Ref. 12, where
authors used the assumption of a flat effective charge profile.
The increase of impurity relative ratio, and/or their charge
and mass leads to a stabilizing effect in the flat density limit
��nD ,�TD�0.0 in our stability diagrams�. On the other hand,
the low frequency branch, corresponding to the fluid branch
presents a destabilization of the plasma that is proportional to
the relative density and/or charge and mass of impurities.
Such a result has been observed by other authors.14

C. Effect of density gradient of impurities

We focus here on the case of a plasma composed of
deuterium and carbon. We study the effect of the radial pro-
file of impurities on the linear stability of the plasma in the

plane of the main ions parameters ��nD and �TD�. The tem-
perature profiles are equaled ��TC=�TD�, and we connect the
density gradients in any point of the stability diagram with a
fixed coefficient

�nC = ��nD. �21�

Under such a condition, the effective charge profile Eq.
�18�, is easily linked to the density gradient of deuterium
ions

�Zef f
=

ZDnD0ZCnC0�ZD − ZC��1 − ���nD

�ZDnD0 + ZCnC0�2�ZD
2 nD0 + ZC

2 nC0�
. �22�

We represent in Fig. 5 the linear stability diagram of a
plasma mixing deuterium and carbon. The ratio between the
density of deuterium and the density of carbon is constant.
We choose a relatively high value nC0=0.1nD0, in order to
enlight the effect of the carbon density peaking.

We observe that the stability threshold strongly depends
on the ratio between radial density gradients of deuterium
and carbon. In the case of a carbon density gradient lower
than the deuterium one �blue curve, �nC=0.1�nD�, the fluid
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FIG. 4. �Color online� Impact of relative density of impurities on the linear
threshold of stability �a� in the plane of deuterium gradients ��n ,�T� and on
the linear growth rate � �b� along the density gradient �nD for a given value
of the temperature gradient �T=−20k�. Case of a deuterium–tungsten plasma
�ND=500, NW=52, amaxD=5vTD, amax W=0.52vTD, �nW=0�.
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asymptote ��0.1�1� corresponding to large values of density
and temperature gradients is lower than the classical value
��=2�, and the unstable area globally increases.

On the contrary, if we consider an impurity profile more
peaked than the majority ions �red curve, �nC=10�nD�, we
observe an exactly opposite effect. The unstable area is much
less extended, and the asymptotic value of the � ratio is
clearly greater than the usual value ��10�13.2�.

Representing the linear growth rate in Fig. 5�b� enlight-
ens these facts: the density peaking of impurity decreases the
width of the unstable area, while it increases its maximum
value. In other terms, the density peaking of the impurities
stabilizes the slowly moving particles of the plasma associ-
ated to the fluid description, and destabilizes the fast ones.
Such results are in qualitative agreement with older
works.12,14

V. DISCUSSION

Linear stability of a multispecies plasma has been dis-
cussed within the framework of a cylindrical plasma column
�i.e., without magnetic curvature and/or magnetic gradient
effect�. An interesting feature of the water bag linear analysis
is that there is no ambiguity about the linear growth rates,
because the water bag dielectric function presents at the most
a unique couple of complex conjugate roots.

The stability threshold has been shown to depend on the
relative densities of species. The coupling induced by the
impurities can destabilize the plasma. The amplitude of de-
stabilization is proportional to the mass of impurity consid-
ered. In the case of a flat density profile of impurities, in-
creasing relative density of heavy ions destabilizes the
plasma in the fluid branch, while it stabilizes the plasma in
the central area associated to small density gradients �kinetic
branch�.

If the density profile is not flat, we have chosen to link it
to the main ions density profile by using a linear relation.
The relative peaking of impurities can stabilize �in the case
of impurities more peaked than the main ions� or destabilize
�with impurities more flat than main ions� the fluid branch of
the Ion Temperature Gradient �ITG� linear stability diagram.
The two antagonist effects shown with flat density by play-
ing on the density ratios are recovered: the peaking of impu-
rity density profile plays a role comparable to the increase of
their relative density or mass.

The next step for the gyrowater bag model is its exten-
sion to toroidal geometry, that is currently under
investigation.32 Another interesting feature would be to take
into account kinetic electrons with a water bag model, the
main difficulty would be the large discrepancy in thermal

velocities due to the ion to electron mass ratio. But such a
difficulty is not due to our particular choice of a water bag
representation.
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