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Abstract
The impact of large scale flows on turbulent transport in magnetized plasmas
is explored by means of various kinetic models. Zonal flows are found to
lead to a non-linear upshift of turbulent transport in a 3D kinetic model for
interchange turbulence. Such a transition is absent from fluid simulations,
performed with the same numerical tool, which also predict a much larger
transport. The discrepancy cannot be explained by zonal flows only, despite
they being overdamped in fluids. Indeed, some difference remains, although
reduced, when they are artificially suppressed. Zonal flows are also reported to
trigger transport barriers in a 4D drift-kinetic model for slab ion temperature
gradient (ITG) turbulence. The density gradient acts as a source drive for
zonal flows, while their curvature back stabilizes the turbulence. Finally,
5D simulations of toroidal ITG modes with the global and full-f GYSELA
code require the equilibrium density function to depend on the motion invariants
only. If not, the generated strong mean flows can completely quench turbulent
transport.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In strongly magnetized plasmas such as tokamak plasmas, turbulence develops on micro-
scales in the transverse direction, typically of the order of a few Larmor radii. However,
its non-linear saturation is largely governed by large scale flows, which can capture most of
the turbulent energy without driving any transverse transport [1]. Obviously, such a regime is
highly desirable in the quest for fusion energy. As such, it deserves much theoretical, numerical
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(see [2] and references therein) and experimental [3] attention. Such flows can be generated by
the turbulence itself via non-linear coupling, the so-called zonal flows, or by the equilibrium,
leading to mean flows. This paper contributes to this effort by means of kinetic and fluid
simulations and analytical predictions. The driving mechanism and the impact on turbulence
of the large scale flows is explored, including zonal flows, geodesic acoustic modes (GAMs)
and mean flows.

In section 2, kinetic and fluid non-linear simulations of the interchange instability are
compared, using the same numerical code. The fluid simulations always overestimate the
turbulent transport, even when the zonal flows are artificially suppressed. Section 3 details
the role of zonal flows in transport barriers characterized by a large density gradient in a
drift-kinetic model for slab ion temperature gradient (ITG) turbulence. Finally, if the initial
state does not depend on the motion invariants only—that is to say, if it does not correspond
to a true stationary equilibrium, large scale stationary flows are shown to develop in a full
f gyrokinetic model for toroidal ITG turbulence, section 4. At later times, the system
self-consistently develops a parallel current to counterbalance this vertical charge separation
governed by the curvature drift. In this framework, any error in the conservation of the
motion invariants results in the generation of equilibrium poloidal flows. Since these flows
decay to a non-vanishing magnitude in the collisionless limit, they may prevent the onset of
turbulence.

2. Reduced 3D simulations: kinetic versus fluid descriptions

The fluid description of turbulent transport in magnetized plasmas requires less numerical
resources, both in CPU-time and memory, than the kinetic approach. However, fundamental
aspects of plasma physics, namely resonant wave–particle interactions, cannot be properly
accounted for by fluid theories. Also, collisional closures of the fluid hierarchy lead to
an overdamping of zonal flows [4], which are known to govern the turbulent transport
magnitude [1]. As a result, fluid models overestimate both the linear instability threshold and
the effective transport coefficients [5]. The present section addresses these issues in a reduced
electrostatic model for interchange turbulence. Comparing fluid and kinetic descriptions of the
same instability up to the non-linear regime provides a powerful way of testing the efficiency
of fluid closures. Using the same simulation code allows one to exclude any discrepancy due
to the numerics.

The model. Let us consider a magnetized plasma in cylindrical geometry, such that the
magnetic field B is along the angular direction. Assume the perturbations are constant along
the field lines—flute assumption, the system is 2D in space, the radial and azimuthal directions.
Only periodic solutions in the latter direction are retained. In the limit of large wavelengths
as compared with the thermal ion Larmor radius, namely k⊥ρi � 1, the drift-kinetic model is
further reduced to 1D-in-energy, by only considering v‖ = 0 ions. In this case, the curvature
drift vB×∇B is proportional to the kinetic energy E ∝ v2

⊥. When restricting the analysis to
an annulus of small extension as compared with its mean radius R0, �vB×∇B ≡ Evd �ey can be
taken constant in space, and the geometry becomes cartesian. Here, vd = ρi/R0 and E is
normalized to the constant temperature T0. In the electrostatic regime, the ions are governed
by the following kinetic system:

∂tf + [φ, f ] + vdE∂yf = 0, (1)

φ − 〈φ〉 − ∇2
⊥φ = 1

neq

∫ ∞

0
f dE − 1. (2)
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Figure 1. Linear stability diagram of the interchange instability.

Electrons are assumed adiabatic. 〈φ〉 denotes the average over y. Here, x and y refer to the
radial and azimuthal coordinates, respectively, normalized to ρs = √

mT0/eB0. T0 and B0 are
constant temperature and magnetic field, respectively. The Poisson brackets, accounting for
the advection by the �E × �B drift, are defined by [φ, f ] = ∂xφ∂yf − ∂yφ∂xf . The time is
normalized to ω−1

ci = m/eB0.
When restricting to the first two fluid moments, namely, density n = ∫ ∞

0 f dE and the
pressure p = ∫ ∞

0 f E dE, the fluid version of the kinetic system equations (1) and (2) reads as
follows:

∂tn + [φ, n] + vd∂yp = ∇⊥.(D∇⊥n), (3)

∂tp + [φ, p] + vd∂yQ = ∇⊥.(D∇⊥p). (4)

Here, due to the adiabaticity of the electrons, the density relates to the potential: n =
neq(1 + φ − 〈φ〉 − ∇2

⊥φ). Q ≡ ∫
f E2 dE represents the heat flux. Simple closures can

be envisaged, leading to Q ∝ pT . Various values of the coefficient of proportionality ϒ can
be derived. They correspond either to a vanishing flux (ϒ = 0) or to the vanishing departure
of the energy to the temperature

∫
(E − T )2f dE = 0 (ϒ = 1) or finally to the maxwellian

approximation
∫
(f − fM)E2 dE = 0 (ϒ = 2), where fM is the equilibrium maxwellian

distribution function fM = (neq/Teq) exp{−E/Teq}. These closures do not account for
any kinetic effect [6]. Conversely, small scales are damped through the ad hoc diffusive
coefficient D(x), as will be detailed in the linear analysis. For stability reasons, D is given
a large magnitude in buffer regions close to both radial boundaries. This issue is extensively
discussed in [7].

Linear analysis. The kinetic system equations (1) and (2) exhibits a linear instability threshold
when perturbed around an initial maxwellian equilibrium fM. Introducing the drift frequency
ωd = kyTeqvd , the dispersion relationship is as follows:

1 +
∫ ∞

0
dζe−ζ ω∗

n + ω∗
T (ζ − 1)

ω − ωdζ
= 0. (5)

The corresponding linear stability diagram is plotted in figure 1. For a vanishing equilibrium
density gradient, it reads ω

∗,crit
T ,kin = (1 + k2

⊥)ωd. The diamagnetic frequency is ω∗
T = kyTeq/LT ,
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Figure 2. Mean turbulent heat flux qT = 〈T̃ ṽEx〉 at mid-radius as a function of the departure from
the equilibrium, namely ω∗

T /ω
∗,crit
T − 1.

with LT the temperature gradient length (with the axis convention, L−1
T ≡ d log(Teq)/dx is

positive). The asymmetry with regard to the vertical axis is governed by the resonance condition
equation (5), which imposesω/ωd � 0. The horizontal branch corresponds to the resonant part.
As far as the fluid threshold is concerned, it depends on the closure assumption. Three cases are
plotted in figure 1. As expected, they mimic the non-resonant parabolic branch of the kinetic
system. Ultimately, the relative discrepancy between fluid and kinetic thresholds vanishes for
ω∗

n → +∞. For ω∗
n = 0, the inviscid fluid threshold is ω

∗,crit
T ,fl = ϒ(ϒ − 1)(1 + k2

⊥)ωd.

Fluid equivalent to f at two energies. So as to perform fine comparisons between fluid
and kinetic results, and especially to rule out any discrepancy due to the numerics, the same
numerical code is used, based on the semi-Lagrangian scheme [8]. In this framework, it is
interesting to note that equations (3) and (4) can be recast in a system involving two monokinetic
distribution functions f±(x, y, t), at the energy E± = T0 ± ε, respectively. Here, ε is a
parameter, while density and pressure are defined by n ≡ f+ +f− and p ≡ E+f+ +E−f−. The
new system is the following:

∂tf± + [φ, f±] + vdE±∂yf± = ∇⊥.(D∇⊥f±). (6)

Such a system leads to the fluid system equations (3) and (4) with the following closure:
Q = pT + 4ε2f+f−/n. It is equivalent to ϒ = 1 in the limit ε = 0. At ω∗

n = 0, the linear
threshold is given by ω

∗,crit
T ,f ± = (1 + k2

⊥)(ε2ωd + ((DTeq)
2k4

⊥/ωd)).

Non-linear comparison. The fluid parameters D and ε are chosen so as to lead to similar
linear properties as for the kinetic system, namely the same threshold and unstable k-spectrum.
In this case, the maximum fluid growth rate is twice the one of the kinetic simulation. These
two cases are then compared in the non-linear regime. Fluctuations are zero at both radial ends,
such that the temperature is prescribed at these boundaries. The simulations are performed
with an initial linear temperature profile, the density profile being flat. The full symbols in
figure 2 show the mean turbulent heat flux qT = 〈T̃ ṽEx〉 at the centre of the simulation box,
with ṽEx ≡ −∂yφ̃, as a function of the departure from the linear threshold. This graph is
analogous to the one reported in [5], with the additional constraint that all data points are
obtained here with the same numerical code. Two main results are evident from the graph.
First, whatever the driving term amplitude, fluid simulations always predict larger turbulent
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Figure 3. Mean temperature profiles for the four runs at ω∗
T /ω

∗,crit
T ≈ 4 (cf figure 2).

transport than kinetic ones, by orders of magnitudes, although the discrepancy reduces at large
forcing. Second, the kinetic transport exhibits a sharp transition at about ω∗

T /ω
∗,crit
T ,kin ≈ 4. This

sharp increase is governed by an increase in both the magnitude and the phase shift of the
fluctuations. Below this transition point, the turbulent flux is almost vanishing, most of the
turbulent energy being captured by the zonal flows. This behaviour is reminiscent of the non-
linear threshold observed in [5], sometimes referred to as the Dimits’upshift. Surprisingly,
there is no significant variation in the zonal flows magnitude, or in their shearing, at this
transition. Conversely, when the transition occurs, the shearing rate ωE governed by the
zonal flows becomes of the same order of magnitude as the growth rate of the most unstable
mode in the system [9]. Although this does not provide an explanation, such a result looks
consistent with formulae predicting turbulence suppression when γmax/ωE becomes of the
order of unity [10].

While zonal flows remain undamped in the present collisionless kinetic model, they are
linearly damped by the diffusive coefficient in the fluid approach, equation (6). Therefore, they
provide a plausible explanation for the observed discrepancy. In this framework, another set
of fluid and kinetic simulations has been performed, with zonal modes artificially suppressed.
This allows one to discriminate between zonal flow effects and other kinetic peculiarities. These
are the open symbols in figure 2. As expected, the turbulent transport increases significantly,
by orders of magnitudes in kinetics and factors in fluids. Also, the kinetic turbulent flux
increases smoothly, without any sharp transition in this case. It is worth noting that, for a
given transport magnitude, kinetic and fluid simulations lead to similar temperature profiles,
figure 3. However, there is still some discrepancy between the magnitude of the transport in
kinetic and fluid simulations—although reduced as compared with the case with zonal flows,
the latter still overestimating the turbulence. Therefore, the mismatch between kinetic and
fluid predictions cannot be attributed to the sole zonal flow dynamics.

Projecting the distribution function onto the ortho-normal basis of the Laguerre
polynomials Lp(ζ ) allows one to quantify its departure from the maxwellian: f (x, y, E, t) =∑∞

p=0 f̂p(x, y, t)Lp(ζ )e−ζ , with f̂p ≡ ∫ ∞
0 Lpf dζ . The number of fluid moments required

to properly account for the deformation of the distribution function in the non-linear regime
can then be estimated. Indeed, any fluid moment of order k is uniquely decomposed into
the polynomials Lp�k [7]. The coefficients f̂p, plotted in figure 4, are only slowly decaying
towards zero. Consequently, a large number of fluid moments would be required, unless an
appropriate closure succeeds in accounting for these high order moments. Since this slow
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Figure 4. Coefficients of the projection onto Laguerre polynomials of the distribution function in
the turbulent regime. Open symbols refer to a run without zonal flows.

decay is also observed in the absence of zonal flows, this can explain why kinetic and fluid
results still differ in this regime.

3. Role of zonal flows in transport barriers

Tokamak plasmas can spontaneously bifurcate towards highly confined regimes, characterized
by radially localized regions with weak turbulent transport [12]. According to standard
theories, these transport barriers develop when the poloidal velocity shear is sufficiently
large [10] or when the magnetic shear is either negative or vanishing [13, 14]. The role of
density gradient is investigated non-linearly in the 4D version of the GYSELA code [8],
describing the slab branch of ITG turbulence [11]. As reported in [15], the temperature
profile tends to relax when the initial density profile is flat, leading to a low confinement
regime. Conversely, a transport barrier can spontaneously develop for a peaked initial density
profile. It is well known that a large density gradient is linearly stabilizing for slab ITG modes.
However this is not the main ingredient here. Indeed zonal flows appear to play a crucial role.
The difference in behaviour between peaked and flat density profiles can be understood by
analysing the mechanism of turbulent flow generation in the presence of a density gradient.
The driving source of zonal flows, namely the Reynolds stress, is found to depend sensitively
on the density gradient. Indeed, a quasi-linear analysis shows that a small density gradient
length leads to large values of the stress tensor. Such a process might help in understanding
those barriers characterized by large density gradients [16].

Last but not least, the barrier is found to locate at an extremum of flow curvature, rather than
at flow shear as usually reported. This property is recovered by analysing the stability in the
presence of a slowly varying shear flow. The radial structure of a mode obeys a Schrödinger-like
equation, the effective potential depending on the flow curvature. Perturbative theory shows
that, when the curvature of zonal flows is located at the maximum of the temperature gradient
and is large enough, the potential exhibits an anti-well structure that expels the modes from this
region. The gradient can then steepen and possibly lead to a transport barrier. Understanding
the saturation mechanism of such a process, and especially predicting the width of the barrier,
remains a challenging issue. Finally, the Kelvin–Helmoltz instability cannot be advocated in
the dynamics. Indeed, the fluctuations die away when the system is forced with similar poloidal
flows to those observed in the non-linear runs, but vanishing diamagnetic frequencies.
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4. Global full-f simulations of toroidal ITG turbulence

There is a rich variety of 5D gyrokinetic codes to tackle the problem of core turbulent transport
in weakly collisional tokamak plasmas. They are either global, allowing for the physics of
large scale events, or local using flux tube geometry allowing for small scale structure studies.
The numerical scheme is either Eulerian [17], known to be dissipative, or Lagrangian such
as in particle-in-cell codes [1, 18]. The latter suffer from noise [19] that can be minimized
by optimized loading techniques [20]. Only the departure from the equilibrium δf is usually
modelled for this reason. In the GYSELA code, the full distribution function is evolved in
the global geometry, using the semi-Lagrangian scheme with moderate dissipation and weak
noise. With such a full-f model, where no scale separation is assumed, flux driven systems
can be studied [21].

The GYSELA code models toroidal ITG turbulence in 5D. Using the normalization of
previous sections, the ion distribution function obeys the following system:

∂tf + (�vE + �vg). �∇⊥f + v‖∇‖f + v̇‖∂v‖f = 0, (7)

1

Te
(φ − 〈φ〉) − 1

n0

�∇⊥.(n0 �∇⊥φ) = 1

n0

∫
d
J.(f − feq), (8)

with �vE = (�b/B) × �∇J.φ, �vg = (v2
‖/B + µ)�b × ( �∇B/B) and v̇‖ = −∇‖(J.φ) − µ∇‖B +

v‖�vE.( �∇B/B).
The gyro-average operator J is approximated by a second order Padé fraction [7]. The

phase-space volume element is d
 ≡ B dµ dv‖, and ∇‖ = (1/R0)(∂ϕ+(1/q)∂θ ). The magnetic
equilibrium is circular, with B = R0/R and �b = |�b|−1(êϕ + (r/qR0)êθ ). Three parameters
govern the safety factor: q = q0 +δq(r/a)αq . The normalized equilibrium distribution function
is feq = neq/(

√
2π T

3/2
eq ) exp{−(v2

‖/2 + µB)/Teq}.
Choosing feq as function of the motion invariants is crucial for these full-f simulations.

Breaking this rule leads to the development of large scale steady flows, which prevent the
onset of turbulence, consistently with previous observations [22, 23]. In particular, the
equilibrium profiles neq and Teq cannot depend on the magnetic flux ψ only. Conversely,
one can construct an effective normalized radius r̄ out of the normalized canonical toroidal
momentum Pϕ ≡ ψ + Rvϕ . One possible and convenient choice, which only depends on
the three motion invariants of the system, namely the energy, the toroidal momentum and the
adiabatic invariant, is r̄ = rp − (qp/rp){ψ̄(r) − ψ̄(rp) − (Rv‖ − R0v̄‖)}. The subscript p

refers to the centre of the radial box, and ψ̄ ≡ − ∫ r

0 (r dr/q). Finally, v̄‖ = sign(v‖)vH(v),
with v ≡ {2(E − µBmax)}1/2 and the Heaviside function H aims at subtracting the mean
parallel velocity of the passing ions only. Such a definition has the advantage of minimizing
the difference between r̄ and the geometrical radius r . Interestingly, introducing r̄ makes
feq asymmetric in v‖. The resulting parallel ion flow counter-balances the vertical charge
separation due to the curvature drift �vg . It is analogous to the Pfirsch–Schlüter current.
In the absence of electric field, any solution of equations (7) and (8) exhibits such a mean
parallel flow [24]. Numerical simulations show that such a parallel current self-consistently
develops when starting from an initial distribution function symmetric in v‖. It follows the
build-up of an essentially up–down electric potential, which is governed by the vertical
charge separation. In addition, any default in the conservation of the motion invariants
leads to the generation of spurious equilibrium flows, i.e. (m, n) = (0, 0). Such mean
flows do not vanish towards zero, as predicted theoretically [4]. Conversely, the initial



B186 Y Sarazin et al

15x10
-3

10

5

0

-5

M
ea

n 
el

ec
tr

ic
 p

ot
en

ti
al

  〈
φ〉

θ,
ϕ

3000200010000
Time × ωci

Theoretical prediction

Figure 5. The initial (m, n) = (0, 0) flow decays towards the predicted theoretical value with the
GAM frequency.

Potential (t = 7000/ωc)

Figure 6. Typical poloidal cross-section of the electric potential in the turbulent regime. The time
averaged (m, n) = (0, 0) component has been subtracted.

flow magnitude is shielded by finite orbit width effects, so that the flow decays towards the
non-vanishing theoretical value, namely 〈vθ 〉∞ = 〈vθ 〉0(1 + 1.6q2/ε1/2)−1, as exemplified
in figure 5. As expected, this decay exhibits transitory oscillations at the GAM frequency
ωGAM = {7/2 + Te + Ti}1/2/R.

In this framework, and since large magnitude mean flows can prevent the onset of
turbulence, it is critical for full-f codes to ensure good conservation properties of the motion
invariants, so as to avoid any source of spurious 〈vθ 〉. The good conservation properties of the
adopted numerical scheme allows for the development of turbulence. Figure 6 shows a snapshot
of the electric potential in the turbulent regime. It exhibits the characteristic ballooning shape
in the low field side, while the typical structure size is of the order of a few ion Larmor radii.
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5. Conclusion

Large scale flows are known to strongly govern turbulence and transport in the kinetic regime.
They may be generated by the turbulence itself, the zonal flows, or by the equilibrium, leading
to mean flows. The case of zonal flows is examined in detail. Strong density gradients are
found to favour their excitation by increasing the magnitude of the Reynolds stress. Conversely
to standard theories, the curvature of zonal flows is here the key stabilizing parameter, possibly
by repelling the unstable modes from the regions of maximum temperature gradient. Such
a process can even lead to transport barriers. Since zonal flows are overdamped in fluid
simulations, they provide a plausible explanation for the larger turbulent transport as compared
with kinetic predictions. Using the same numerical tool for both descriptions of the interchange
instability, we show however that zonal flows cannot account for the whole discrepancy. The
large number of fluid moments required to describe the kinetic results is advocated. Finally,
strong mean flows are observed when the equilibrium distribution function does not depend
on the motion invariants only or when these are not properly conserved. In this framework,
the good conservation properties of the full-f gyrokinetic code GYSELA is highly beneficial.
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