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A subgrid-scale spectral model of rotating turbulent flows is tested against direct numerical
simulations (DNSs). The case of Taylor—Green forcing is considered, a configuration that mimics
the flow between two counter-rotating disks as often used in the laboratory. Computations are
performed for moderate rotation down to Rossby numbers of 0.03, as can be encountered in the
Earth’s atmosphere. We provide several measures of the degree of anisotropy of the small scales and
conclude that an isotropic model may suffice at moderate Rossby number. The model, developed
previously [J. Baerenzung, H. Politano, Y. Ponty, and A. Pouquet, “Spectral modeling of turbulent
flows and the role of helicity,” Phys. Rev. E 77, 046303 (2008)], incorporates eddy viscosity and
eddy noise that depend dynamically on the index of the energy spectrum. We show that the model
reproduces satisfactorily all large-scale properties of the DNS up to Reynolds numbers of ~10* and
for long times after the onset of the inverse cascade of energy; it is also shown to behave better than
either the Chollet-Lesieur eddy viscosity model [J. P. Chollet and M. Lesieur, ‘“Parametrization of
small scales of three-dimensional isotropic turbulence utilizing spectral closures,” J. Atmos. Sci. 38,

2747 (1981)] or an under-resolved DNS. © 2010 American Institute of Physics.

[doi:10.1063/1.3292008]

I. INTRODUCTION

Rotating flows are commonplace in nature, the influ-
ence of rotation being measured by the Rossby number
Ro=U,y/2LyQ}, with U, being the rms velocity, Ly=2m/k,
being a characteristic length scale of the flow (associated, for
example, with the forcing), and () being the rotation rate.
The Rossby number of the atmosphere is ~0.1, and in the
ocean it can be as small as 1073, Assuming a constant rota-
tion rate, the Coriolis force that appears in the equations
leads to the emergence of wave motions, which, at small
enough Rossby number, can be thought as dominating the
dynamics. However, at high Reynolds number, Re=UyL,/ v,
with v being the viscosity, turbulent eddies interact with
waves, and inertial waves interact nonlinearly (in particular
through resonances) so that the dynamics becomes complex.
The Rossby number can be viewed in this way: as the ratio
of the characteristic time of an inertial wave, 7~ 1/}, to
the characteristic time of an eddy, 7 ~ Lo/ Uy; when Ro is
small, the waves are rapid and may dominate the dynamics.

Many studies have been devoted to the exploration of
rotating turbulence, experimental as well as numerical and
theoretical (see, e.g., Ref. 1 and references therein). One ex-
pects the flow to become quasibidimensional under the influ-
ence of strong rotation, but recent studies show that the dy-
namics is more subtle, with three-dimensional eddies
possibly prevailing at small scales. The case of small Rossby
number can be studied using either weak turbulence” or an-
isotropic extensions of closure models, such as the eddy
damped quasinormal Markovian (EDQNM hereafter) ap-
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proximation. In such approaches, the closure is obtained ei-
ther by using resonances or by modeling the damping of
fourth-order cumulants (nonzero for a non-Gaussian field) by
a term linear in third-order moments; dimensionally, the con-
stant of proportionality is the inverse of a time, or a rate wu,
taken in EDQNM to be the rates known to be significant in
the physics of the problem. In the simplest case of nonrotat-
ing isotropic and homogeneous turbulence, these rates are
proportional to the inverse of the local eddy turn-over time
7,=€/U, and of the viscous time 7~ €?/v, expressed in
terms of the scale € and the velocity at that scale U,. In the
rotating case, the wave frequency becomes relevant as well?
(see Ref. 4 for an early realization of this concept), and be-
cause of the anisotropic dispersion relation of inertial waves,
the model becomes anisotropic itself in terms of a spectral
energy distribution that is a function of the wavenumbers & |
and kj, where L and || refer to directions relative to the ro-
tation axis.

In a forced flow, high resolutions and long-time integra-
tions are needed in order to resolve the different spatial re-
gimes that may develop (e.g. inverse and direct cascades of
energysf9 and direct cascades of helicitylo), as well as the
short-time wave regime versus the long-time turbulent re-
gime. Modeling becomes a necessity in order to reach an
understanding of these flows at high Reynolds numbers as
what occurs in astrophysics and geophysics. Using a closure
set of integrodifferential equations for the energy spectra (see
Ref. 11 and references therein) or the weak turbulence
framework developed in Ref. 2 is a powerful tool for suffi-
ciently small Rossby number, but two difficulties have to be
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overcome. On the one hand, such techniques are valid in the
limit Ro—0, and yet the flows one tries to model may
present inhomogeneities (in space, in time, and in scale) that
are affected differently by the rotation. On the other hand,
the complexity of the so-called weak turbulence kinetic
equations and in particular their dependence on the angle
between the wavevector (in a Fourier decomposition) and the
rotation axis (to be taken as the z axis in what follows) ne-
cessitates a regular discretization in angle as opposed to an
exponential discretization in wavenumber, the latter working
because of the self-similarity of the known (power law) spec-
tral solutions to the equations. This angular dependency
makes the closure of weak turbulence equations difficult and
costly to use (see however Ref. 11). Another model, based on
the dynamics of the second-order structure function of the
velocity field and without adjustment of the model
coefﬁcients,]2 can be built for anisotropic flows; it shows
reasonable agreement with data when compared to rotating
decaying flows in the absence of viscosity.

As previously mentioned, it has been shown by several
authors that the expected bidimensionalization of the flow is
only realized partially, and small-scale eddies may not follow
such dynamics; in this case, one expects the small-scale ed-
dies [i.e., those that are to be modeled in an large eddy simu-
lation (LES) approach] to be isotropic to some extent. It may
thus be envisageable to use, as a model of small unresolved
scales, a methodology developed for isotropic flows. It is in
this context that we extend the study of the spectral model
derived in Ref. 13 to the case of forced rotating flows, com-
paring the results of the model to direct numerical simula-
tions (DNSs) (Ref. 9) for forced rotating turbulence down to
Ro~0.03. The model is based on the EDQNM closure to
compute eddy viscosity and eddy noise. It adapts dynami-
cally to the inertial index of the energy spectrum, and as a
result it is well suited to study rotating turbulence for which
the scaling laws are not well known, and may change with
the Rossby number, or even (at fixed Rossby number) as the
system evolves and an inverse cascade develops. The next
section poses the problem in terms of equations and models
and gives the numerical setup. We then describe the
results for the isotropic LES model, examining energetic bal-
ance, measures of anisotropy, structures, spectra, and higher-
order statistics; we also present in Sec. IV D an intercom-
parison with the Chollet-Lesieur (CL) model'* as well as
with an under-resolved DNS. Finally, Sec. V presents our
conclusions.

Il. EQUATIONS AND SPECTRAL MODELING
A. Primitive equations

The dynamical equations can be written in terms of the
Fourier coefficients of the velocity field defined as usual as

v(k,t):JJfoc v(x,1)e ™ *dx. (1)

In the rotating frame and including the centrifugal force in
the pressure term, the equations are
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)

together with incompressibility (k-v=0); v is the kinematic
viscosity, F(K) is the Fourier transform of the forcing func-
tion, P,g=0,5—kokp/ k? is the projection operator, () is the
rotation rate, and t(k,?) is a bilinear operator for the kinetic
energy transfer written as

ta(kst) == lPaB(k)ky E Uﬁ’(p’t)v'y(qst)' (3)
p+q=k

Note that P,z is a projector that allows us to take the
pressure term of the velocity equation into account via a
Poisson formulation and ensures that the velocity remains
divergence-free including in the presence of rotation. Finally
note that the total energy E;=(v>/2) and the helicity (v- )
(with @=V X v) are invariants of the three-dimensional equa-
tions in the ideal case, i.e., in the absence of viscous dissi-
pation (v=0). Besides the Reynolds number and the Rossby
number defined previously, one can also introduce dimen-
sionless numbers based on small scales as produced by the
turbulent flow; the simplest way to do that traditionally is to
base such parameters on the vorticity through the Taylor
scale N defined as

~ JE(k)dk \'"*
7‘"27T< fE(k)kzdk> ’ @

the Taylor Reynolds number is then

Uy
R)\=L.

One can also define a quantity called the micro-Rossby
number,8 which is useful to determine the regime of the
small-scale turbulence and the slope of the energy
spectrum.15 It reads

wrms
Ro,, = 0 (5)
where w,,, stands for the rms vorticity; note that it is pro-
portional to the Rossby number evaluated at the Taylor scale.
The DNSs (runs Id, IId, and II1d, respectively; see Table I)
used in this paper in order to assess the validity of the LES
are those labeled A3, A4, and A6, respectively, in Ref. 9
(hereafter, Paper I). For all these runs, the forcing function is
a Taylor—-Green (TG hereafter) vortex with amplitude F,, and
with ky=2,

F .= F, sin(kyx)cos(koy)cos(kyz),

(6)
F, = - F cos(kox)sin(kgy)cos(koz),

with F,=0; the third component of the forcing is equal to
zero, but the velocity in the z-direction grows through non-
linear interactions. Moreover, the forcing injects no energy in
modes with k,=0, and as a result any amplification observed
in strongly rotating cases must be only due to a cascade
process. Finally, the resulting flow has a small spectral an-
isotropy with slightly more energy in the z direction,” an
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TABLE 1. Parameters of the simulations: resolution N3, Rossby number Ro
based on the forcing scale L, and measured at the onset of the inverse
energy cascade for run I, Taylor microscale N\ and integral scale L, rms
velocity Uy=(v*)!'"2, integral Reynolds number Re=U,L/v, and eddy turn-
over time 7y =Ly/ Uy; t,, is the final time of the computation. Note that the
r label in the nomenclature of the runs stands for the reduced data obtained
by filtering in spectral space to 64° points the original 256° DNS data and
that N, L, Re, and 7y are evaluated at the final time of the simulation for run
I, which undergoes an inverse cascade, whereas they are averaged during the
stationary phase of simulations II and III, which are at higher Rossby num-
bers and do not undergo any significant inverse energy transfer.

N Ro N L U, Re ™L Im

Id DNS 256 0.03 2.06 571 453 12920 126 157
Ir Filtered DNS 64  --- 237 571 453 12927 1.26
IL LES 64 .-+ 207 559 4.60 12857 122
Id DNS 256 0.17 0.65 144 1.01 729 141 45
IIr  Filtered DNS 64 --- 0.73 145 1.01 732 144
1L LES 64 -+ 076 149 1.09 813 136
111d DNS 256 035 0.77 147 1.07 786 136 45
IIr  Filtered DNS 64 .-+ 0.72 141 096 678 146
HIL LES 64 -+ 075 142 098 695 145

effect that is the opposite of the tendency toward two-
dimensionalization that develops in rotating turbulence.

The numerical computations using the above forcing are
thus either DNSs of the Navier-Stokes equations with 256
grid points or LESs on grids of 64° points; the axis of rota-
tion is the z-axis, and the flow is initially at rest. Note that the
TG flow is widely used in experimental devices to study
turbulence and its effect on the generation of magnetic
fields,'® even though the TG vortex has no net helicity due to
its symmetries; because of this latter property, the LES
model used here will not include the helicity eddy viscosity
derived in Ref. 13 (Paper II hereafter). The rms velocity to
determine the turn-over time is measured in the turbulent
steady state as stated previously, at the onset of the inverse
cascade at low Rossby number, and the value given for Ro is
taken at that same time. Note that the amplitude of the forc-
ing F, in each simulation is increased with ) to have
Uy=1 in all the runs before the inverse cascade sets in (see
Ref. 9 for more details on the DNS runs).

Finally, as the issue of the direction of the energy cas-
cade (direct and/or inverse) is an important issue in rotating
turbulence, a useful diagnostic in this context is to examine
the behavior of the skewness (normalized third-order mo-
ment corresponding to energy transfer) based on the velocity
derivative and evaluated on a distance r, dv(r) (or on the
vertical vorticity w_; see, e.g., Ref. 6), namely,

(00,

= Ly

)

B. The isotropic EDQNM closure

The LES model derived in Ref. 13 for nonrotating
Navier—Stokes flows is now extended to the rotating case in
its nonhelical version (LES-P of Paper II). In other words,
intrinsic variations in the helicity spectra are not taken into
account in the present work in the evaluation of the transport
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coefficients used in our LES model. The first step of the
model is to employ a spectral filtering of the equations; this
operation consists in truncating all velocity components at
wavevectors k such that |k|=k>k,, where k, is a so-called
cutoff wave number. Since the scales associated with k. are
presumably much larger than the actual dissipative small
scales in a high Reynolds number flow, one needs to model
the transfer between the large (resolved) scales and the small
(subgrid unresolved) scales of the flow. In order to approxi-
mate these transfer terms, the behavior of the energy spec-
trum after the cutoff wave number has to be estimated. We
therefore define an intermediate range lying between k. and
3k., where the energy spectrum is assumed to present a
power-law behavior possibly followed by an exponential
decrease,

EY(k,1) = ESk e, k, <k < 3k,. (8)
The coefficients @, &y, and E; are computed at each time
step through a mean square fit of the resolved energy spec-
trum. In a second step, one can write the following model
equations (omitting forcing):

(9, + (v(klk,.1) + V) v (K, 1)
=1, (k.1) = 2QP e, 11K, 1), 9)

where the < symbol indicates that the nonlinear transfer
terms are integrated over a truncated domain defined such
that p+q=k with 256 and |q|=¢<k,. The eddy viscosity
v(k|k,,t) is expressed as

v(klk,t) = - ff

The function SEZ(k, p.q,t) corresponds to the so-called
absorption term [linear in the energy spectrum E(k,7)] in the
EDQNM nonlinear transfer, lending itself in particular to an
expression for the turbulent eddy viscosity, as is well known;
A~ is the integration domain over (k, p, and q) triangles
such that p and/or g are larger than k., and both p and g are
smaller than 3k,.

Finally, to take into account the effect of the emission
(eddy noise) term involved in the EDQNM nonlinear transfer
[s El(k’ p.q.1)], we use a reconstruction field procedure,
which enables us to partly rebuild the phase relationships
between the three spectral components of the velocity field,
as explained in detail in Paper I.” The functions
Sg,(k.p.q.t) and Sg,(k,p.q.1) appearing in the transport co-
efficients used in the LES are written for completion in the
Appendix. Note that although isotropic, the subgrid model
we use in this paper has an important feature: it adjusts dy-
namically to the energy spectrum instead of assuming a
given spectral law, usually the classical Kolmogorov law,
E(k)~ k™. This allows for the exploration of flows for
which a theory to predict spectral indices is not available.
Also note that the reconstruction procedure differs as well
from traditional implementations insofar as it tries to keep
some of the phase information of the small scales.

Sk, (k.p.q.1)

Sl g
O 5125V (k) P
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lll. ROTATION AND ISOTROPY

One of the effects of rotation on a flow is to induce
anisotropy, as in the formation of large-scale columnar vor-
tices. In that light, we explore in this section the anisotropic
properties of a DNS at low Rossby number to see whether or
not it is relevant to use a model based on isotropic assump-
tions to simulate a flow subjected to rotation. The LES model
we propose to use approximates, as is customary, the transfer
from the large to the small scales, but most of the modeled
interactions are between small scales because of the value of
k. (chosen to be in all cases larger than the energy injection
wavenumber) and because most of the modes in a turbulent
flow are in the small scales (recall that the number of modes
in a given isotropic shell k; varies as k?).

We therefore investigate now the properties of the small
scales of flows forced with the TG vortex [see Eq. (6)] and
subjected to rotation, with k;=2 and at a Rossby number
Ro=0.03; we perform a DNS on a grid of 256 points and
with the flow being initially at rest. To measure anisotropy,
we introduce two different quantities, a spatial one and a
spectral one, denoted respectively I” (for dimensional) and
I€ (for Craya;17 see also Ref. 18). Other measures of
anisotropylgf21 are discussed later in Sec. IV B. The spatial
coefficient /P evaluates the averaged ratio between the inten-
sity of the velocity in the perpendicular direction V, (x,7)
and in the parallel direction V|(x,7), with L, |l referring to the
z-axis of rotation. The velocity field can be expressed as a
function of these two components as v(x,7)=V|(x,1)e,
+V(x,1), where e, is the unit vector associated to the axis
of rotation and V | (x,1) is the velocity field projected on the
plane perpendicular to e;.

The spatial anisotropy coefficient therefore reads

V, (x,1)

P=
‘/H(X’t)

(10)
The spectral coefficient I is computed as in Ref. 22:
for each wavevector k, an orthonormal reference frame is
defined as [k/|k|, e;(k)/|e,(k)|, and e,(k)/|e,(k)|], with
e;(k)=k Xz and e,(k)=k X e,(k), where z is the vertical unit
wavevector. In that frame, since the incompressibility condi-
tion yields k-v(k)=0, v(k) is only determined by its two
components, v(k) and v,(k). This second anisotropy coeffi-
cient is then defined as

1€ = (v, () Py vo(K) ). (11)

Both /P and I€ are such that they have unit values for fully
isotropic flows.

In Fig. 1 we plot the temporal evolution of the total
energy, the time being expressed in units of the eddy turn-
over time. Note that the long interval before turbulence fully
develops, as rotation is strong and the run was started from a
fluid at rest. Indeed, before the energy starts to grow at
t=90, one can observe a long transient during which the
energy displays damped oscillations in time (see Paper I and
Fig. 13 below). This transient is linked to the effect of rota-
tion, and its duration increases linearly with (), i.e., as the
inverse of the Rossby number. During this first stage, the
energy dissipation rate is small and the energy spectrum is
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FIG. 1. Temporal evolution of the energy for the flow in a DNS with
Ro=0.03; it displays two temporal phases, one dominated by wave interac-
tions and one, for ¢ larger than 100, corresponding to an inverse cascade of
energy.

very steep. Later, at =90, the enstrophy starts to grow and
the energy dissipation rate increases. The energy also grows
and an inverse cascade of energy develops. Turbulence sets
in and the small-scale energy spectrum builds up an inertial
range, with scaling close to ~k12 (see Paper I for more de-
tails). In order to quantify the importance of anisotropy at
what would be the subgrid scales in a LES of rotating flows,
we start by noting that the velocity (in particular when an
inverse cascade of energy develops at small enough Rossby
number) is dominated by the large scales, whereas the mod-
eling will occur in the small scales of the flow. In this con-
text, we introduce a band-pass filter of the DNS data in order
to concentrate the analysis on small-scale properties of the
flow. The filtered field is given in Fourier space by all the
velocity components at a wavevector k such that 32=< k|
=64; note that for this DNS using a classical 2/3 dealiasing
rule, the maximum wavenumber is k,,,=85. As a result, the
band-pass filter can be interpreted as preserving the small
scales of the direct cascade inertial range.

Figure 2 represents the time history of the /¢ and I”
anisotropy coefficients for the complete DNS (dashed line)
and for the band-pass filtered velocity fields of the flow at
Ro=0.03 (ovals). The Craya spectral coefficient I of the
complete DNS field remains close to unity during the whole
simulation, indicating that globally the flow is close to an
isotropic state. However, the directional coefficient 1P exhib-

- --DNS 256° 6 ---DNS 256° W
3 0 © ) : ¥
o o o| O Filtered DNS st o O Filtered DNS '?"‘.“'-‘
o -
o 4 05000 ’
5 o
Q ' 3
2 i '
; O 2'1 :
O 50500 : !
1NN e _ 600 0TI
3 1 1 1
@)° 50 , 100 50 (b)° 50 , 100 50

FIG. 2. Temporal evolution for a flow with Ro=0.03 of the Craya aniso-
tropy coefficient /€ (top) and the directional anisotropy coefficient /° (bot-
tom) [see Egs. (10) and (11)] for the full DNS velocity field (dashed line)
and the filtered-DNS field (ovals) defined as a band-pass filter for wavevec-
tors |K| €[32,64]. Note the sharp transition toward isotropy of the small
scales for =100, as both the direct and inverse turbulence cascades finally
develop.
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its three different regimes in the full DNS: a first phase be-
tween =0 and =40 during which it oscillates, with an am-
plitude that decreases with time, and a second phase between
t==40 and =90, with this coefficient remaining constant at a
value close to unity, meaning that no direction is privileged
in the flow. Finally, in a third and last phase, which begins
when the turbulence starts to develop, I” strongly increases
with time. This behavior is the signature of the generation of
intense columnar structures within the flow, within which the
perpendicular component of the velocity field dominates the
parallel one.

The behavior of these coefficients is rather different for
the filtered small-scale field, specially so for IP. Indeed, the
small scales are strongly anisotropic during the transient pe-
riod before the turbulence develops, with a maximum value
for I€ of the order of 3 (and 5 for I”). In this phase, the
filtered directional anisotropy coefficient clearly shows that
the perpendicular component of the velocity dominates the
parallel one and therefore that the small scales are mostly
bidimensional. At r=80, both coefficients drop rather
abruptly to a value of order unity, indicating that when the
turbulence develops, the small scales become isotropic, cor-
responding to a standard cascade of energy to small scales
(note that the scales for which the anisotropic and inverse
accumulation of energy takes place are eliminated by the
band-pass filter).

With this study of the small-scale behavior of a flow
subjected to moderate rotation, we see that an isotropic LES
model cannot be used to treat every phase of the flow. In-
deed, in the early transient phase, a model based on isotropic
assumptions will not be able to approximate properly the
transfer between the subgrid scales and the resolved scales
(this point is discussed further in Sec. V). We therefore de-
cide to only use our model to study the turbulent regime of
rotating flows, after 1=~ 100 in the case of Figs. 1 and 2.
Moreover, this is consistent with the fact that an isotropic
LES is designed to study turbulent flows and cannot handle
transitional (laminar and wave-dominated) flows. In the case
of rotating flows starting from a fluid at rest, turbulence only
develops after a transient time that depends linearly with the
magnitude of the rotation. Note that in many studies, simu-
lations of rotating flows are started from a previous turbulent
steady state, and in that case our LES should have no prob-
lem to adapt as the spectral index changes with the evolution
of the system.

Note that both coefficients I€ and I” are relevant quan-
tities in the context of this EDQNM-based LES: the behavior
of I€ justifies the assumption of “spectral isotropy” [i.e.,
dealing with k instead of (kj,k,) at small scales]; on the
other hand, the behavior of I? justifies the isotropic recon-
struction done with the eddy noise because I°~1 is a mea-
sure of variance isotropy.

IV. NUMERICAL TESTS OF THE LES

We now test our LES model against DNSs with different
Rossby numbers. As stated before, the forcing used is the TG
vortex [see Eq. (6)] at ky=2. For each simulation, we follow
the numerical procedure described in Paper I, namely, we
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FIG. 3. Temporal evolution of the total energy for runs Id (DNS: 256°) and
IL (LES: 64%) at Ro=0.03 (top), runs IId (DNS: 256°) and IIL (LES: 64°) at
Ro=0.17 (middle), and runs IIld (DNS: 256 and IIIL (LES: 64°) at
Ro=0.35 (bottom). DNS runs with dashed line; LES runs with solid line.
Note the change in values on both axes for the low Rossby runs (top)
because of the delay in the development of the turbulent phase when the
LES is started and the ensuing accumulation of energy due to the inverse
cascade now taking place at that low Rossby number.

vary the rotation rate leading to three different Rossby num-
bers: 0.03, 0.17, and 0.35. The simulation parameters are
summarized in Table I. The flow evolves in a periodic box,
with 256° grid points for the DNS and 64 grid points for the
LES. The “filtered-DNS” results in the table and figures refer
to the filtered-DNS data on a grid of 643 grid points, corre-
sponding to the limited information contained in the LES
grid. Since we are interested in studying only the modeling
of the turbulent regime, we start the LES simulations from
the filtered-DNS data at a time after the end of the transient
phase. However, if the LES is started from a fluid at rest (i.e.,
started like the DNS at r=0), no significant differences are
observed with the procedure of starting the LES at the end of
the transient phase, except that the transient regime in the
flow with Ro=0.03 is shorter. This accelerated evolution of
the LES at low Rossby number during the transient when
compared to the DNS can be easily explained considering
the inclusion of transport coefficients in the LES, which as-
sumes that a turbulent flow is already present.

A. Global behavior of the flow

The first test of the model is to examine the temporal
evolution of the flow. This is displayed in Fig. 3 for the three
Rossby numbers analyzed. The overall behaviors of the DNS
and of the LES are similar in amplitude and in time scales.
At intermediate Rossby numbers (Ro=0.17), the precise evo-
Iution of the DNS is not followed, although the energy ob-
tained with the LES remains close to the DNS one. For the
simulation at Ro=0.03, an inverse cascade develops after
t~ 120, leading to a strong increase in the total energy. Al-
though the LES model does not take wave interactions ex-
plicitly into account, it allows to reproduce this transfer of
energy from the small scales to the very large ones with good
accuracy; indeed, a simple scaling argument shows that in
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FIG. 4. Time averaged energy spectra for runs IId (DNS: 256, solid line)
and IIL (LES: 64°, ++) at Ro=0.17 (top) and runs IlId (DNS: 256°) and IIIL
(LES: 64%) at Ro=0.35 (bottom). Time averaging is performed from #=25 to
t=45 for both simulations. Note the good agreement except possibly near
k=2 corresponding to the forcing scale, indicative of a lack of adjustment of
the LES at that scale, in particular for the perpendicular spectra (see Fig. 5).

the small scales, the eddy turn-over time is shorter than the
time associated with waves and nonlinearities prevail. The
LES is taking into account the interactions with the waves in
an implicit way by changing the EDQNM time scale dy-
namically with the slope of the energy spectrum at large
scales; this could be interpreted as “reversed” Kraichnan-like
phenomenology. Note that the run at intermediate Rossby
number has higher values of the energy because the forcing
amplitude is larger than for the run at Ro=0.35.

When looking at the time averaged isotropic energy
spectra (see Fig. 4) for the two flows at the largest Rossby
numbers, one can see that a good agreement is obtained. This
figure also allows us to better understand the difference in
the temporal evolution of the energy computed from the
DNS and the LES data at Ro=0.17 (see Fig. 3). Indeed,
although the model gives a good estimation of the DNS
spectra at small scales, at very large scale (and particularly at
k=2) non-negligible differences appear with the DNS, differ-
ences to which the total energy is sensitive. Note that a
smaller difference between LES and DNS spectra can be
observed at k=2 for the run at the higher Rossby number,
Ro=0.35. Otherwise, the spectrum is well approximated by
the LES at all the other scales.

Similarly, when decomposing the energy spectra into
their perpendicular and parallel components, a good agree-
ment is reached at large scales, except again at k=2 for the
perpendicular spectrum of the flow at Ro=0.17 (see Fig. 5).
On the contrary, at small scales, the model seems to under-
estimate the spectra obtained by the DNS. This behavior is in
fact due to the difference in resolution between the DNS and
the LES: as k, and k; increase, the difference between the
amount of modes taken into account in the evolution of these
spectra for the DNS and for the LES increases as well. Note
that the k; shells have the same number of modes indepen-
dently of the value of k; (they are planes), while the number
of modes in the k| shells grows as k, (modes are distributed
in cylindrical shells), and this number grows as k°~! in di-
mension D for isotropic (spherical) shells. We have checked
that when making the comparison between the LES and the
filtered DNS for instantaneous spectra, the discrepancy ob-
served at high wavenumber disappears.

As mentioned earlier, the micro-Rossby-number mea-
sures how strong the imposed rotation is in the flow at the
Taylor microscale, when compared to the rms vorticity de-
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FIG. 5. Time averaged parallel (left) and perpendicular (right) energy spec-
tra for runs IId (DNS: 256° solid line) and IIL (LES: 643, ++) at
Ro=0.17 (top) and runs IlId (DNS: 256%) and IIIL (LES: 64%) at Ro=0.35
(bottom).

veloped by the turbulence. Its time evolution is shown in Fig.
6 for all runs. Because the micro-Rossby-number emphasizes
small scales that are not all present in an LES, Ro, is also
computed for the filtered DNS. We observe a good agree-
ment between the truncated DNS and the LES, although the
model slightly underestimates Ro,, for the two simulations at
larger Rossby number. This behavior can be explained by
enstrophy production in the LES, and whether it is associated
to not strong enough eddy noise from subgrid scales to re-
solved scales associated or to too strong dissipation of en-
ergy due to the eddy viscosity (or both) is unclear for the
moment. It may also be just a result of filtering and not
preserving all small scales. Indeed, removing the subfilter
scales in the LES leads to a smaller rms vorticity, which in
turn can lead to the underestimation of the micro-Rossby-
number. Since LES are developed to model the evolution of
the large eddies in the flow, it is not surprising that they are
not as good at recovering microscale quantities.

In Table II we give the values of the characteristic par-
allel and perpendicular integral length scales (respectively, L,
and L ) defined as

_[imE(kk; 'k

1= (12)
g maE (k) dk,

ik )k dk, 13)
T fhmeE (k) dk

and computed at the final simulation time of each flow (note
that the k;=0 mode is not included in the definition). Even if
the values obtained by the LES data do not exactly corre-
spond to the DNS values, they remain close; their differences
can be explained by the same argument evoked before on the
slight discrepancy between LES and DNS parallel and per-
pendicular energy spectra. Note that the perpendicular length
scale is significantly larger for the lowest Rossby number,
but the parallel length scales are comparable in all three runs.
This is linked to the fact that the inverse cascade of energy,
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TABLE II. Characteristic integral length scales L, and L; measured at dif-
ferent times ¢,, for the three different Rossby numbers studied in this paper.
Note that at the lowest Rossby number (Ro=0.03, run I), the perpendicular
integral length scale is significantly larger than for more moderate rotation
because of the inverse cascade.

Iy L, L
Id DNS 157 5.73 2.99
IL LES 157 5.63 2.95
11d DNS 45 1.71 2.95
1IL LES 45 1.74 3.22
111d DNS 45 1.76 2.69
IIIL LES 45 1.83 2.71
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FIG. 6. Temporal evolution of the micro-Rossby-number Ro,, in flows with
R0=0.03 (top), Ro=0.17 (middle), and Ro=0.35 (bottom) for DNS on 256°
grid points (dashed line), filtered data of the DNS to a 643 grid (triangles),
and LES (solid line) on a 64° grid. Note again the different scale on the axes,
in particular for the lowest Rossby number in which case Ro,, approaches
unity as the inverse cascade develops and energy and turbulence intensity
grow.

which takes place at low Rossby number, is dominated by
quasi-two-dimensional modes; the parallel spectrum does not
undergo an inverse cascade, although energy does pile up at
k;=0 mainly through resonant coupling of waves.

B. Measures of anisotropy

Rotating flows are known to develop anisotropies, and
we now turn our attention to this point. In order to estimate
the anisotropy of the different flows, we use the coefficients
I” and I€ defined earlier in Eqgs. (10) and (11). They are
shown as a function of time in Fig. 7 for the DNS (dashed
line), the filtered-DNS data truncated to the LES resolution
(triangles), and the LES (solid line) with Ro=0.03. A very
good match can be observed between the Craya coefficient
I¢ computed from the filtered-DNS data and the one com-
puted with the data from the LES model, whereas the coef-
ficient computed with the full DNS data evolves on a lower
level than the two other ones. This is due to the fact that the
small scales of the field (i.e., scales with k>k,.) are taken
into account in the spatial averaging process we perform to

calculate this coefficient. We saw in Sec. III that these small
scales are more isotropic with a corresponding coefficient I¢
near unity, so when they are taken into account in the com-
putation of the Craya coefficient, they lower its value. The
small scales in the DNS are more isotropic, and as a result,
the LES flow, which preserves a smaller amount of these
scales, is globally more anisotropic and has a larger value of
this coefficient.

As already observed in Fig. 2, the directional coefficient
[P is strongly dominated by the large scales of the field, such
as columnar structures appearing in the flow as a result of the
inverse cascade process. Therefore, when we compare the

--DNS
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FIG. 7. Evolution of the spectral and directional isotropy coefficients /¢ and
IP (see text) for runs I (full DNS, dashed line), Ir (filtered DNS: 643, tri-
angles), and IL (LES: 643, solid line) at low Rossby number (Ro=0.03).
Information about the cases at lower rotation rates is given in Table III.
Isotropy is obtained when both coefficients are close to unity, and we note
that the directional coefficient, related to real-space structures, indicates a
stronger departure from isotropy than when measuring anisotropy in Fourier
space as I does [see Egs. (10) and (11)] once the inverse cascade sets up
and strong columnar vortices develop. Larger I” is also obtained for the runs
at lower Rossby numbers (see Table III).
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TABLE III. Craya and directional isotropic coefficients I€ and I for the
simulations at Ro=0.17 and Ro=0.35 at the final time of the computation.

t Ro 1€ P
1Id DNS 45 0.17 1.05 1.69
IIr Filtered DNS e s 1.07 1.69
1L LES 1.07 1.71
111d DNS 45 0.35 1.04 1.97
IIr Filtered DNS e e 1.04 1.97
1L LES 1.04 2.01

time history of this coefficient for the DNS and the filtered
DNS, no noticeable difference appears. Once again our LES
model predicts very well the evolution of this coefficient,
even though the perpendicular component of the velocity
clearly dominates over the parallel one. We also note that the
model allows for a good estimation of both these coefficients
for the simulations at larger Rossby numbers (Ro=0.17 and
Ro0=0.35), as shown in Table III.

In our investigation of anisotropy of rotating flows, we
now study the behavior of the b;; anisotropy tensor defined
belows; it is linked to the so-called “polarization” anisotropy
introduced in Ref. 3 (see also Refs. 19, 23, and 24).
This tensor, which is based on the Reynolds stress tensor
R;i=(v{(x)v(x)), is defined as

- (14)
Ry 3

In Fig. 8 we represent the temporal evolution of the b_, com-
ponent of the anisotropy tensor for runs I and III, at respec-
tively Ro=0.03 and Ro=0.35. We first notice that the LES
model predicts well the evolution of this coefficient for both
simulations. Secondly, the development of a preferred direc-
tion in the flow at Ro=0.03 (already observed in Fig. 7
through the increase in the directional coefficient I” in the
inverse cascade) is also visible in this figure. Indeed, b,
tends to —1/3 as time increases since v (x) becomes negli-
gible when compared to the horizontal components v, (x) and
vy(x).

Finally, we mention that other measures of anisotropy
can be derived, as done for example in Refs. 20 and 21
where the authors examined specifically the behavior of the
so-called dimensionality and circulicity tensors D;; and Fj;
defined as

kik; ;0
_ i % 13 _ i 3
Dl/_J k2 vivjd k, FU_ k2 d k, (15)

with * denoting the complex conjugate as usual and @ de-
noting the Fourier transform of the vorticity. Note that
3D =2 F . =(v?) and that defining 7, d, and f as the nor-
malized forms of the R, D, and F tensors (#;;=T;;/ 2T} and
with b;=r,; in Eq. (14), we have r;;+d;;+f;=(v>)8;.”" The
dimensionality tensor is associated to the shape of eddies,
whereas the circulicity tensor refers to the departure from
mirror-symmetry of the flow since it relies on the vorticity.

We show in Fig. 9 the comparison between DNS and
LES for the three diagonal components of the d;; (top) and of

Phys. Fluids 22, 025104 (2010)

---DNS
AFiltered DNS|
—LES

3790 100 110 120 130 140 150
(a) t

---DNS
_0.09}{A Filtered DNS J

b
z
|

=3
o
oy

-0.12

-0.13r

014 ‘ ‘ ‘ ‘
20 25 30 35 40 45
(b) t

FIG. 8. Temporal evolution of the b_, component of the polarization aniso-
tropy tensor [see Eq. (14)] for runs with Ro=0.03 (top) and Ro=0.35 (bot-
tom), in the former case at late times once the pile-up of energy at large
scales has begun. The DNS are plotted with a dashed line, the filtered DNS
truncated to the resolution of the LES are given with triangles, and the solid
line corresponds to the LES. Note again the tendency to evolve to a two-
dimensional state at late times, with b, ——1/3, for the low Rossby number
runs.

fi; (bottom) tensors, with directions 1-1, 2-2, and 3-3 given
respectively with triangles, circles, and crosses and with the
DNS in small symbols and the LES in large symbols. After
the onset of the inverse cascade, strong departures from isot-
ropy arise, and the model is much better at reproducing such
departures when considering the coefficient based on the vor-
ticity; we note however that when averaging over the hori-
zontal plane, one recovers a good agreement between DNS
and LES for both coefficients: on average, one captures the
structures that develop with the model, but phases are not
computed accurately (in particular, because of eddy noise),
and thus the individual (x and y) components of the velocity
vary widely between model and DNS (see also the discus-
sion about the position of structures in physical space in
Sec. IVE).

C. Statistical analysis

In this section, we investigate the statistics of the simu-
lations at Ro=0.03. Instantaneous probability density func-
tions (PDFs) of the longitudinal and transverse derivatives of
the x-component of the velocity field are computed and plot-
ted in Fig. 10 at time =132 in the inverse cascade. The
PDFs computed on the full DNS data, the filtered DNS, and
the LES agree well for the case of the longitudinal deriva-
tive. In the case of the transverse derivative, the DNS data
differ from both the LES and the filtered-DNS data, the latter
two displaying wider wings and being almost superimposed.
It is well known that the small scales of a flow may have a
strong influence on the distribution of velocity derivatives
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FIG. 9. Measuring anisotropy through the diagonal components of the ten-
sors of dimensionality (top) and circulicity (bottom) [see Eq. (15)], with
directions 1-1, 2-2, and 3-3 given respectively with triangles, circles, and
crosses. Small symbols correspond to the DNS Ir and large symbols are for
the LES Il at Ro=0.03. Note that the latter is much less scattered than the
former for the components in the horizontal plane, and that it remains close
to its isotropic value of 1/3 for a longer time till the onset of the inverse
cascade of energy, time after which anisotropy develops for both
coefficients.

with strong velocity gradients appearing at small scale and
that transverse derivatives show stronger tails in the PDFs
(and therefore enhanced intermittency) than longitudinal de-
rivatives. It is not clear whether this is the effect of more
sensitivity to the intermittency in the transverse increments
or whether it is the effect of anisotropy, but since the differ-
ences are stronger for the velocity derivatives taken in the
direction of rotation, it may be attributed to anisotropies.
Note that the PDFs of the full DNS data continue below the
limit of 1073 that we chose for the figure, and their wings
become wider; however the PDFs of the LES and the
filtered-DNS data do not extend below this limit since they
sample a smaller range of values for the velocity gradients
being at lower resolution.

In order to quantify the distributions of velocity fluctua-
tions and the differences between DNS and LES data, we
now compute the skewness S, of the longitudinal velocity
derivative, i.e., its normalized third-order moment. The
skewness, which measures the departure from Gaussian sta-
tistics, is usually negative for the longitudinal derivatives of
a turbulent flow and oscillates around zero for the lateral
ones. In Fig. 11 we show the time history of S;. As for the
energy, the LES model gives a correct prediction of the
skewness for 86<<r<<145, although around #==140, some
discrepancies can be found that could be associated with the
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FIG. 10. PDFs of the velocity derivatives dv,/dx (top), dv,/dy (middle), and
v,/ 9z (bottom) for runs Id (DNS: 256%), Ir (filtered DNS: 64%), and IL
(LES: 64%) at Ro=0.03 and 7=132. As usual, the dashed line is for the full
DNS flow, triangles for the filtered (truncated) DNS, and solid line for the
LES.

development of structures. Note that this difference can be
also associated with a slight discrepancy in total energy at
around the same time (see Fig. 3).

D. Intercomparison of models

When evaluating LES approaches, it is useful to com-
pare them to standard models one of which, for a spectral
approach as used in this paper, is the CL model."* We do so
in this section, together with a comparison with an under-
resolved DNS at the same resolution as the LES and the CL
simulations (same maximum wavenumber k,,,). We show in
Fig. 12 (top) the results of this intercomparison with the
normalized error for the energy spectrum defined as

|E(k)pns = E(K) modell E(K)pxs (16)

averaged from =130 to r=150 and the total enstrophy as a
function of time (bottom). In both graphs, the model ana-
lyzed in this paper is drawn with a solid line, the DNS (or
truncated DNS in the case of enstrophy) with a dashed line,
the CL model with circles, and the under-resolved DNS with
plus signs.
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FIG. 11. Temporal evolution of the skewness for the longitudinal velocity
derivative dv,/dx [see Eq. (7)] for runs Ir (filtered DNS: 643, triangles) and
IL (LES: 64, solid line) at Ro=0.03.
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FIG. 12. Intercomparisons of a DNS with an under-resolved DNS (DNS
UR, ++), our LES (solid line), and the CL model (LES CL, circles). Top:
relative error in the energy spectra averaged from =130 to =150 [see Eq.
(16)]. Bottom: temporal evolution of the total enstrophy, with the filtered
DNS given with a dashed line.

Globally, the errors are smaller for the model presented
in this paper. For example, the sum of errors for each
method, for the energy spectra averaged over the time inter-
val from =130 to =150, and as displayed in Fig. 12 (top)
are respectively 11.8 for CL, 3.6 for our spectral model, and
22.7 for the under-resolved DNS; similar numbers are ob-
tained for the total enstrophy. Note that at early times when
inertial waves are prevalent (see Fig. 13), the models and the
under-resolved DNS all give good results. The oscillatory
phase, which can also be seen on the enstrophy (Fig. 12,
bottom) ends shortly after = 100 when the buildup of en-
ergy at large scale due to the inverse cascade begins and
when the behavior between the different models begin as
well. The good agreement between all runs in fact lasts until

0.2
---DNS
—DNS UR
0.15/|.-LES P
LES CL
£ 0.1
]
0.05f

90 100
t

FIG. 13. Comparison between a DNS, an under-resolved DNS (DNS UR),
our LES, and the CL model (LES CL) for a blow-up of the temporal evo-
lution of the energy shortly after switching on the rotation; it shows the
oscillatory behavior at early times and the good agreement of all models,
which cannot be distinguished except at the very end when the CL model
begins to depart slightly from the other runs.
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FIG. 14. (Color online) Volume rendering of the velocity modulus for flows
at Ro=0.03—runs Ir (filtered DNS: 643, top) and IL (LES: 643, bottom)—at
time #=132 for both simulations. The flow is dominated by a large eddy, but
smaller vertical structures are visible as well.

t=112 for the energy, the time when oscillations stop. We
can conclude that overall, the under-resolved run is vastly
outperformed by both LES, with a slight advantage to the
model used in this paper over the CL model.

E. Visualization in physical space

We finally present a visualization in physical space of
the velocity intensity at t=132 for the flow at Ro=0.03. At
this time of the simulation the inverse cascade already took
place, and most of the flow energy was transferred to the
k=0 plane. We noted earlier that the TG flow injects no
energy in the k; =1 shell nor in the k=0 shell. So all the
energy we see at large scale is the result of an inverse cas-
cade (in the former case) and of two dimensionalization (in
the latter case). The evidence for the inverse cascade in this
paper is given by the time evolution of the energy in Figs. 1
and 3 (see also Paper I, where fluxes are studied in detail).
The accumulation of energy in this plane leads to the forma-
tion of columns as can be observed in Fig. 14. Although the
structures are quasibidimensional, the isotropic LES model
allows to reproduce them quite correctly. The spatial position
differs slightly from the structure obtained by the DNS, but
its size and intensity are well approximated. When examin-
ing the temporal evolution of the maximum of velocity (not
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shown), a good agreement occurs at all times. Note that this
is a forced run visualized after =130 turn-over times; as a
result of the intrinsic sensitivity of turbulent flows due to
their inherent unpredictability after a Lyapunov time of the
order of a few turn-over times, the spatial position of the
structures is not expected to be reproduced exactly by the
LES. These differences in the position of the structures also
explain the differences reported in Fig. 9.

V. CONCLUSION

We present in this paper a LES model for high Reynolds
number rotating flows using a previously derived subgrid
model" based on the isotropic EDQNM two-point closure
with eddy viscosity and eddy noise. We show that, down to
Rossby numbers of 0.03, the small scales are sufficiently
isotropic for the model to perform reasonably well. There are
numerous laboratory experiments with which the comparison
presented here could be extended, following the work in Ref.
8 using several EDQNM-based closures (see also Ref. 25 for
the stratified anisotropic case). The advantage of using two-
point closures such as EDQNM as a model for turbulent
flows in the presence of rotation is that it allows for building
scaling laws at a relatively low computational cost and with
the possibility of doing analytical estimations of nonlinear
transfer (see, for example, Ref. 8). The model presented in
this paper is much simpler since it is built on the isotropic
three-dimensional version of the EDQNM; it is thus more
limited in its scope insofar as it may not be able to explore
very low Rossby numbers at moderate Reynolds numbers.
On the other hand, following the standard LES methodology
with spatially resolved large scales and turbulent coefficients
to model the subgrid fluctuations, it allows to access more
detailed features of the flows such as high-order statistics
(e.g., PDFs) as well as spatial structures.

Also, the LES used in this paper adapts dynamically
depending on the spectral index of the energy at superfilter
(resolved) scales, and the values of the turbulent transport
coefficients vary as a result. This is important in the context
of rotating turbulent flows because the power law followed
by the energy spectrum in this case is not quite ascertained
yet and does vary with time. Phenomenological and theoret-
ical predictions of this index, as well as several recent ex-
periments, were reviewed in Ref. 15, with experimental and
numerical evidence not quite able yet to sort out the different
models or to fully describe the parameter space (e.g., as
function of the rotation rate ), the Reynolds number, etc.).
An adequate LES model that can adjust to the resolved en-
ergy spectrum can help in this matter but more development
and tests is needed. A reminiscent situation is found in mag-
netohydrodynamics when coupling the fluid to a magnetic
field in the nonrelativistic limit; the total energy spectrum
obtained analytically from the weak turbulence 1imit**?’ has
been observed in the magnetosphere of Jupiter28 and in
DNS,” but the strong turbulence spectrum (or spectra in case
there are different regions in parameter space) is a matter of
debate.

However, the LES used in this paper does not adapt
perfectly to all situations. We illustrate this point in Fig. 15,
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FIG. 15. Temporal evolution of the energy with the same LES run than in
Fig. 3 (top), with a Rossby number Ro~0.03 but now starting at =0 as
opposed to r=84 for Fig. 3; the DNS is displayed with ++ and the new LES
run with a solid line. In this LES computation, the growth of energy occurs
at an earlier time in the LES run, but the two runs become comparable at
later times.

which presents the temporal evolution of the energy for the
LES performed for the same data as the DNS analyzed, for
example, in Fig. 3, but this time with the LES starting from
t=0 as opposed to r=84. The oscillatory phases for both runs
cannot be distinguished, but it is observed that the growth of
energy due to the inverse cascade takes place sooner for the
LES. Starting from zero initial conditions with the TG flow
forcing, it can be checked that several low wavenumber
modes grow substantially faster in this instantiation of the
LES compared to the DNS. This may be related to the spe-
cific structure of the TG flow (see, e.g., Ref. 30) since no
such acceleration of the inverse cascade of energy is ob-
served when performing a similar experiment with other
forcing functions, as, e.g., a Beltrami forcing. The TG flow
has several mirror and rotational symmetries that result in
very little excitation in some shells at early times. The tur-
bulence nonlinear coupling is very slow to build up excita-
tion in these modes in the DNS, whereas eddy noise and
eddy viscosity contribute directly to their dynamics in the
LES. The resulting LES flow can be viewed as somewhat
artificially more turbulent, and therefore the inverse cascade
starts earlier, as shown in Fig. 15. This problem can be alle-
viated by waiting for the turbulence coupling to develop in
the flow; once all low wavenumber modes are filled up, the
LES can be started with a turbulent flow.

Only one specific (nonhelical) forcing was explored in
the DNS-LES comparisons studied in this paper. Further
tests are required, considering other (nonhelical) forcing
functions as well as forcing functions that introduce both
energy and helicity in the flow. In the latter case, the imple-
mentation of the LES as described here may prove insuffi-
cient, and one should also consider taking into account the
spectral properties and turbulent transport coefficients that
include the effect of helicity, as done in the nonrotating case
in Paper II. Such an implementation can also be of interest
for nonhelical flows because even though helicity is not a
positive definite quantity, local helical fluctuations develop
rapidly in a flow through alignment of vorticity and pressure
glradients.31 The properties of the model in the helical case in
the presence of rotation will be dealt within a forthcoming
paper. The freely decaying case (see Refs. 8, 11, 12, and 32
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for a global perspective) needs to be examined as well and is
left for future work.

As a final remark, we want to stress the importance of
developing adequate modeling of rotating (and stratified)
flows, as encountered, for example, in the Earth’s atmo-
sphere. It was shown recently3 3 that the maximum intensity
of a hurricane depends crucially on the (assumed) horizontal
mixing length; this implies that an adequate treatment of the
turbulence is essential in predicting various properties of hur-
ricanes such as its intensity or landfall localization. A run
with resolution down to 62 m shows strong local winds that
were unresolved in previous studies.** If the work presented
here (as well as most of its predecessors) is far from reality
for hurricane dynamical modeling (because of its lack of
proper boundary conditions, stratification, and moisture), it
nevertheless represents a first step toward the goal of a better
understanding of geophysical flows, the issue here being that
sufficiently high Reynolds number, i.e., sufficient multiscale
interactions and two-way coupling between the small scales
and the large scales in turbulent fluids supporting inertial
(and/or gravity) waves, is a desired ingredient for testing
LES approaches to geophysical turbulence.
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APPENDIX: CLOSURE EXPRESSIONS OF TRANSFER
TERMS

For completeness, we recall here the expression of the
EDQNM closure equation for the kinetic energy spectrum
E(k,t) without helicity (note that the Coriolis term vanishes
in the energy equation); it writes

(0, + 2vk)E(k,1) = Tk, 1), (A1)
where the nonlinear transfer terms 7(k, ) results from a con-
volution integral in Fourier space,

T(k,t) = f f Okpg()SE(k,p,q.1)dpdq. (A2)
A

Here A is the integration domain with p and ¢ such that
(k,p,q) form a triangle, and 6y,,(¢) is the relaxation time of
the triple velocity correlations. As usual, ¥ Oypq(1) is defined
as

1 — o~ (atigtip)t

1) = (A3)

Iu“k+lu“q+/~Lp

where w; expresses the rate at which the triple correlations
evolve, i.e., under viscous dissipation and nonlinear shear. It
can be written as

Phys. Fluids 22, 025104 (2010)

k 1/2
= Vk2+7\1(( f qu(q,t)dq> - (A4)

0

Note that g is the only free parameter of the problem, taken
equal to 0.36 to recover the Kolmogorov constant Cx=1.4
for a k3 classical energy spectrum. The expressions of
Sg(k,p,q,t) can be further described explicitly (with the
time dependency of energy spectra omitted here) as

k
Se(k,p.q.1) = qub[sz(q)E(p) - P*E(q)E(k)]
=Sg,(k.p.q.1) + Sg,(k.p.q.1).

Here, S (k,p.q.1) and Sg,(k,p,q.1) are respectively used to
denote the two terms of the extensive expression of
Sg(k,p,q,t). The geometric coefficient b(k,p,q) (in short, b
in the previous expression) is defined as

b(k.p.q) = %(xy +29), (AS5)

where x, y, and z are the cosines of the inner angles opposite
to k,p.q.
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