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1. Introduction

The Ekman layer becomes hydrodynamically unstable at sufficiently large
Reynolds number Re. For the case of purely vertical rotation, the Ekman
layer instability has been studied experimentally by Faller [4] and Caldwell
& Van Atta [1], and numerically by Faller & Kaylor [5] , Lilly [10], Melander
[11] and Ponty et al. [13]. The linear and nonlinear behaviour of Ekman–
Couette instabilities in a plane layer has been discussed by Hoffmann et al.

[8]. The transition between the Taylor–Couette instability and the Ekman
layer instability is explored in Hoffmann & Busse [9]. Two different Ekman
layer instabilities are distinguished in these studies, which for historical
reasons are now referred to as types I and II. Type II occurs when the
Reynolds number Re∗ defined using the Ekman layer thickness, exceeds
the experimentally measured value of Re∗

c ≃ 56.7 (or 124.5 for type I).
We will focus on the type II travelling wave, which has the smaller critical
Reynolds number and so is easier to study numerically.

We simulated the finite amplitude development of the Ekman instability
with our nonlinear numerical code subject to two-dimensional restrictions.
Within that framework, we reach Reynolds numbers (based on the depth of
the layer) of up to 800 and find that the saturated flow remains steady in a
moving frame. Since such flow has no chaotic particle paths, any resulting
dynamo cannot be fast. Nevertheless, we have found robust slow dynamo
action which we now discuss.
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2. Governing equations

2.1. DIMENSIONLESS EQUATIONS

We consider a Cartesian fluid layer of depth h, rotating with angular ve-
locity ΩΩΩ = ΩΩ̂ΩΩ = Ω(cos ϑ ẑ + sinϑ ŷ)(Ω ≥ 0), which models a thin shell
locally at co-latitude ϑ ( x̂ East; ŷ North; ẑ vertical). The top and bottom
boundaries are rigid; the top boundary is fixed, while the bottom moves
with velocity U0 = U0x̂. The fluid has viscosity ν and magnetic diffusiv-
ity η. Length, time and velocity are non-dimensionalised using the depth h
and the viscous time-scale h2/ν. After non-dimensionalisation, the velocity
at the bottom boundary becomes U = (U0h/ν) x̂ = Re x̂; the basic steady,
non-magnetic, equilibrium state depends only on the vertical coordinate z.
The absence of an imposed horizontal pressure gradient ensures that the
bulk of the basic horizontal shear Re ΛΛΛ(z) driven by the differential motion
of the plane parallel boundaries is concentrated in an Ekman layer attached
to the bottom boundary. We calculate the Ekman profile ΛΛΛ(z) analytically
and note that the Ekman boundary layer thickness is 1/

√
τ cos ϑ.

Once the steady shear is disturbed, we write U = Re ΛΛΛ(z) + u. We as-
sume spatial periodicity in the unbounded horizontal direction. The mag-
netic field B is taken to obey insulating boundary conditions. Accordingly
the no-slip boundary conditions imply that u = 0 on z = 0 and 1. The
governing equation become

∂tu+u ·∇u+Re(ΛΛΛ ·∇u+uz∂zΛΛΛ)+ τΩ̂ΩΩ×u = −∇Π+∇2u+(∇×B)×B,

∂tB + u · ∇B− B · ∇u + Re(ΛΛΛ · ∇B −Bz∂zΛΛΛ) = P−1

m ∇2B.

The dimensionless parameters employed are

τ = 2Ωh2/ν , Pm = η/ν , Re = U0h/ν,

namely the square root of Taylor number, the magnetic Prandtl number
and the Reynolds number respectively. With a suitable choice of units for
the magnetic field, we avoid the introduction of any additional coefficient
in a front of the Lorenz force term.

2.2. TWO-DIMENSIONAL FORMULATION

At the onset of fluid instability, the fluid motion takes the form of rolls
with a specific orientation. This flow is two-dimensional independent of
the coordinate ȳ along the roll axes. Our main assumption is that the two-
dimensionality at onset is maintained in the fully developed nonlinear state,
so that the velocity has the restricted functional form u(x̄, z, t), where x̄ is
the horizontal coordinate normal to the roll axis.



3

To investigate the possibility of dynamo action in our ȳ-independent
fluid flow, we consider magnetic field described by ȳ-dependent normal
modes of the form B = b(x̄, z, t) exp(ilȳ) (l 6= 0). The Lorenz force is pro-
jected on the zero-l mode of the momentum equation by taking into account
only the beating of conjugate magnetic modes l = ±1. Our simplifying two-
dimensional assumption is important because it allows us to study dynamo
action at large magnetic Reynolds number with high numerical resolution.

Since u is independent of ȳ, we may write u = −∂zψ ˆ̄x + v ˆ̄y + ∂x̄ψ ẑ

= ∇×(ψ ˆ̄y)+v ˆ̄y. Furthermore, since the flow is steady in a frame co-moving
with the rolls, it is helpful to define the total stream function

Ψ(x̄, z) = ψ(x̄, z) − Re P

∫ z

0

Λ(ξ).ˆ̄x dξ + Uroll z.

In that moving frame (relative velocity Uroll), partricles follow the stream
lines Ψ = constant and the components of the total velocity are

U − Uroll = −∂zΨ, V (x̄, z) = v(x̄, z) + Re P ΛΛΛ(z).ˆ̄y, W = ∂x̄Ψ.

3. Numerical method and diagnostics

The solution of the magnetohydrodynamic system is achieved numerically
using a time-stepping pseudo-spectral code with the collocation-tau method
(see Ponty et al. [14] for further details).

The results of our simulations, especially from the kinematic dynamo
viewpoint, depend on the magnetic Reynolds number Rm. Thus we intro-
duce the root-mean-square value U of the non-dimensional total velocity
U, averaged over both space and time, and define Rm = Pm U . We also
introduce turn-over time-scale λ = σ/U measured by the real magnetic field
growth rate σ based on the viscous time scale.

4. Fluid topology

We present one example of dynamo in flows resulting from the Ekman in-
stability. We take ϑ = 67.5◦, τ = 100 and kc = 4.30; our Reynolds number
is Re = 250, which is to be compared to the critical value Rec ≃ 138 for the
instability. The results are illustrated in figures 1(a,b), which give the ȳ-
velocity V and total stream function Ψ in the co-moving frame. The stream
lines of the ensuing finite amplitude flow have the cats’ eye configuration,
which is well known to occur at critical levels in other shear flows, e.g., the
Kelvin–Helmholtz instability. In the (x̄, z)-plane, this stream line topology
contains elliptic and hyperbolic stagnation points. The exponential stretch-
ing at the stagnation points, and the differential rotation around the elliptic
points can stretch out field, contributing to a dynamo process.
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Figure 1. A flow resulting from a saturated Ekman layer instability drives a dynamo
for ϑ = 67.5◦, τ = 100, ǫ = 79.28◦, kc = 4.64, Re = 250 and Pm = 40, corresponding to
Rm ≃ 3600. It is shown a as time-snapshot in the (x̄, z) plane of (a) the total velocity V
along the ȳ-axis, (b) the total stream function Ψ, (c) the magnitude B of the magnetic
field in the case l = 1.2, and (d) the magnitude B of the magnetic field in the case l = 9.0.
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5. Kinematic dynamo

Different kinematic dynamo mechanisms are found, which largely depend
on the size of the wave number l. Figure 2 shows the growth rates σ and
λ plotted against the wave number l for Pm = 40, when Rm ≃ 3600.
The curve is complicated, having many peaks and windows of dynamo and
non-dynamo action as l is varied.

Figure 2. The magnetic field growth rate plotted against the wave number l along the ȳ
axis, with two scalings: σ on the left-hand side is scaled with the thermal diffusion time,
and λ on the right-hand side with the turn-over time. The flow is an equilibrated Ekman
layer instability with parameters as in figure 1.

Below the wave number l ≃ 2.0, the magnetic field shown in figure
1(c) for l = 1.2 is concentrated around the principal vortices of the flow
displayed in figure 1(b). The dynamo process appears to correspond to the
Ponomarenko dynamo [12] (see Gilbert [6], Ruzmaikin, Sokoloff & Shukurov
[16], Gilbert & Ponty [7]). Field directed in or out of the eddy is stretched by
differential rotation on helical streamlines to generate field directed along
the streamlines. Diffusion of this field in curved geometry generates field
across streamlines so closing the dynamo loop and leading to magnetic field
amplification. To confirm this picture, the magnetic field, which takes the
form of two spiralling tubes, is visualised in three dimensions in figure 3.

Above the wave number l ≃ 2.0, the magnetic field is localised along the
separatrices and the stagnation points play a crucial role. The magnitude
of the magnetic field is shown in figure 1(d) for l = 9.0, where the mag-
netic growth rate is a maximum in the figure 2. We see that the dominant
magnetic mode has field localised in sheets along the separatrices of the
flow in the (x̄, z)-plane (using the stream function Ψ for the appropriate
moving frame). The sheets intersect at the hyperbolic stagnation points.
Our simulation represents the first example of a dynamo effect obtained in
a cats’ eyes configuration resulting from hydrodynamic instability.

The dynamo mechanism, just described, has some similarities with that
of the periodic G.O Roberts [15] cellular flow investigated analytically in the



6

Figure 3. A three dimensional visualisation of the magnetic field in the case shown in
figure 4(c). An iso-surface of constant magnitude of magnetic field is plotted with respect
to (x̄, ȳ, z) axes.

large-Rm limit by Childress [2] and Soward [17]. In this case the field is also
associated with the stagnation points and separatrices, and is amplified by a
steady stretch–fold–shear mechanism. Dynamo action is also considered for
doubly periodic rows of cats’ eyes by Childress & Soward [3], who compute
an α−effect associated with boundary layers on the separatrices. Their
calculations involve averaging over the infinite plane, and it remains to be
seen how their results relate to dynamo action in our row of cats’ eyes in a
plane layer with insulating boundaries.

In our example of a saturated Ekman instability, we have identified two
different kinematic dynamo mechanisms which compete with each other.
The stretch–fold–shear mechanism in the steady flow is the more efficient
one, preferring modes with short scale in the ȳ direction, but the Pono-
marenko mechanism is also there, subdominant, preferring large-scale fields.
Note that regardless of the wavenumber l in the ȳ-direction the two mech-
anisms tend to amplify fields of different length-scales in the (x̄, z)-plane
for large Rm, as seen in figure 1(c,d). For l = O(1) the Ponomarenko dy-

namo amplifies field on O(Rm−1/4) length-scales (Gilbert & Ponty [7]),
while the fields associated with the hyperbolic stagnation points localise on
O(Rm−1/2) length-scales (Childress [2]) – harder to resolve numerically.

6. Nonlinear regime

Solutions in the fully nonlinear regime have been computed. In figure 4 the
magnetic energy and the kinetic energy are plotted versus time for a partic-
ular set of parameter values. In figure 4a, the initial linear kinematic regime
is clearly distinguished from the subsequent nonlinear saturation. The mag-
netic energy and the kinetic energy appear to settle down to steady values
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but with slowly decaying transient oscillations. Throughout the range of
wave number l displayed in figure 2, the system converges to the same kind
of magnetohydrodynamic solution; here the saturated magnetic field is lo-
cated around the separatrices, just as in large wave number kinematic case
(see figure 1d). It means that a short magnetic length scale along the roll
ȳ axis is then preferred.

Figure 4. (a) The magnetic energy is plotted in log scale versus the running time for
the same parameter values as in figure 1. (b) The kinetic fluid velocity associated is also
presented.

7. Discussion

The equilibrated Ekman layer instability flows have the cats’ eyes configu-
ration and are steady in a co-moving frame. Here kinematic dynamo action
may occur by the Ponomarenko [12] dynamo mechanism or with fields asso-
ciated with hyperbolic stagnation points and their connecting separatrices.
The Ponomarenko mechanism is now well-understood: asymptotic high-Rm

growth rates may be obtained in cases such as those seen in the simulations
with an arbitrary flow profile (Gilbert & Ponty [7]).

Kinematic dynamo action associated with hyperbolic stagnation points
and separatrices is rather more complicated. Though dynamo action in
flows with cats’ eyes in the doubly-periodic plane has been studied by Chil-
dress & Soward [3], there are non-trivial geometrical complications that
arise in the flows of our plane layer model. In particular the layer is periodic
in only one direction, along the cats’ eyes, and the velocity perpendicular
to the plane of the cats’ eyes is not constant on stream lines. It remains
an interesting asymptotic problem to obtain high-Rm growth rates in this
more general situation.

In the nonlinear regime, a stable nonlinear saturation is preferred, with
the magnetic field located along the cats’ eyes separatrices. Interestingly,
the feed back of the Lorentz force does not appear to destroy the separatrix
topology, which leads to an efficient kinematic dynamo process. Perhaps
these features render the steady equilibrium robust.
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In conclusion, dynamo action due to the Ekman layer instability pro-
vides a nice magnetohydrodynamic system for analytic study. Indeed we in-
tend to undertake further detailed investigations of kinematic growth rates
and the nonlinear equilibrium in ongoing studies.
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