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1. Preamble

Dynamo action, the self amplification of magnetic field due to the stretching of
magnetic field lines by a fluctuating flow, is considered to be the main mechanism
for the generation of magnetic fields in the universe [1]. In this respect many ex-
perimental groups have successfully reproduced dynamos in liquid sodium lab-
oratory experiments [2–8]. The induction experiments [9–18] studying the re-
sponse of an applied magnetic field inside a turbulent metal liquid also represent
a challenging science. With or without dynamo instability the flow of a con-
ducting fluid forms complex system, with a large degrees of freedom and a wide
branches of non linear behaviors.

2. Introduction

For laboratory experiments, the numerical prediction of the dynamo threshold in
realistic conditions is still out of reach. Nonetheless, the experiments [2] in Riga
and Karlsruhe [5] found the onset to be remarkably close to the values predicted
from numerical simulations based on the mean flow structure [19, 20], and this
despite the fact that the corresponding flows are quite turbulent.

This has led several experimental groups seeking dynamo action in less con-
strained geometry, eventually leading to richer dynamical regimes [7, 8], to opti-
mize the flow forcing using kinematic simulations based on mean flow measure-
ments [21, 22]—the advantage being that mean flow profiles can be measured in
the laboratory.

Actually, there are efforts in numerical methods to take account of real geome-
tries and the shapes of the experimental apparatus, the effect of the fluid and the
magnetic boundary conditions, the use of finite element, finite volume and finite
difference mesh schemes [23–28]. However as we will shown in this lecture, it
is possible to numerically study some aspects of experimental dynamo behavior
without boundary conditions in a three-dimensional periodic space, and we shall
seek the respective role of mean flow and the turbulence in this.
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3. Numerical method

3.1. The periodic box numerical experiment

Incompressible turbulent flows have been studied intensively in a periodic space,
which is a classical mathematical framework for analysis and theory [29, 30].
The energy cascade, the organisation of the energy transfer between the different
scales are naturally handle in spectral space. The Navier–Stoke equation accu-
mulates the maximum number of symmetries in a periodic space and this lack
of real boundaries has been used for numerical simulations of isotropic and ho-
mogeneous turbulence [31]. The pseudo-spectral numerical method [33–36] is a
global method and probably the most precise numerical method for a fix mesh
size. For all these reasons, in this lecture we will concentrate on numerical sim-
ulations of incompressible conductor flow in a fully three-dimensional periodic
box.

3.2. Fundamentals equations

Let us work with the incompressible magnetohydrodynamic equations
(3.1)–(3.2)

∂v
∂t

+ v · ∇v = −∇P + j × B + ν∇2v + F, (3.1)

∂B
∂t

+ v · ∇B = B · ∇v + η∇2B, (3.2)

together with ∇ ·v = ∇ ·B = 0; a constant mass density ρ = 1 is assumed. Here,
v stands for the velocity field, B the magnetic field (in units of Alfvén velocity),
j = (∇ × B)/μ0 the current density, ν the kinematic viscosity, η the magnetic
diffusivity and P is the pressure. The forcing term F will be chosen between two
different forcing,s respectively they are Taylor–Green vortex (TG) [37],

FTG(k0) =
⎡
⎣ sin(k0 x) cos(k0 y) cos(k0 z)

− cos(k0 x) sin(k0 y) cos(k0 z)

0

⎤
⎦ , (3.3)

and the ABC flow [38, 39]

FABC(k0) =
⎡
⎣ A sin(k0 z) + C cos(k0 y)

B sin(k0 x) + A cos(k0 z)

C sin(k0 y) + B cos(k0 x)

⎤
⎦ , (3.4)

with A = B = C = ko = 1.
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There are several ways to implement a forcing term in the Navier–Stoke equa-
tion, but there are two superior, less artificial ways, which correspond to two
possible experimental forcings. The first one is used in this lecture, it is called
constant forcing or constant torque, where the forcing term in the Navier–Stoke
equation is simply add at each time step to the rest of the momentum equation.
The other one is the constant velocity, it is implemented generally in the spectral
space, imposing constant values for selected wave vectors at each time step.

3.3. Non dimensional numbers

We solve the dimensional form of the MHD (3.1)–(3.2) equations, and compute
the non dimensional numbers a posteriori, using the numerical output quanti-
ties. Working with the velocity in m s−1, a 2π meter box and the viscosity in
m2 s−1, can try to simulate a real experiment however even if we can numeri-
cally reach the velocity values close to the experiment values (order one), Un-
fortunately, we are far away to handle the real viscosity values of water or liquid
sodium (10−6 m2 s−1). Actually, we can reach numerical values of the viscosity
of 10−2 to 10−3 m2 s−1 which is just better than molasses (1 m2 s−1) or the honey
(10−1 m2 s−1).

Nevertheless, we can still define classical non dimensional numbers such as
the Reynolds number Rv = L V

ν
and Rm = L V

η
with a characteristic velocity

V , length scale L and the viscosity ν or the magnetic diffusivity η. We choose
to use the root mean square velocity Vrms = √

2Ev based on the total kinetic
energy Ev , or its average in time for fluctuated flow. We also choose the two
following characteristic lengths scale: the integral length scale define by Lint =

1
Ev

∑ Ev(k)
k

dk which measures the largest eddy scale size, where Ev(k) represent
the uni-dimensional isotropic energy density, and the Taylor microscale, the scale
where the viscous dissipation begins to affect the eddies, Lλ = √

5Ev/�v with
�v = 1

2

∫
(∇ × v(x, t))2dx3 is the enstrophy. In the fully turbulence regime,

experimental results find the relation Rλ ∼ √
Rv .

Note two important non dimensional numbers for liquid metal dynamo pro-
cess: Firstly, the magnetic Reynolds number Rm = LV

η
which represents the

ratio of the eddy turn over time τNL = Lint
Vrms

and the magnetic diffusion time

τη = L2
int
η

. This number is generally between 10 and 200 which implies that long
hydrodynamic simulations are needed to achieved one or two magnetic diffusion
times. Secondly, the magnetic Prandtl number Pm = ν

η
which is the ratio of the

magnetic diffusion time over the viscous time scale τν = L2
int
ν

. This number is
very small (10−5–10−6) in liquid metal and this implies high Reynolds number
regimes need to be reached to produce a reasonable magnetic Reynolds number
above the dynamo onset threshold.
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3.4. Numerical schemes

In the periodic box, we use the pseudo-spectral method initiated by the work of
Orszag (1969, 1972) [32, 35] and Orszag and Patterson (1971) [36]. The success
of this method is essential due to the high accuracy and the efficiency of the Fast
Fourier Transform (FFT). The linear terms are treated in spectral space, the non
linear terms in real space, and the FFT moves the fields between the two math-
ematical spaces. For the incompressible Navier–Stoke equation, the pressure is
eliminated by applying the divergence free operator in Fourier space. This trick
greatly simplifies the simulation of incompressible flow, but constrains us to re-
covering only periodic solutions. We use a “semi-exact” temporal scheme pro-
posed by Basdevant (1982) [40] to implicitly treat the viscous or diffusion terms.
This method has been used with success in homogeneous turbulence studies [31].
The equation diffusion system is written in spectral space as

dU�k
dt

= −νk2U�k + G�k(U) (3.5)

where U�k is the velocity function in the spectral space for the wave vector �k. And
the solution can be explicitly written with the exponential form as

d eνk2tU�k
dt

= eνk2tG�k(U�k(t), t) (3.6)

Using the second order of Adams-Basford scheme, the temporal scheme can be
written as

U�k(t + 
t) = U�k(t)e
−νk2
t + e−νk2
t
t

[
3

2
G�k(t) − 1

2
G�k(t − 
t)e−νk2
t

]

(3.7)

where 
t is time stepping. If we include the dealiasing there by removing high
wave numbers using the 3/2 rule, we get a stable numerical scheme. These meth-
ods are described in detail in the chapter 7.2 of the Peyret’s monography [34].

3.5. Turbulence and subgrid modeling

Nowadays the largest numerical simulation for the incompressible Navier–Stoke
equation in periodic geometry reach 40963 grid points [41], with a such mesh the
kinetic Reynolds number is bounded below Rv ∼ 65000 or Rλ ∼ 1200. This is
still far from the minimum of Rv ∼ 106 necessary to produce a dynamo in the low
magnetic Prandtl number limit. One way around this difficulty is to resort to use
Large Eddy Simulations (or LES) [42–45]. Such techniques are widely used in
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engineering contexts, as well as in atmospheric sciences and in some case in geo-
physics and astrophysics. Such subgrid model controls the energy transfer and
obtains a larger inertial range, where the energy cascade has a constant dissipa-
tion rate. We have used one particular LES model [30,46,47] where the viscosity
depends of the modulus of the wave-vectors �k. The turbulent viscosity becomes

ν(k, t) = ν0H(k)

√
E(Kmax,t)

Kmax
where H(k) is called a “cups” function equal to

unity at large scale and increases the dissipation a high wave number and ν0 de-
pends on the forcing and the Kolmogorov constant. This eddy viscosity form is
an asymptotic solution of a Navier–Stoke closure approximation. It is possible
to take in to account all the closure terms, and solve the full integro-numerical
system to obtain a dynamical and more precise LES model [48].

4. Magnetic induction

We consider the induction of a magnetic field in the flows of an electrically con-
ducting fluid at low magnetic Prandtl number and large kinetic Reynolds number.
The coupled magnetic and fluid equations (3.1)–(3.2) are solved using a mixed
scheme, where the magnetic field fluctuations are fully resolved and the veloc-
ity fluctuations at small scale are modeled using a Large Eddy Simulation (LES)
scheme as describe in (3.5). We study the response of a forced Taylor–Green
flow (eq. (3.3)) to an externally applied field B0 [49]. In a periodic box, the ex-
ternal magnetic field is implemented in spectral space by feeding energy to the
kx = ky = kz = 0 wave vector for the chosen magnetic field component.

Figure 1 shows the kinetic and magnetic spectra, at a given time of the simu-
lation. The kinetic energy spectrum exhibits a k−5/3 Kolmogorov scaling main-

Fig. 1. Magnetic (solid line) and kinetic (dash line) energy spectra.
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Fig. 2. Time traces of |b(x, t)|, for B0 = 0.1 x̂, at two fixed points.

Fig. 3. Power spectral density of the magnetic field fluctuations of bx(x, t) in time, recorded at space
location. (a) PSD computed as averages over Fourier transforms calculated over long time intervals
(164t0) to emphasize the low frequency behavior; (b) PSD estimated from Fourier transforms over
shorter time intervals (10t0). The behavior is identical for the by(x, t) and bx(x, t) field components.

tained by the LES scheme. The peak at low wave number, also visible on the
magnetic field spectrum, is due the large scale TG forcing. The magnetic inertial
range is well fitted by a k−11/3 power law in agreement with the Kolmogorov
phenomenology [1, 9], where the advection of the external magnetic field is bal-
ance by the magnetic diffusion B0∇.v ∼ η
b. Using this numerical “mixed
scheme”, we obtain low magnetic Prandtl numbers of Pm ∼ 10−3–10−4, but the
magnetic Reynolds number remains order one.

During the simulation, we record also the velocity and the magnetic fluctu-
ation at fixed points, so as to be able to compare these experimental dates. In
Fig. 2, we present a sample of the magnetic fluctuations. The amplitude of the
magnetic fluctuations are easily above level of the external magnetic field. As
shown in several experiment [9, 13, 17], the liquid metal turbulent flow represent
a efficient magnetic amplifier.

In Fig. 3 we plot the power spectra of temporal fluctuations of the magnetic
field component bx(x, t) recorded one point fixed. The higher end of the time
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spectrum follows a f −11/3 behavior (f is signal time frequency), as can be ex-
pected from the spatial spectrum using the Taylor hypothesis of “frozen” field
lines advected by the mean flow [9]. For frequencies between roughly 1/t0 and
1/10t0, where the dynamical time t0 is set to the magnetic diffusion time scale.
The time spectrum develops a 1/f behavior (Fig. 3b), which is observed in ex-
periment [13]. Note that the k−1 power law is not present on the spatial spectrum
in Fig. 1.

5. Linear dynamo onset

5.1. Static or turbulent kinematic dynamo

The dynamo effect is an instability, initiated by a magnetic seed, where the ge-
ometric proprieties and the dynamics of the fluid amplify the magnetic field en-
ergy exponentially. We call this regime the linear phase, or kinematic dynamo.
We must distinguish between the mathematical/static kinematic dynamo with the
turbulent/dynamical kinematic dynamo. In the first case, a velocity defined math-
ematically or an time averaged velocity field from a fluid experiment or a numer-
ical simulations are constant in time and inserted in the induction equation. In
the second case the velocity field evolves in time it evolution coming from a nu-
merical solution of the Navier–Stoke equation. However in the both cases the
Lorentz force is not present, and so there is no back reaction on the flow.

There are historical examples of mathematical kinematic dynamos with the
ABC flow, this being a helical Beltrami flow with chaotic Lagrangian trajecto-
ries [39]. The kinematic dynamo instability of the ABC flow, even with one of
the amplitude coefficients set to zero (21/2 dimensional flow) [50, 51] has been
study intensively [52–56], especially for fast dynamo investigation [57–61]. The
magnetic field grows near the stagnation point of the flow, producing “cigar”
shape structures aligned along the unstable manifold. For the ABC with all the
coefficient equal to the unity (A = B = C = k0 = 1), there are two windows
of dynamo instability [52,53], which disappear when the velocity field occurs on
smaller scales (k0 > 2) [54].

In the dynamic regime, where the velocity is fully resolved numerically at
constant forcing FABC (3.4), and above a critical Reynolds number, the hydro-
dynamic system becomes unstable. After the first bifurcation, further increase
of the kinematic Reynolds number, leads the system to jump to different attrac-
tors [62–65], until finally the fully turbulent regime is reached. Then the dy-
namo onset increase rapidly with the Reynolds number, until finally reaching a
plateau [66].
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Fig. 4. Representation of fundamental Taylor–Green box in a fully periodic box.

5.2. Taylor–Green dynamo

The Taylor–Green flow included height fundamental box (for k0 = 1) (see Fig. 4).
In the fundamental box, the Taylor–Green vortex has similar hydrodynamic pro-
prieties to the experimental Von Kàrmàn vortex [67]. It has been demonstrated
that this forcing can produce a numerical dynamo [68,69] at low Reynolds num-
ber and with a magnetic Prandtl number order one. Note the mathematical flow
itself can not be a kinematic dynamo, it has one velocity component set to zero
(eq. 3.3). The system needs the recirculation created by the inertial term, pro-
ducing a three-dimensional velocity necessary for the dynamo instability. When
the Reynolds number increases, the onset of the dynamo also increases until is
reaching a plateau [70] (see Fig. 5).

We focus here on flows generated by a deterministic forcing at large scales for
which a mean flow develops in addition to turbulent fluctuations which, observa-
tions show, develop over all spatial and temporal scales.

The spectra of the dynamical run and its average in time are shown in Fig. 5a,
for the DNS calculation. While the dynamical flow has a typical turbulence spec-
trum, the time-averaged field is sharply peaked at the size of the TG cell. As
the Reynolds number varies, the characteristics of the average flow are constant
(Fig. 5b). An three-dimensional representation of a snapshot in time of the ki-
netic energy and the time average the kinetic energy along all the simulation are
shown in Fig. 6.

Now, using the time averaged velocity for static kinematic dynamo studies,
we observe the existence of two dynamo branches, Fig. 7, a behavior already
noted for the ABC flow [50]. The first dynamo mode has larger scales than
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Fig. 5. (a) Kinetic energy spectra for TG1 (ν = 0.007, N = 2563); EV,dyn(k, t = T ) (solid line),
EV,kin(k) (dotted line); (b): integral length scales Ldyn and Lkin, normalized by the size of the unit
TG cell, versus the flow Reynolds numbers.

Fig. 6. (l.h.s) Snapshot of the velocity, shown in volume rendering of the kinetic energy, and some
field line trajectories. the r.h.s displays the volume rendering of the kinetic energy for the time average
velocity (same parameter as Fig. 4) (imagery made with Vapor [77]).

the fundamental box and then exist only by the collective effect of the height
Taylor–Green vortex and the periodic boundaries. The second one is inside the
fundamental box, and looks like the double bananas shape [72] found numeri-
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Fig. 7. Growth rates for the kinematic dynamo generated by mean flow versus the magnetic Reynolds
number.

cally using the Von Kàrmàn time average velocity, recorded from water experi-
ments [73, 74].

We compare in Fig. 8 the evolution of all Rc
M the critical magnetic Reynolds

numbers. At low RV , the dynamo threshold for the dynamical problem lies
within the low RM dynamo window for the time-averaged flow. For RV larger
than 200, the dynamical dynamo threshold lies in the immediate vicinity of the
upper dynamo branch (high Rc

M mode of the time-averaged flow). It is unclear
from Fig. 8 whether the effect of the fluctuations in the dynamical runs is to in-
crease the threshold of the first kinematic window, or decrease the threshold of
the second one. In the work of Laval et al. [75], some artificial noise is added
to the mean flow, and by this procedure the dynamo threshold increases with the
level of noise. Unfortunately the realistic velocity fluctuation are not a simple
noise, so at this stage we need further works to conclude.

In the dynamical runs, the magnetic energy spectrum peaks at scales smaller,
than the hydrodynamic integral scale, it is suggested that turbulent fluctuations
play a role on the dynamo effect. Looking only at the magnetic spectra the
Taylor–Green dynamo, it looks like a fluctuation type dynamo. But in fact the
Taylor–Green dynamo is easier to obtain than fluctuation type dynamo (Fig. 1b
of [76]), and the localisation of growing magnetic energy inside the neutral plan
of the Taylor–Green vortex, suggest that the mean flow plays a major role in the
dynamo process [72]. We can only suggest at this stage, that certainly there is
a double contribution to the dynamo, the mean flow mode and some additional
fluctuating dynamo process.
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Fig. 8. Evolution of the critical magnetic Reynolds numbers for the kinematic runs from the time aver-
age velocity in diamond symbol and the dynamical runs in full line versus the Reynolds number RV .

6. Non linear behavior

6.1. Subcritical dynamo

Previous works ([70–72, 75] or chap. 5.2) have explored the response of Taylor–
Green forcing to a magnetic seed and computed the onset of the dynamo versus
the Reynolds number. In the non linear regime when the magnetic field has
reached sufficient amplitude, it can react back onto the velocity field, saturate the
instability and reach a statistically stationary state, with approximate equiparti-
tion EM ∼ EV (Fig. 9, with the time less then 1000).

In Fig. 9, we have quenched the system at t = 1000, the magnetic diffusivity
η is suddenly increased by a factor of 4, lowering RM below Rc

M . After a short
transient, both EV and EM decrease and reach a second statistically stationary
state, with a non zero magnetic energy—a new dynamo state, for which equipar-
tition is reached again. This behavior is evidence for global subcriticality [78].
The different levels of fluctuations in the two regimes suggest the possibility of
different dynamo states, depending on the magnetic field or on history of the sys-
tem. As subcritical bifurcations are also associated with hysteresis cycles, we
have repeated the quenching procedure starting from the same dynamo state A,
and obtain a clear hysteresis cycles shown in Fig. 10.
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Fig. 9. After a dynamo is self-generated from infinitesimal perturbations, the induction equation is
quenched at t = 1000 by a four-fold increase of the magnetic diffusivity. It corresponds to a sudden
change from A to A9—cf. Fig. 10.

Fig. 10. Bifurcation curves and hysteresis cycles when an external magnetic field is applied (full
diamond symbols) or without one (full circle symbols). In this case, the subcritical quenched states
(see text) form the red line. Jumps between the two branches link A to A′ and C to C′.

With an applied magnetic field the hysteresis cycle still exist but is smaller,
and by changing suddenly the magnetic Reynolds number or the value of the
applied magnetic field, it is possible to jump from branch to branch as Fig. 10.

A less deterministic behavior is observed when the system is operated in the
vicinity of point D—shown along the blue curve in Fig. 10. We observe that the
systems spontaneously switches between dynamo and non-dynamo periods, as
shown in Fig. 11. This is reminiscent of the “on-off” bifurcation scenario. We
present an extended example of this behavior in the next Section 6.2.
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Fig. 11. Evolution in time of the kinetic (EV ) and magnetic energy (EB ) when the flow is occurs in
the immediate vicinity of point D—see Fig. 10.

6.2. On-Off intermittency dynamo

On-Off intermittency has been observed in different physical experiments in-
cluding electronic devices, electrohydrodynamic convection in nematics, gas dis-
charge plasmas, and spin-wave instabilities [87]. In the MHD context, near the
dynamo instability onset, the On-Off intermittency has been investigated by mod-
eling of the Bullard dynamo [88], and experimental results have confirm a such
behavior [18].

Using direct numerical simulation [84, 85], they were able to observe
On-Off intermittency solution of the full MHD equations for the ABC dynamo
(FABC(k0 = 1)), (here we present an extended work of this particular case) [86].

Recent dynamo experiment results (VKS) [89] show some intermittent behav-
ior, with features reminiscent of On-Off self-generation that motivated our study.

A simple and proven very useful way to model the behavior of the magnetic
field during the on-off intermittency is using a stochastic differential equation
(SDE-model) [82, 83, 90–98]:

∂Eb

∂t
= (a + ξ)Eb − NL(Eb), (6.1)

where Eb is the magnetic energy, a is the long time averaged growth rate, ξ

models the noise term typically assumed to be white (see however [97, 98])
and of amplitude D such that 〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′). NL is a non-linear
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Fig. 12. A typical example of a burst. The top panel shows the evolution of the kinetic energy (top
line) and magnetic energy (bottom line). The bottom panel shows the evolution of the magnetic
energy in a log-linear plot. During the on phase of the dynamo the amplitude of the noise of the
kinetic energy fluctuations is significantly reduced.

term that guaranties the saturation of the magnetic energy to finite values typi-
cally taken to be NL(X) = X3 for investigations of supercritical bifurcations or
NL(X) = X5 − X3 for investigations of subcritical bifurcations. In all these
cases (independent of the non-linear saturation mechanism) the above SDE leads
to stationery distribution function that for 0 < a < D has a singular behavior at
Eb = 0: P(Eb) ∼ E

a/D−1
b indicating that the systems spends a lot of time in the

neighborhood of Eb = 0 [93–96].
In the dynamical system eq. (6.1) studied, the noise amplitude or the noise

proprieties do not depend on the amplitude of the magnetic energy.
However, in the MHD system, when the non-linear regime is reached, the

Lorentz force has a clear effect on the flow by decreasing the small scale fluc-
tuations, and decreases of the local Lyapunov exponent [79, 80]. In some cases,
the flow is altered so strongly that the MHD dynamo system jumps into an other
attractor, that cannot not no longer sustain the dynamo instability [81]. Although
the exact mechanism of the saturation of the MHD dynamo is still an open ques-
tion that might not have a universal answer, it is clear that both the large scales
and the turbulent fluctuations are altered in the non-linear regime and need to be
accounted in a model.

Figure 12 demonstrates this point, by showing the evolution of the kinetic
and magnetic energy as the dynamo goes through On- and Off- phases. During
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Fig. 13. The probability distribution functions of Eb , at seven different values of the magnetic
Reynolds number The last case shows no on-off intermittency. The dashed lines shows the prediction
of the SDE model.

the On phases, the mean value and the amplitude of the observed fluctuations of
the kinetic energy are significantly reduced. As a result the On-phases last a lot
longer than the SDE-model would predict. The effect of the long duration of the
“On” times can also be seen in the pdfs of the magnetic energy. The probabil-
ity distribution function (pdf) for the examined magnetic Reynolds number are
shown in Fig. 13. For different values of the magnetic Reynolds number the pdf
of the magnetic field is concentrated at large values Eb 
 1 producing a peak in
the pdf curves. When the magnetic Reynolds number increases the On-Off power
low disappears.

This peak can be attributed to the quenching of the hydrodynamic “noise” in
the nonlinear stage. In principle the SDE model eq. (6.1) can be modified to
include this effect: using an energy Eb depending of the amplitude of the noise.
There many possible ways to model the quenching of the noise, however the
nonlinear behavior might not be a universal behavior and we do not attempt to
suggest a specific model.

7. Perspective

The periodic box remains an attractive tool to study MHD turbulence and the im-
pact of velocity fluctuation on the dynamo onset. The absence of boundary con-
dition could be modelled by new techniques introduced in pseudo-spectral codes
such as the penalisation method [99] or pseudo-penalisation method [100]. The
classical wishe in the numerical simulation is generally to increase the resolution
to reach high Reynolds numbers. But there is a more challenging limit which is
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more relevant to dynamo experiment: to massively increase the run time of the
simulations. Indeed, the dynamo experiments easily reach a thousand magnetic
diffusion time (
T ∼ 1000 τη). If we want to be able to compare data statisti-
cally between the experiments and the simulations, the simulation time needs to
be extended (
T ∼ 1000 RmτNL) between ten thousand to hundred thousand of
hydrodynamic eddy turn over time.
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