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We present a version of a dynamical spectral model for large eddy simulation based on the eddy damped
quasinormal Markovian approximation �S. A. Orszag, in Fluid Dynamics, edited by R. Balian, Proceedings of
Les Houches Summer School, 1973 �Gordon and Breach, New York, 1977�, p. 237; J. P. Chollet and M.
Lesievr, J. Atmos. Sci. 38, 2747 �1981��. Three distinct modifications are implemented and tested. On the one
hand, whereas in current approaches, a Kolmogorov-like energy spectrum is usually assumed in order to
evaluate the non-local transfer, in our method the energy spectrum of the subgrid scales adapts itself dynami-
cally to the large-scale resolved spectrum; this first modification allows in particular for a better treatment of
transient phases and instabilities, as shown on one specific example. Moreover, the model takes into account
the phase relationships of the small scales, embodied, for example, in strongly localized structures such as
vortex filaments. To that effect, phase information is implemented in the treatment of the socalled eddy noise
in the closure model. Finally, we also consider the role that helical small scales may play in the evaluation of
the transfer of energy and helicity, the two invariants of the primitive equations in the inviscid case; this leads
as well to intrinsic variations in the development of helicity spectra. Therefore, our model allows for simula-
tions of flows for a variety of circumstances and a priori at any given Reynolds number. Comparisons with
direct numerical simulations of the three-dimensional Navier-Stokes equation are performed on fluids driven
by an Arnold-Beltrami-Childress �ABC� flow which is a prototype of fully helical flows �velocity and vorticity
fields are parallel�. Good agreements are obtained for physical and spectral behavior of the large scales.
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I. INTRODUCTION

Turbulent flows are ubiquitous, and they are linked to
many issues in the geosciences, as in meteorology, oceanog-
raphy, climatology, ecology, solar-terrestrial interactions, and
fusion, as well as the generation and ensuing dynamics of
magnetic fields in planets, stars and galaxies due to, e.g.,
convective fluid motions. As manifestations of one of the last
outstanding unsolved problems of classical physics, such
flows form today the focus of numerous investigations.

Natural flows are often in a turbulent state driven by large
scale forcing �novas explosion in the interstellar medium� or
by instabilities �convection in the sun�. Such flows involve a
huge number of coupled modes at different scales leading to
great complexity both in their temporal dynamics and in their
emerging physical structures. Nonlinearities prevail when the
Reynolds number Rv—which measures the amount of active
temporal or spatial scales in the problem—is large. In the
Kolmogorov framework �1�, the number of degrees of free-
dom increases as Rv9/4 for Rv�1; for example in geophys-
ical flows, Rv is often larger than 108. The ability to probe
large Rv, and to examine in details the large-scale behavior
of turbulent flows depends critically on the ability to resolve
such a large number of spatial and temporal scales, or else to
model them adequately.

Only modest Reynolds numbers can be achieved by direct
numerical simulation �DNS� with nowadays computers. One
way around this difficulty is to resort to large eddy simula-
tions �or LES, see, e.g., �2–5� and references therein�. Such
techniques are widely used in engineering contexts, as well
as in atmospheric sciences and, to a lesser extent, in geo-

physics �see �6�� and astrophysics. A specific class of LES
models is based on two-point closures for turbulent flows,
such as the eddy damped quasi normal Markovian approxi-
mation, or EDQNM �7�. These models, developed in the
midseventies, gave rise to successful LES when implement-
ing their eddy viscosity formulation �8,9�. Such LES tech-
niques have been used mostly in conjunction with pseu-
dospectral methods, since they are best expressed in Fourier
space in terms of energy spectra; note that these numerical
methods allow for using global energy transfer quantities in-
stead of using only local mesh measurement statistics as sub-
grid models do in configuration space.

In this paper, we propose a new LES formulation that
generalizes the usual EDQNM approach which is based on a
Kolmogorov k−5/3 spectrum �K41 hereafter�, by allowing for
a priori any kind of energy spectrum as may occur in the
complex dynamical evolution of various turbulent flows,
since our method �as will be shown later� is based on the
evaluation of the transfer terms for energy and helicity. For
example, there are small intermittency corrections to the K41
spectrum due to the presence of strongly localized vortex
filament structures in fluid turbulence; similarly, the presence
of waves may alter the energy spectrum �see, e.g., �10��. The
method proposed here may also be particularly important
when dealing with magnetohydrodynamics �MHD� flows,
i.e., when coupling the velocity to the magnetic induction. In
that case, the energy spectra can be either shallower �11� or
steeper than k−5/3, because of anisotropy induced by a uni-
form magnetic field leading to Alfvén wave propagation and
to weak turbulence for strong magnetic background �12�.
Similarly, in the case of strong correlations between velocity
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and magnetic fields �13�, spectra that differ from the classical
K41 phenomenology may emerge. Note that, although we
focus here on neutral flows, the extension of our model to
conductive MHD flows presents no particular difficulties
�14�.

In general, the traditional formulation of turbulent energy
transfers only takes into account the energy of the flow but
not its helicity. However, the closure transfer terms for he-
licity are well known �9�, including in MHD �15�. The ki-
netic helicity H=1 /2�v ·w� �where w=��v is the vorticity�
represents the lack of invariance of the flow by plane sym-
metry �w is an axial vector�. This global invariant of the
Euler equation �16� has been little studied until recently �see,
however, �9,17–19� and references therein�. Furthermore, the
intermittent structures that populate a turbulent flow at small
scales, namely the vortex filaments, are known to be helical
�see �16,18,19��; this implies that the nonlinear transfer terms
involving small scales are weakened. This is consistent with
several recent findings, namely �i� helical vortex tubes, in a
wavelet decomposition of a turbulent flow into a Gaussian
component and a structure component, represent close to
99% of the energy and corresponds to the strong tails of the
probability distribution function of the velocity gradients
�20�; �ii� in a decomposition of the velocity field into large V
and small v components, dropping �artificially� the nonlocal
�in scale� nonlinear interactions �vV� leads to less intermit-
tency �21�, indicating that intermittency involves interactions
between structures �such as vortex tubes� that incorporate
small scales and large �integral� scales through a large aspect
ratio; and �iii� the spectrum of helicity is close to k−5/3 in the
K41 range for energy, but not quite: the relative helicity �̃
=H�k� /kE�k� decreases more slowly than 1/k �22,23�, indi-
cating that the return to full isotropy is not as fast as one may
have conjectured in the small scales. Finally, helicity is also
invoked as possibly responsible for the so-called bottleneck
effect, i.e., the accumulation of energy at the onset of the
dissipation range �24�, although it is not clear whether this
effect is or not an inertial range phenomenon �23�.

Our dynamical spectral LES model, based on the
EDQNM closure, is described in Sec. II. In Sec. III, numeri-
cal tests of the model are performed by comparisons with
three-dimensional direct numerical simulations �DNS� for
strong helical ABC flows �25�, as well as with the classical
Chollet-Lesieur approach �8�. We also intercompare our he-
lical and nonhelical models, similarly to other studies per-
formed with different helical subgrid-scale models �26�, and
follow up with predictions for high Reynolds number flows.
Section IV is the conclusion. Finally, details on closure ex-
pressions of the nonlinear transfers for energy and helicity,
and on the numerical implementation of the model are re-
spectively given in Appendixes A and B.

II. MODEL DESCRIPTION

A. Equations

Let us consider the Fourier transform of the velocity
v�x , t� and the vorticity w�x , t�=��v�x , t� fields at wave
vector k,

v�k,t� = �
−�

�

v�x,t�e−ik·xdx , �1�

w�k,t� = �
−�

�

w�x,t�e−ik·xdx . �2�

In terms of the Fourier coefficients of the velocity compo-
nents, the Navier-Stokes equation for an incompressible
flow, with constant unit density, reads

��t + �k2�v��k,t� = t�
v�k,t� + F�

v�k,t� , �3�

where Fv is the driving force, � is the kinematic viscosity,
and tv�k , t� is a bilinear operator written as

t�
v�k,t� = − iP���k�k	 �

p+q=k
v��p,t�v	�q,t�; �4�

P���k�=
��−k�k� /k2 is the projector on solenoidal vectors,
enforcing incompressibility. In the absence of viscosity, both
the total kinetic energy E=1 /2�v2� and the total helicity H
=1 /2�v ·w� are conserved. Such conservation laws constrain
the temporal evolution of the turbulent fluid: the direct cas-
cade of energy to the small scales, and the related cascade of
helicity �27� both stem from these laws. Furthermore, be-
cause helicity may be playing an important role in the small
scales �see, e.g., �16�, and references therein and more re-
cently �18,20,24��, we are taking in this paper the approach
of following the time evolution of both the energy and helic-
ity spectra �see below�. Taking the rotational of Eq. �3� in
Fourier space leads to

��t + �k2�w��k,t� = t�
w�k,t� + F�

w�k,t� �5�

with

t�
w�k,t� = ��
�k
k	 �

p+q=k
v��p,t�v	�q,t� , �6�

F�
w�k,t� = i��
�k
F�

v�k,t� . �7�

We respectively define the modal spectra of energy E�k , t�
and helicity H�k , t� in the usual way as

E�k,t� =
1

2
v�k,t� · v*�k,t� , �8�

H�k,t� =
1

2
v�k,t� · w*�k,t� , �9�

where the asterisks stand for complex conjugates. Note that
w is a pseudo�axial� vector, and correspondingly the helicity
is a pseudoscalar. The integration of E�k , t� and H�k , t� over
shells of radius k= 	k	 respectively gives the isotropic energy
E�k , t� and helicity H�k , t� spectra. Their spatiotemporal evo-
lutions obey the following equations:

��t + 2�k2�E�k,t� = TE�k,t� + FE�k,t� , �10�

��t + 2�k2�H�k,t� = TH�k,t� + FH�k,t� , �11�

where TE�k , t� and TH�k , t� denote energy and helicity non-
linear transfers at wave number k. They are functionals of the
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tensors involving triple correlations between v�k , t�, v�p , t�,
and v�q , t� with the constraint that p+q=k due to the con-
volution term in Fourier space emanating from the nonlin-
earities of the primitive Navier-Stokes equation.

Finally, under the closure hypothesis customary to the
EDQNM approach �see �9� and references therein�, the time
evolution of E�k , t� and H�k , t� can be described by the
EDQNM equations where the exact transfer terms TE�k , t�
and TH�k , t� in the equations above are replaced by the clo-

sure evaluations denoted as T̂E�k , t� and T̂H�k , t�. The closure
is done at the level of fourth-order correlators which are
expressed in terms of third-order ones, with a proportionality
coefficient—dimensionally, the inverse of a time—taken as
the sum of all characteristic rates appearing in a given prob-
lem, namely the linear �dispersive�, nonlinear, and dissipa-
tive rates. Tested against DNS �9�, these closures allow for
exponential discretization in Fourier space and hence for ex-
ploration of high Reynolds number regimes. Their drawback
is that all information on moments of the stochastic velocity
field above second order is lost, and phase information
among Fourier modes is lost as well so that, for example,
intermittency is not present in this approach, nor is there any
information about spatial structures.

The full formulation of the EDQNM closure leads to a set
of coupled integrodifferential equations for the energy and
helicity spectra E�k , t� and H�k , t�, with the nonlinear trans-
fers decomposed into emission terms �SE1

, SE3
and SH1

, SH3
�,

and absorption terms �SE2
, SE4

and SH2
, SH4

�; note that we use
SEi

and SHi
, with i� �1, 4,�, as short-hand notations for the

full spectral functions SEi
�k , p ,q , t� and SHi

�k , p ,q , t�. The ex-
pressions of these closure transfer terms are given in Appen-
dix A. Note that absorption terms are linear in the spectra,
the dynamical evolution of which we are seeking, whereas
emission terms are inhomogeneous terms involving the p ,q
wave numbers on which the double sum is taken �with p
+q=k�. The absorption term, SE2

, leads to the classical con-
cept of eddy viscosity, whereas the emission term, SE1

, is in
general modeled as an eddy noise, although it is known
through both experiments and DNS that the small scales are
far from following a Gaussian distribution, with substantial
wings corresponding to strong localized structures. Here, we
present a different method to treat the emission term �see
Sec. II E�.

B. Spectral filtering

When dealing with an LES method, as a complement in
the unresolved small scales to the dynamical evolution of the
large scales following the Navier-Stokes equation, we need
to partition Fourier space into three regions; specifically, we
need to introduce a buffer region between the scales that are
completely resolved �above kc

−1, where kc is a cutoff wave
number depending on the resolution of the LES run�, and the
scales that are completely unresolved, say beyond akc with a
of O�1�. Following �28� and according to the test field model
closure, the contribution of subgrid scales, to the explicitly
resolved inertial scales, leads to an eddy viscosity depending
both on the wave number and the energy spectrum at that
wave number. It is also shown that beyond 2kc, 85% of the

transfer is covered by the eddy viscosity, while beyond 3kc,
close to 100% is covered; we thus choose to take a=3.

The truncation of Eqs. �3�, �5�, �10�, and �11� at two dif-
ferent wave numbers k=kc and k=3kc gives rise to three
types of transfer terms, corresponding, respectively, to local,
nonlocal, and highly nonlocal interactions �where locality re-
fers to Fourier space, i.e., to interactions between modes of
comparable wave number�:

�i� The fully resolved transfer terms TE
� and TH

� involve
triadic interactions such that k, p, and q are all three smaller
than kc; this interval is denoted �.

�ii� The intermediate nonlocal tranfer terms TE,H
� , in which

p and/or q are contained in the buffer zone between kc and
3kc �hereafter denoted ��.

�iii� The highly nonlocal tranfer terms TE,H
� , in which p

and/or q are larger than 3kc �hereafter denoted ��.
We choose to model TE,H

� and TE,H
� in Eqs. �10� and �11�

by appropriately modified EDQNM transfer terms. We there-
fore need to know the behavior of both energy and helicity
spectra after the cutoff wave number kc=N /2−1, where N is
the linear grid resolution of the LES numerical simulation.
Whereas it is customary to assume a k−5/3 Kolmogorov spec-
trum in this intermediate range, here we choose a different
approach: between k=kc and k=3kc, both spectra are as-
sumed to behave as power laws �with unspecified spectral
indices� followed by an exponential decrease, viz.

E�k,t� = E0k−�Ee−
Ek, kc � k � 3kc, �12�

H�k,t� = H0k−�He−
Hk, kc � k � 3kc, �13�

where �E, 
E, E0, and �H, 
H, H0 are evaluated, at each time
step, by a mean square fit of the energy and helicity spectra,
respectively. Note that it is understood that the Schwarz in-
equality 	H�k�	�kE�k� is fulfilled at all times. When either

E or 
H is close to zero, we consider that the energy �or
helicity� spectrum has an infinite inertial range with a k−�E,H

spower law �see Eq. �20��, so we can write

E�k,t� = E0k−�E, 3kc � k � � , �14�

H�k,t� = H0k−�H, 3kc � k � � . �15�

C. Eddy viscosity

In the context of spectral models for the Navier-Stokes
equation, the concept of eddy viscosity was introduced by
Kraichnan �28�. This transport coefficient, denoted ��k 	kc , t�,
allows one to model the nonlinear transfer through a dissipa-
tive mechanism, as first hypothesized by Heisenberg. With
the TE

� and TE
� terms defined above, and where the hat sym-

bol denotes the fact that the EDQNM formulation of these
partial transfers is taken, the eddy viscosity reads

��kkc,t� = −
T̂E

��k,t� + T̂E
���k,t�

2k2E�k,t�
= ���k	kc,t� + ����k	kc,t� ,

�16�

thus separating the contribution stemming from the buffer
zone ��� from those of the outer zone ���. Note that only
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the part of the transfer proportional to the energy spectrum at
wave number k �i.e., the SE2

�k , p ,q , t� term defined in Appen-
dix A� is taken into account in the derivation of ���k 	kc , t�.
Indeed, in our model, the closure transfer term T̂E

��k , t� is
integrated at each time step, but an eddy viscosity from this
whole transfer term cannot be extracted; only the part that
explicitely contains E�k , t� �the linear part of the transfer in
E�k,t�� enables the derivation of an eddy viscosity, namely,

���k	kc,t� = −� �
�

�kpqSE2
�k,p,q,t�

2k2E�k,t�
dpdq

=� �
�

�kpq
p2

2k2q
�xy + z3�E�q,t�dpdq . �17�

Let us now evaluate the eddy viscosity in the outer region,
���k 	kc , t�, coming from the highly nonlocal EDQNM trans-
fer terms. Since the �k , p ,q� triangles are very elongated in
the � zone, with k� p ,q, an algebraical simplification oc-
curs leading to an explicit expression for ���k 	kc , t�. Indeed,

it has been shown �29� that a Taylor expansion of T̂E
��k , t�

with respect to k /q leads, at first order, to the following
asymptotic transfer term:

T̂E
���k� = −

2

15
k2E�k��

3kc

�

�kpp
5E�p� + p
�E�p�

�p
�dp ,

�18�

where time dependency is omitted for simplicity. Since now

T̂E
��k� explicitely depends on E�k�, it is straightforward to

formulate the corresponding eddy viscosity ���k 	kc , t� thus
defined as

����k	kc,t� =
1

15
�

3kc

�

�kpp
5E�p� + p
�E�p�

�p
�dp . �19�

When E�p� is replaced by its power law exponential decay
approximation �see Eq. �14��, we recover the so-called
“plateau-peak” model �9�,

����k	kc,t� � 0.31
5 − �E

1 − �E

3 − �ECK
−3/2
E�3kc,t�

3kc
�1/2

.

�20�

Finally, in the energy equation, Eq. �10�, the total eddy vis-
cosity derived from the nonlocal and highly nonlocal transfer
terms is simply obtained by adding the two contributions, as
stated before, ��k 	kc , t�=���k 	kc , t�+���k 	kc , t�.

Note that in the helicity equation, Eq. �11�, the transport
coefficient stemming from the helicity transfer term TH�k , t�
can be similarly evaluated in the buffer zone and the outer
zone, and written as

�H�k	kc,t� = −
T̂H

��k,t� + T̂H
���k,t�

2k2H�k,t�
= �H

��k	kc,t� + �H
���k	kc,t� ,

�21�

with

�H
��k	kc,t� = −� �

�

�kpqSH2
�k,p,q,t�

2k2H�k,t�
dpdq . �22�

It is straightforward to show that this eddy viscosity term has
the same formulation as ���k 	kc , t� �see Appendix A for the
definition of SH2

�k , p ,q , t��. For the helicity transfer term

T̂H
��k , t�, simple algebraic calculations lead to

T̂H
���k� = −

2

15
k2H�k��

3kc

�

�kpp
5E�p� + p
�E�p�

�p
�dp .

�23�

The integrands in Eqs. �18� and �23� are thus identical; this
in turn provides the same eddy viscosity in the outer domain
than for the energy, namely �H

��k 	kc , t�=���k 	kc , t�. Alto-
gether, the same total eddy viscosity appears in both the en-
ergy and helicity equations. This is expected from the formu-
lation of the spectral closure, in which the temporal
dynamics of the second-order velocity correlation function is
separated into its symmetric �energetic� and antisymmetric
�helical� parts.

D. Helical eddy diffusivity

At wave number k, the energy transfer obtained from the
use of the EDQNM closure involves a linear term in the
helicity spectrum H�k , t� �specifically, SE4

�k , p ,q , t� defined
in Appendix A, Eq. �A5��; from this term, a new transport
coefficient, similar to the ���k 	kc , t� eddy viscosity, can be
built. In the buffer zone, this new coefficient, hereafter
named “helical eddy diffusivity,” reads

�̃��k	kc,t� =� �
�

�kpqSE4
�k,p,q,t�

2k2H�k,t�
dpdq

=� �
�

�kpq
1

2k2q
z�1 − y2�H�q,t�dpdq . �24�

Note that, dimensionally, this helical diffusivity �̃ scales as
� /k. As before a total helical eddy diffusivity can be defined
as �̃�k 	kc , t�= �̃��k 	kc , t�+ �̃��k 	kc , t�, where �̃�k 	kc , t� repre-
sents the contribution of the small-scale helicity spectrum to
the kinetic energy dissipation. Recall that, in the outer zone,

the Taylor expansion of the highly nonlocal transfer, T̂E
��k , t�,

with respect to k /q�1, leads at first order to Eq. �18�, with
no linear contribution from H�k , t�. We therefore assume that
the transfer part associated with helical motions in the outer
zone is negligible, so that �̃��k 	kc , t�=0. The total helical
eddy diffusivity thus reduces to �̃�k 	kc , t�= �̃��k 	kc , t�.

E. Emission transfer terms

The parts of the EDQNM transfer terms which are not
included either in the eddy viscosity or in the helical eddy
diffusivity, involve energy and helicity interactions at wave
numbers p and q both larger than kc. Respectively denoted

T̂E
pq�k , t� and T̂H

pq�k , t�, they read

T̂E
pq�k,t� = �

kc

3kc �
k−p

k+p

�kpq�t��SE1
+ SE3

�dpdq ,
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T̂H
pq�k,t� = �

kc

3kc �
k−p

k+p

�kpq�t��SH1
+ SH3

�dpdq , �25�

where SEi,Hi
stands for SEi,Hi

�k , p ,q , t�.
Note that, on the one hand, the established eddy viscosity

and helical eddy diffusivity can be directly used in the
Navier-Stokes equation for the modal energy and helicity
spectra, E�k , t� and H�k , t�, respectively. On the other hand,
in order to implement in these modal equations, the isotropic

transfers T̂E
pq�k , t� and T̂H

pq�k , t�, we assume that they are uni-
formly distributed among all k wave vectors belonging to the
same k shell. This means that the nonlocal modal energy and

helicity transfers, respectively, T̂E
pq�k , t� and T̂H

pq�k , t�, can be

expressed as T̂E
pq�k , t�= T̂E

pq�k , t� /4�k2 and T̂H
pq�k , t�

= T̂H
pq�k , t� /4�k2.

F. Numerical field reconstruction

To compute our LES model for all k�kc, we proceed in
two steps. At a given time, the Navier-Stokes equation is first
solved using the eddy viscosity and the helical eddy diffu-
sivity, namely

��t + �k2�v��k,t� = − iP���k�k	 �
p+q=k

k,p,q�kc

v��p,t�v	�q�

− ��k	kc,t�k2v��k,t� − �̃�k	kc,t�k2w��k,t�

+ F�
v�k,t� . �26�

Then, the effects of the emission terms, T̂E
pq�k , t� and

T̂H
pq�k , t�, are introduced in the numerical scheme. In most

previous studies, these terms are taken into account through
a random force, uncorrelated in time �see, e.g., �30��; this
corresponds to the vision that they represent an eddy noise
originating from the small scales. However, the small scales
are all but uncorrelated noise; the phase relationships within
the small-scale structures play an important role, albeit not
fully understood, in the flow dynamics. It is well-known that
a random field with a k−5/3 Kolomogorov energy spectrum,
but otherwise random phases of the Fourier coefficients, is
very different from an actual turbulent flow, lacking, in par-
ticular, the strong vortex tubes so prevalent in highly turbu-
lent flows. Similarly, it has been recently shown �31� that,
upon phase randomization, the ratio of nonlocal energy
transfer �i.e., the transfer involving widely separated scales�
to total energy transfer reduces to a negligible amount,
whereas this ratio is close to 20% at the resolutions of the
performed numerical experiments, corresponding to a Taylor
Reynolds number of about 103. These considerations lead us
to directly incorporate the emission terms in the second step
of our numerical procedure. The modal spectra of the energy
and the helicity, associated to the v�k , t� field computed from
Eq. �26�, now has to verify the following equations where
the emission transfer terms are taken into account;

��t + 2�k2�E�k,t� = − 2��k	kc,t�k2E�k,t� − 2�̃�k	kc,t�k2H�k,t�

+ TE
��k,t� +

T̂E
pq�k,t�
4�k2 + FE�k,t� , �27�

��t + 2�k2�H�k,t� = − 2��k	kc,t�k2H�k,t� − 2�̃�k	kc,t�k4E�k,t�

+ TH
��k,t� +

T̂H
pq�k,t�
4�k2 + FH�k,t� , �28�

where FE�k , t� and FH�k , t� denote the spectral terms stem-
ming from the driving force. Recall that TE

��k , t� and TH
��k , t�

are the resolved transfer terms based on triadic velocity in-
teractions with k, p, and q all smaller than kc. Once the
updated E�k , t� and H�k , t� modal spectra are obtained, the
velocity field is updated. However, a difficulty immediately
arises: the phase relationships between the three components
of the velocity field in the EDQNM �and other� closures is of
course a priori lost. We thus proceed to the reconstruction of
the three spectral velocity components, written as v��k , t�
=���k , t�ei���k,t�, and rebuild the different velocity phases by
using the incompressibility and realizability �	H�k , t�	
�kE�k , t�� conditions, as explained in Appendix B.

III. NUMERICAL TESTS OF THE MODEL

A. Numerical setup

In order to assess the model accuracy to reproduce the
physics involved in fluid flows, we performed direct numeri-
cal simulations �DNS� of the Navier-Stokes equation and
computations using our LES formulation. We denote LES P
the code with partial recovery of phases and without helical

effects �i.e., with �̃�0 and T̂H
pq�0�, and LES PH the code

with helical effects incorporated. In our LES description, the
energy spectra—and helicity spectra when considered—of
the subgrid scales self-adapt to the large scale resolved spec-
tra �i.e., no spectral scaling laws are prescribed�. We can
therefore study a variety of flows, such as either low or high
Reynolds number flows, or the early phases of the temporal
development of flows when Kolmogorov spectra are not yet
established. Indeed, the cutoff wave number, kc, can as well
lie in the dissipation range instead of the inertial range which
is the case of standard LES approaches based on closures
together with a k−5/3 Kolmogorov spectrum. This enables ac-
curate comparisons with DNS at a given viscosity. We also
compared our numerical approach to a Chollet-Lesieur LES
model �CL� �8�, where a �=2e−3 kinematic viscosity is added
to the turbulent viscosity for comparison purpose �see Table
I�. The codes use a pseudospectral Fourier method in a �0
−2��3 periodic box and an Adams-Bashforth second-order
scheme in time.

To test the ability of our LES models to reproduce helical
flow features, we focus on flows driven by a prototype Bel-
trami flow �v= �w�, namely the ABC flow �see, e.g., �25��,
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FABC�k0� = �B cos�k0y� + C sin�k0z�
C cos�k0z� + A sin�k0x�
A cos�k0x� + B sin�k0y�

� , �29�

with k0=2, and A=B=C=1.
The run parameters are summarized in Table I. The defi-

nitions used for the integral scale, L, and the Taylor micro-
scale, �, are based on the kinetic energy spectrum E�k�; re-
spectively, L=2��k−1E�k�dk /�E�k�dk and �
=2���E�k�dk /�k2E�k�dk�1/2. Note that the characteristic
flow quantities—L and � scales, rms velocity, Urms, nonlin-
ear time scale, �NL, and Reynolds number, Rv—are time-
averaged quantities once the steady state is achieved for the
computed flow.

B. Spectral features

We first investigate the flow spectral behavior on one-
dimensional energy, enstrophy, and helicity spectra obtained
from the different models. These spectra are averaged over
67 nonlinear turnover times spanning the flow steady phase
from t=10.0 up to t=60.0, the final time reached in the simu-
lation. Figure 1 shows the time-averaged energy spectra
�E�k , t�� for LES and DNS computations �runs I, II, and III�.
Both LES results show good agreement with the correspond-
ing DNS ones, up to kc=31, the maximum wave number of
the LES calculations. Small differences are observed in both
LES P and LES PH models at the largest wave numbers.
When looking at the vorticity density spectra, these differ-
ences are amplified as small scales are emphasized �see Fig.
2�. However, the mean characteristic wave number of the
velocity gradients, defined as the maximum of the time-
averaged vorticity density spectrum, corresponds to k=9 in
all runs.

Note that for the different flows computed in this paper,
the time-averaged Reynolds number and characteristics inte-

gral scale are almost the same �see Table I�, while the Taylor
microscale, �, and its associated Reynolds number, R�, differ
due to non-negligible intensities of the enstrophy spectrum
�namely, k2E�k� used to compute �, with isotropy assumed�
after the cutoff wave number kc. When downsizing the 2563

DNS data to 643 grid points by filtering all wave vectors k
such as 	k	�kc �case Ir in Table I�, the Taylor small scale
quantities obtained from Ir, LES PH II and LES P III runs
become closer. Thus, our LES models can estimate the mean
correlation length scale of the vorticity when the smallest
scales are properly filtered out.

The time-averaged helicity spectra are plotted in Fig. 3.
At large scale, the LES P and LES PH models provide a
close approximation of the DNS helicity spectrum up to k
�20. For k�20, the LES PH model, designed to take into
account helical effects, slightly overestimates the �H�k , t��
magnitudes of DNS data, while the LES P model dissipates
too much helicity.

TABLE I. Parameters of the simulations I to IX. Linear grid resolution N, kinematic viscosity �, and time-averaged quantities: Taylor
microscale � and integral scale L; rms velocity Urms= �v2�1/2; integral Reynolds number Rv=UrmsL /�; eddy turnover time �NL=L /Urms; tM

is the final time of integration. Note that the Ir label stands for 643 reduced data obtained from the 2563 DNS computation. The LES P �vs
PH� label stands for our model computations without �respectively with� incorporating the helicity transport coefficients �̃ and emission

transfer terms T̂H
pq. The LES CL label stands for a Chollet-Lesieur scheme where the kinematic viscosity is added to the scheme eddy

viscosity �see text�.

N � � L Urms Rv �NL tM

I DNS 256 5e−3 0.81 2.38 3.19 1525 0.75 60

Ir Reduced DNS 64 5e−3 0.92 2.38 3.19 1530 0.75 60

II LES PH 64 5e−3 0.93 2.37 3.20 1519 0.74 60

III LES P 64 5e−3 0.93 2.40 3.22 1544 0.74 60

IV DNS 512 2e−3 0.49 2.32 3.34 3881 0.70 7.0

V LES PH 128 2e−3 0.59 2.30 3.36 3877 0.69 7.0

VI LES P 128 2e−3 0.59 2.33 3.37 3925 0.69 7.0

VII LES CL 128 2e−3 0.66 2.38 3.29 3928 0.72 7.0

VIII LES CL 160 2e−3 0.61 2.36 3.31 3907 0.71 7.0

IX LES PH 256 5e−4 0.36 2.47 3.38 16693 0.73 10

X LES P 256 5e−4 0.36 2.35 3.31 15565 0.71 10
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FIG. 1. Time-averaged energy spectra �E�k , t�� for data I �2563

DNS, solid line�, II �643 LES PH, dashed line�, and III �643 LES P,
dotted line�. See Table I.
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C. Temporal evolution

In this section, to study the temporal behavior of the
flows, in the spirit of the analysis performed for freely evolv-
ing fluids, we focus on the temporal phase before the steady-
state regime. Figure 4 shows the evolution of the global ki-
netic energy E�t� and helicity H�t� for DNS together with
LES computations, namely runs IV �5123 DNS�, V �1283

LES PH�, and VI �1283 LES P�. We first observe that for
both LES models, with and without helical effects, energies
closely follow the growth phase of the DNS energy. Indeed,
during the inviscid phase, t�1.0, the small scales are gener-
ated with negligible effects on large scales, since their inten-
sities are very weak. Thus, at these times, the LES modeling
has only a reduced action. Later on, during the following
growth phase, up to t�2.3, the effect of the subgrid scales
onto the resolved ones becomes important, and the LES
models correctly reproduce the DNS dynamics again. Differ-
ences then start to appear between the LES energy approxi-
mations and the DNS energy, as all scale intensities increase,
and therefore so does the influence of the intermediate and
highly nonlocal transfer terms �see Sec. II B�. However, their
mean values stay close to the DNS energy �see Urms in Table
I�. The same remarks hold for the temporal evolution of the
kinetic helicity. However, in this latter phase, t�5, one can

note that the LES PH model provides a slightly better ap-
proximation than the LES P one, for both energy and helic-
ity. When computing the temporal mean of the relative error
between the LES and DNS data, we obtain for the energy
1.28% for the helical model �versus 1.36% for LES P�. For
the helicity, these errors are respectively 2.20% for LES PH
and 2.27% for LES P. Considering that the cost of comput-
ing the additional helical term is rather small �the LES PH
needs 6% CPU time more than the LES P simulation�, the
slight improvement when using the helical model is worth
considering; in particular, note that it reproduces better the
temporal oscillatory variation of the total energy, although at
a higher intensity. On the other hand, the fact that the non-
helical model performs almost as well shows that helicity
does not play a significant role in the small scales, in agree-
ment with the statistical argument of return to isotropy in the
small scales, and with the fact that the relative helicity de-
cays faster than k−1 in the small scales which are being trun-
cated in an LES computation.

The temporal behavior of the LES flows can be under-
stood when looking at kinetic energy spectra at early times,
as plotted in Fig. 5. Instantaneous DNS energy spectra are
well fitted by LES spectra up to t�3.0, including in the
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FIG. 2. Time-averaged enstrophy spectra for runs I �solid line�,
II �dashed line�, and III �dotted line�. See also Fig. 1.
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FIG. 3. Time-averaged helicity spectra �H�k , t�� for runs I �solid
line�, II �dash�, and III �dot�. See also Fig. 1.

FIG. 4. Evolution of kinetic energy E�t�, lower curves, and he-
licity H�t�, upper curves, for runs IV �5123 DNS, solid line�, V
�1283 LES PH, plus signs�, and VI �1283 LES P, triangles�.
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FIG. 5. Temporal development of energy spectra E�k , t� shown
at t=0.5,1.0,2.0 and t=3.0, from bottom to top, for runs IV �DNS,
solid line� and V �LES PH, plus�.
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phase of development toward a Kolmogorov spectrum. At
larger times, the instantaneous modeled spectra slightly di-
verge from the DNS ones, as seen in the steady state in the
previous section, with small scales slightly underestimated
and large scales slightly overestimated.

D. Statistical analysis

Flow statistics are now investigated. Probability density
functions �hereafter, PDF�, are computed from 20 velocity
snapshots extracted each 3�NL and spanning the flow steady
states, between t=10.0 and t=60.0. We compare data sets
obtained from runs I �2563 DNS�, Ir �643 reduced DNS data�
and II �643 LES PH�, for which we have large velocity
samples. For clarity purpose, since differences between heli-
cal and nonhelical models are not visible on the PDF, we
only represent LES PH results versus DNS ones. Figure 6�a�
displays the statistical distribution of the vx velocity compo-
nent, after being normalized so that �2= �vx

2�=1 �� being the
standard deviation�, together with a Gaussian distribution.
The obtained distributions for all data runs are close to
Gaussian, typical of large scale velocity behavior. The LES
models being designed to recover correctly the large-scale
flow, the LES PDF are identical to those of the truncated
DNS data set Ir �where the smallest DNS scales have been
filtered out for 	k	�kc�. Note that they are also very close to
the velocity distribution of the full DNS data set.

Examples of spatial distributions of longitudinal and lat-
eral velocity derivatives, �vx /�x and �vy /�x, respectively, are
shown in Fig. 6�b� and Fig. 6�c�. The distributions are closer
to an exponential than to a Gaussian. This behavior is even
more pronounced for lateral derivatives with a slight depar-
ture from an exponential law. The wings of the PDF are
mainly due to small-scale velocity gradients. Since the DNS
flow has more excited small scales, the wings of the associ-
ated velocity derivatives distributions are more extended
than for LES data. The LES distributions correctly repro-
duced the DNS ones up to 3�, however there is almost no
differences with the PDF of the Ir data set.

In order to quantify the distributions of the velocity fluc-
tuations, and their differences among DNS, LES PH, and
LES P data, we compute low-order moments, namely the
skewness �S3� and flatness �S4� factors of the velocity deriva-
tives, defined as Sn= �fn� / �f2�n/2 where f stands for any ve-
locity derivatives. Their temporal means and error bars are
given in Table II and Table III, respectively. For a fair com-
parison with the results of our LES simulations, we also
compute the skewness and flatness factors based on the
Ir-reduced DNS velocity fields. The PDF of the longitudinal
velocity derivatives present an asymmetry that yields their
well-known negative skewness, with S3�−0.45 for DNS ve-
locities, a value comparable to other simulations at R�

�500 �e.g., �32��. The skewness for the reduced DNS data
�from 2563 to 643� is about 22% lower, a reduction simply
due to the truncation of velocity fields in Fourier space as
noted in �33�. The LES models give almost identical results,
with, in most cases, slightly closer values for LES PH data
sets. It remains an open problem to know whether this type
of agreement persists for higher Reynolds numbers. For all

runs, the lateral velocity derivatives are much more symmet-
ric, S3�0 �with fluctuations varying from 10−2 to 10−4�, as

FIG. 6. �Color� Mean probability distributions of velocity and
its derivative; �a� vx; �b� �vx /�x; �c� �vy /�x, normalized so that �
=1, for data I �2563 DNS, blue line�, Ir �643 reduced DNS data,
black�, and II �643 LES PH, red�, shown together with a Gaussian
distribution �dotted line�.

TABLE II. Temporal mean skewness of velocity derivatives for
runs I–III and Ir data �see Table I�. Error bars are computed from
instantaneous data.

I DNS Ir II LES PH III LES P

�vx /�x −0.45�0.05 −0.35�0.05 −0.35�0.04 −0.33�0.05

�vy /�y −0.45�0.06 −0.34�0.04 −0.34�0.06 −0.34�0.06

�vz /�z −0.46�0.06 −0.35�0.05 −0.34�0.07 −0.33�0.05
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expected for fields that are almost statiscally isotropic �34�.
The longitudinal and lateral velocity derivatives do not have
the same S4 flatness factors. For the DNS data, the flatness
values for �vx /�x, �vy /�y, and �vz /�z are close to 5, while
the flatness for the lateral velocity derivatives �for example,
�vx /�y and �vx /�z� are larger, with values around 7. The
reduced Ir data present a loss of �20% and �30% for lon-
gitudinal and lateral derivatives, respectively. Once again,
both LES data provide similar values with a better approxi-
mation of the lateral derivatives for the LES PH computa-
tion.

E. Visualization in physical space

The topological properties of the different flows are now
investigated: comparisons between DNS and LES PH com-
putations are carried out on either instantaneous and or mean
velocity fields.

For runs IV �5123 DNS� and V �1283 LES PH�, Fig. 7
displays contour plots of the velocity intensity at time t
=2.8, shown on three sides of the periodic box. Although our
LES model cannot exactly reproduce the DNS flow, one can
notice that the main flow structures, and their intensities, are
well represented at times before the statisticaly stationary
regime. More precisely, the mean spatial correlation of the
pointwise LES PH velocity field with the DNS one is
84.37%, while it is 84.32% in the case with the LES P point-
wise velocity at the same time �not shown�.

For runs I �2563 DNS� and II �643 LES PH�, Fig. 8 shows
one isosurface of mean velocity intensities at a level of 2,
i.e., roughly at 63% of the maximum intensity for DNS data,
and at 60% for LES PH data. The mean velocity fields are
time averaged each 3�NL during the steady states that corre-
spond to 67�NL for the DNS flow and 68�NL for the LES PH
run. With the longest stationary phases, we observe from
these runs that the mean velocity field, and thus the large and
intermediate flow scales, are not alterated by the modeling of
the transfers linked to the subgrid scales. Indeed, the mean
spatial correlation between the pointwise LES and DNS time
averaged velocity fields is 91.96% �for completness, it is
92.38% when the LES P mean field is considered�.

Finally, the flow isotropy is estimated by means of coef-
ficients computed as in �35�: for each wave vector k, an

orthonormal reference frame is defined as �k / 	k	,
e1�k� / 	e1�k�	, e2�k� / 	e2�k�	�, with e1�k�=k�z and e2�k�=k
�e1�k�, where z is the vertical unit wave vector. In that
frame, since the incompressibility condition, say for the ve-
locity field, yields k ·v�k�=0, v�k� is only determined by its
two components v1�k� and v2�k�. The isotropy coefficient is
then defined as Ciso

v =�	v1	2� / �	v2	2�, with thus a unit value
for fully isotropic flows. A similar coefficient can be based
on the vorticity field, Ciso

w , characterizing the small scale isot-
ropy. Isotropy coefficient values are given in Table IV for
velocity and vorticity fields of the flows visualized in Fig. 7
and Fig. 8. Instantaneous values are computed at t=2.8 for
data IV �5123 DNS� and V �1283 LES PH� �Fig. 7�, while for
the mean flow shown in �Fig. 8�, the coefficients are based
on the time-averaged fields of runs I �2563 DNS� and II �643

LES PH�. For comparison, the isotropy coefficients are also
computed with the data of the LES P runs VI �2563� and III
�643�. One can see that, altogether, the isotropic properties of
the flow are correctly restored by the LES models.

TABLE III. Temporal mean flatness of the velocity gradients for
the same runs as in Table II.

I DNS Ir II LES PH III LES P

�vx /�x 5.0�0.2 4.0�0.2 4.0�0.3 4.0�0.3

�vy /�x 7.2�0.6 5.0�0.4 4.9�0.3 4.8�0.4

�vz /�x 7.3�0.4 5.1�0.4 4.9�0.6 4.8�0.5

�vx /�y 7.4�0.4 5.0�0.3 4.9�0.5 4.8�0.5

�vy /�y 5.1�0.2 3.9�0.1 3.9�0.2 3.9�0.2

�vz /�y 7.3�0.6 5.0�0.3 4.8�0.4 4.7�0.5

�vx /�z 7.3�0.6 5.0�0.5 4.9�0.5 4.7�0.4

�vy /�z 7.3�0.9 5.0�0.4 4.8�0.7 4.8�0.8

�vz /�z 5.1�0.4 4.0�0.2 3.9�0.3 3.9�0.3

FIG. 7. �Color� Contour plots of the velocity intensity 	v�x , t�	 at
time t=2.8 on the boundaries of the periodic box, for run IV �5123

DNS, top� and run V �1283 LES PH, bottom�.
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F. Comparison with a Chollet-Lesieur approach

It may be instructive to test our model against another
spectral LES approach, also based on the EDQNM closure;
we have thus performed two simulations using a Chollet-
Lesieur scheme �2� �run VII and VIII LES CL in Table I�.
The CL model allows energy tranfer from subgrid to re-
solved scales through a dissipation mechanism, with the help
of a dynamical eddy viscosity �CL�k , t� defined as

�CL�k,t� = C�+�k,t�E�kcut,t�/kcut, �30�

kcut=N /2–3 is the cutoff wave number, N being the number
of grid points per direction, and �+�k , t� is the so-called cusp
function evaluated as �+�k , t�= �1+3.58�k /kcut�8�. We recall
that CE�kcut , t� /kcut is the asymptotic expression of the non-

local tranfers from subgrid to resolved scales, and it assumes
a k−5/3 Kolmogorov spectrum extending to infinity. The con-
stant C is adjusted with the Kolmogorov constant computed
from the ABC flow resolved by the DNS run using 5123 grid
points, this leads to C=0.14. To be able to compare our DNS
and LES simulations, runs IV to VI �see Table I�, to a CL
simulation with 1283 grid points, the kinematic viscosity
used for the former runs, �=2e−3, is added to �CL�k , t�. The
asymptotic value of the eddy viscosity can be obtained as the
temporal mean of �CL�0, t� in the time interval �3.5,7.0� and
is here estimated to be �6e−4.

Both CL and LES PH runs provide a close agreement
with DNS temporal evolutions of kinetic energy and helicity
during the growth phase, i.e., up to t�2.3 �see Fig. 9�. In
steady states, although noticeable deviations occur between
DNS and LES approximations, a slightly better assessment is
visible for the LES PH model; indeed, the peak of oscillation
at t�5.4 is weaker in run VII. Note that comparisons of LES
PH versus LES P data, runs V and VI respectively, are al-
ready presented in Sec. III C.

With our approach, and in particular because of our nu-
merical field reconstruction, we have increased the computa-
tional cost �roughly by a factor 2� when comparing with the
classic LES CL scheme. In order to evaluate the performance
of our model for a given numerical cost, we have also per-

FIG. 8. �Color online� Isosurface of the mean flow intensity
	�v�x , t��	 for �a� run I �2563 DNS� and �b� run II �643 LES PH�
plotted at a level of 2, with maximum intensity values of 3.18 for
run I and 3.31 for run II. Averages are taken over 50 computational
times spanning the steady states.

TABLE IV. Isotropy coefficients of velocity, Ciso
v , and vorticity

fields, Ciso
w , for flows shown in Fig. 7 and Fig. 8. For runs I to III,

values are computed from the mean flows. For runs IV to VI, they
are given at t=2.8. For completeness, the coefficient values are also
given for LES P runs.

Ciso
v Ciso

w

I DNS 0.990 1.010

II LES PH 1.026 0.979

III LES P 0.988 1.009

IV DNS 0.961 1.033

V LES PH 0.955 1.035

VI LES P 0.955 1.029

FIG. 9. Evolution of energy E�t�, lower curves, and helicity
H�t�, upper curves, for data IV �5123 DNS, solid line�, V �1283 LES
PH, plus�, and VII �1283 LES CL, square�.

BAERENZUNG et al. PHYSICAL REVIEW E 77, 046303 �2008�

046303-10



formed a 1603 LES CL simulation �VIII� and compared the
mean energy and helicity spectra �plotted in Fig. 10� with
those stemming from the runs IV, V and VII �see Table I�.
The relative difference of energy �respectively helicity� be-
tween the DNS and LES runs are emphasized in the inset of
Fig. 10�a� �respectively 10�b��. There is a better energy shell
correspondence of our LES PH model with the DNS simu-
lation than the LES CL displays, whatever the resolution
used �Fig. 10�a��. Our spectral helical model produces on
average a relative energy deviation not above 15%, whereas
in the LES CL model, this deviation can reach the 50% level.
Results are less clear for the relative deviation of the helicity
spectra, with comparable errors in the large scales, smaller
errors at intermediate scales, and a strong overshoot in the
smallest scales for the LES PH model; this may be related to
the slight overshoot of the energy spectrum at the smallest
resolved scales of our model.

Energy spectra only exhibit a short k−5/3 inertial range for
all runs, including the CL run, due to the procedure we chose
avoiding a nonzero asymptotic viscosity. With �=0 in the CL
scheme, the results might be different. However, for both
energy and helicity spectra, LES PH data give closer results
when compared to DNS data, as our CL simulation seems to
overestimate positive energy transfer from resolved scales
�between k�15 to kcut=61� to subgrid scales.

G. Predictions for high Reynolds number flow

In this last section, we present model computations for
flows at high Reynolds number. Recently, Kurien et al. �24�
showed that for flows with maximum helicity, both energy
and helicity spectra exhibit a k−4/3 scaling range following
the k−5/3 Kolmogorov range and preceding the dissipation
range, a result also found in �36�. This change in the energy
spectrum is estimated from energy flux based on a character-
istic time scale, denoted �H, of distortion �or shear� of eddies
with wave number k submitted to out-of-plane velocity cor-
relations, corresponding to helicity transfer. We recall that
the two dynamical times in competition are estimated by
�H

2 �k���	H�k�	k2 /2�−1 and �NL
2 �k���E�k�k3�−1. Moreover,

from DNS of the forced Navier-Stokes equation, these au-
thors associate the well-known bottleneck effect with this
scaling change when �H becomes physically relevant. The
ABC flow being known for the presence of strong helical
structures, we performed two simulations using our LES PH
and LES P models at kinematic viscosities �=5e−4, with
2563 grid points �respectively run IX and run X in Table I�.
For these flows, the total helicity H�t�=1 /2�v�t� ·w�t��, av-
eraged over �8�NL in the steady state, is equal to 9.26 for
data set IX and to 8.65 for run X. Temporal means of the
total relative helicity H�t� /E�t� are also close �within 1%� for
both computations, namely 0.195 for the LES PH run versus
0.186 for the LES P one.

More precisely, in the range 10�k�100, the relative he-
licity 	H�k�	 /kE�k�, viewed as an estimation of the ratio
�H

2 �k� /�NL
2 �k�, lies in between 13.5% and 3.5% for run IX,

and falls from about 14% to 2% for run X �see Fig. 11�, a
typical ratio for strong helical flows �24�. Note also that the
relative helicity obtained by both models scales closely to a
k−1 power law, as already observed in previous DNS experi-
ments �36�.

Figure 12 displays mean energy spectra for the two mod-
eled flows compensated by k5/3 and k4/3, respectively. A k−5/3

scaling appears in the range 4�k�10, followed by a k−4/3

regime for 10�k�40, and with no appearance of a bottle-
neck effect, although, in the latter wave number interval the
estimated time ratio �H /�NL ranges from 37% to 20%. Simi-
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larly, time-averaged helicity spectra compensated by k5/3 and
k4/3 are plotted in Fig. 13. A k−5/3 behavior is seen in approxi-
mately the same range than for energy spectra, while the
k−4/3 scaling occurs from k�10 to k�60 for the LES P flow
and up to kc, the maximum computational wave number, for
the LES PH flow. Recall that at high wave numbers our LES
PH model slightly overestimates helicity spectra, while our
LES P model underestimates them. However, both LES
models reproduce well the observed spectral behaviors ob-
tained from DNS of flows at lower kinematic viscosities ��
=1e−4 and �=0.35e−4� in �24�.

IV. CONCLUSION

In this paper, we derive a consistent numerical method,
based on the EDQNM closure, to model energy interactions
between large and small scales for the Navier-Stokes equa-
tion. As no spectral behavior is a priori given, our dynamical
LES method allows for the modeling of various flows,
whether turbulent or not, compared to former spectral mod-

els which can, in principle, simulate only infinite Reynolds
number flows. The phase relationships of the small scales are
taken into account through a numerical reconstruction
scheme for the spectral velocity field. Helical effects in tur-
bulent flows, such as in vortex filaments, are also considered
through the evaluation of the energy and helicity transfers.
For this purpose, an “helical eddy diffusivity,” similar to an
eddy viscosity, and the emission transfer terms in which the
helicity spectrum appears, are incorporated in a second
model. Numerical tests of our two methods, with and without
helical effects included, are performed against DNS compu-
tations. The spectral, statistical and spatial behaviors at large
and intermediate scales of DNS flows are well resaturated in
both modeled flows. We notice some advantages for the
model including helical effects, in particular, concerning the
evaluation of the helicity spectra and the probability distri-
butions of the lateral velocity field gradients. LES PH also
predicts a 4 /3 spectrum for the helicity all the way to the
cutoff, a point that will need further study.

However, in our approach, we need to calculate at each
time step the nonlocal energy �and helicity� transfers, with an
increased computational cost �roughly by a factor 2� when
compared with other spectral LES models �8,30�. Neverthe-
less, our LES model, assuming isotropy and within the
framework of the EDQNM closure, takes carefully into ac-
count all the energy and helical transfers present in the fluid
system. Even if the spectral LES techniques are difficult to
extend to more realistic geometries and boundaries configu-
rations, they are working in spectral space and have access to
global quantities at each scale, which are the natural math-
ematical framework of the turbulence theory. In opposition,
local mesh measurement subgrid models could simulate
complex geometries, but they do not have access to those
global energy transfer informations, present inside any self-
similar turbulent flow. Pseudospectral simulations in periodic
boxes are intensively used to study the incompressible
Navier-Stokes turbulent dynamics with the highest numerical
resolution and accuracy reachable nowadays �37�. In order to
understand and modelize the impact of the small scales on
the large scales, spectral LES techniques are adequate to be
compared with those direct numerical simulations at the
highest resolution.

Whereas the role of helicity in fluids is not necessarily
dynamically dominant, such is not the case in MHD flows
where both kinetic and magnetic helicity play a prominent
role; the former in the kinematic dynamo process and the
latter in its undergoing an inverse cascade to large scales.
Furthermore, in MHD, energy spectra are not necessarily
Kolmogorovian �38� and the models presented in this paper
may thus be of some use in MHD as well. The extension to
MHD turbulent flows, with coupled velocity and magnetic
fields, presents no major difficulties and is under study.
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APPENDIX A: CLOSURE EXPRESSIONS OF TRANSFER
TERMS

For completeness, we recall here the expressions of the
nonlinear transfer terms for the energy and the helicity,
SE�k , p ,q , t� and SH�k , p ,q , t�, respectively, under the
EDQNM closure assumption �15�,

T̂E�k,t� =� �


�kpq�t�SE�k,p,q,t�dpdq , �A1�

T̂H�k,t� =� �


�kpq�t�SH�k,p,q,t�dpdq , �A2�

where  is the integration domain with p and q such that
�k , p ,q� form a triangle, and �kpq�t� is the relaxation time of
the triple velocity correlations. As usual �9�, �kpq�t� is defined
as

�kpq�t� =
1 − e−��k+�q+�p�t

�k + �q + �p
, �A3�

where �k expresses the rate at which the triple correlations
evolve, i.e., under viscous dissipation and nonlinear shear. It
can be written as

�k = �k2 + �
�
0

k

q2E�q,t�dq�1/2

. �A4�

Note that � is the only open parameter of the problem, taken
equal to 0.36 to recover the Kolmogorov constant CK=1.4.
The expressions of SE�k , p ,q , t� and SH�k , p ,q , t� can be fur-
ther explicited �with the time dependency of energy and he-
licity spectra omitted here� as

SE�k,p,q,t� =
k

pq
b�k2E�q�E�p� − p2E�q�E�k��

−
k

p3q
c�k2H�q�H�p� − p2H�q�H�k��

= SE1
�k,p,q,t� + SE2

�k,p,q,t� + SE3
�k,p,q,t�

+ SE4
�k,p,q,t� . �A5�

Here, SE1
�k , p ,q , t�, SE2

�k , p ,q , t�, SE3
�k , p ,q , t�, and

SE4
�k , p ,q , t� are respectively used to denote the four terms

of the extensive expression of SE�k , p ,q , t�. Note that
SE3

�k , p ,q , t� and SE4
�k , p ,q , t� are absent in the fully isotro-

pic case �without helicity�, and, of course, all SHi
�k , p ,q , t�

terms below are absent as well,

SH�k,p,q,t� =
k

pq
b�k2E�q�H�p� − p2E�q�H�k��

−
k3

pq
c�E�p�H�q� − H�q�E�k�� = SH1

�k,p,q,t�

+ SH2
�k,p,q,t� + SH3

�k,p,q,t� + SH4
�k,p,q,t� ,

�A6�

with short notations analogous to what was used before.

In Eqs. �A5� and �A6�, the geometric coefficients
b�k , p ,q� and c�k , p ,q� �in short, b and c� are defined as

b =
p

k
�xy + z3�, c =

p

k
z�1 − y2� , �A7�

where x, y, z are the cosines of the interior angles opposite to
k ,p ,q.

Let us now introduce a cutoff wave number kc, and define
the following three zones for the integration domain  of
Eqs. �A1� and �A2�: the inner zone � �with k, p, and q all
smaller than kc, the cutoff wave number�, the buffer zone �

�with p and/or q between kc and 3kc�, and the outer zone �

�with p and/or q larger than 3kc�; then, the boundaries of the
transfer term integrals have to be adapted.

In the inner zone corresponding to the fully resolved flow,
the resolved transfers write

T̂E
��k,t� = �

	k	�k

− iP���k�k	�
0

	k	�kc

v��p,t�v	�k − p,t�v��

− k,t�dpdk , �A8�

T̂H
��k,t� = �

	k	�k

��
�k
k	�
0

	k	�kc

v��p,t�v	�k − p,t�v��

− k,t�dpdk , �A9�

where P���k�=
��−k�k� /k2 is the projector on solenoidal
vectors, as stated before.

The transfers of energy and helicity between the buffer
zone and the inner zone become

T̂E
��k,t� = �

kc

3kc �
k−p

k+p

�kpq�t�SE�k,p,q,t�dpdq , �A10�

T̂H
��k,t� = �

kc

3kc �
k−p

k+p

�kpq�t�SH�k,p,q,t�dpdq , �A11�

and the transfers of energy and helicity between the outer
zone and the inner zone read

T̂E
���k,t� = �

3kc

� �
k−p

k+p

�kpq�t�SE�k,p,q,t�dpdq , �A12�

T̂H
���k,t� = �

3kc

� �
k−p

k+p

�kpq�t�SH�k,p,q,t�dpdq . �A13�

APPENDIX B: NUMERICAL IMPLEMENTATION OF THE
MODEL

As a first step, the Navier-Stokes equation is solved with
the eddy viscosity and the helical eddy diffusivity ��k 	kc , t�
and �̃�k 	kc , t� �see Eq. �26��. At this intermediate stage, we
obtain a partial estimation of the time updated velocity field,
since the emission transfer terms are not yet taken into ac-
count. We compute the corresponding energy and helicity
density fields from this intermediate velocity, blue v�, say at
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wave vector k. They are then corrected with the appropriate
EDQNM emission terms according to Eqs. �27� and �28�. In
the time advance, the next step consists in reconstructing the
three velocity components from these updated energy and
helicity, E�k , t� and H�k , t� respectively. When the velocity
components are expressed as v��k , t�=���k , t�ei���k,t�, the in-
compressibility condition leads to the following system of
equations for the velocity phases and amplitudes �in short ��

and ���:

�2�3 cos��23� =
k1

22E�k� − �2
2�k1

2 + k2
2� − �3

2�k1
2 + k3

2�
2k2k3

,

�1�3 cos��31� =
k2

22E�k� − �1
2�k1

2 + k2
2� − �3

2�k2
2 + k3

2�
2k1k3

,

�1�2 cos��12� =
k3

22E�k� − �1
2�k1

2 + k3
2� − �2

2�k2
2 + k3

2�
2k1k2

,

�2�3 sin��23� =
k1

2H�k�
k2 ,

�1�3 sin��31� =
k2

2H�k�
k2 ,

�1�2 sin��12� =
k3

2H�k�
k2 , �B1�

with phase differences ����k , t�=���k , t�−���k , t�, � and �
standing for the component indices. Note that when one
component of the vector k is equal to zero, this case is
treated separately in the code. Since only four of these equa-
tions are independent �because of the incompressibility con-
dition�, we are led to give an arbitrary value for two of the

variables. However, the choice of these arbitrary values is
constrained. Indeed, from the set of equations Eqs. �B1�, we
can derive an existence condition on the �� amplitudes de-
pending on the realizability condition �	H�k�	�kE�k�� and
which reads �with k dependency omitted�


1 −
k�

2

k2�E�1 − �� � ��
2 � 
1 −

k�
2

k2�E�1 + �� , �B2�

with �=1−H2 /k2E2. Thus, the �� amplitudes can be ex-
pressed as

��
2 = ���

i2 − 
1 −
k�

2

k2�Ei� �2

�i2
+ 
1 −

k�
2

k2�E , �B3�

where the i superscript denotes quantities based on the inter-
mediate velocity field, which is a solution of the modified
Navier-Stokes equation, Eq. �26�, with eddy viscosity and
helical eddy diffusivity incorporated, and with �i

=1−Hi2 /k2Ei2. Equation �B3� represents a projection of ��
i

�computed from the intermediate velocity field and which
depends on Ei and Hi� to obtain the amplitude ���k , t� �de-
pending now on E and H� at the updated time step. This

allows one not to modify the velocity field when T̂E
pq=0 and

T̂H
pq=0.

If one or two components of the k wave vector are equal
to zero, the set of equations �B1� is rewritten from the
divergence-free condition. Apart from this, the reconstruction
procedure is similar.

Finally, to rebuild the different velocity phases, �1 is as-
sumed to be fixed to its value given by the intermediate
component v1�k , t�. The set of equations �B1� is then solved
and we obtain the updated Fourier velocity field. Note that a
different choice for the fixed phase leads to no significant
changes in our numerical tests.
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