Moon formation of rocky/icy planets by a giant impact

Shigeru Ida (ELSI, Tokyo Tech)

Ida, Ueta, Sasaki, Ishizawa (2020, Nature Astron.) Nakajima, Genda, Asphaug, Ida (2022, Nature Comm.)

Back-ground: How common are large moons around rocky or icy exoplanets?

- Earth's Moon → control Earth's climate → one possible factor of habitability?
 ➢ control Earth's obliquity and spin period evolution; mix deep ocean water
- Standard Moon formation model: giant impact model
 - Final phase of rocky planet accretion is "giant impacts" : energetic collisions between protoplanets formed by "oligarchic growth" (Kokubo & Ida 1998)
 - In many cases, a "large" moon is formed as a by-product such as Earth's Moon?
- Other planets in Solar system?

 $M_{\rm Moon} \sim 0.01 M_{\rm Earth}$

➤ Venus: retrograde impact → planet spin & moon: retrograde
→ the moon falls onto the planet by tidal orbital evolution (Atobe & Ida 1997)

- > Mercury & Mars: left-over protoplanets that avoided giant impacts? (Hansen 2009)
- > **Uranus**: tiled by 98 degree \leftarrow giant impact
- → Large exo-moons: common around exoplanets? But, transit timing/duration variation observation (e.g., HEK): no detection

Back-ground: Mysteries of Uranian moon system

Earth:

- > impact by protoplanet with ~ 0.1 M_{planet} (consistent with oligarchic growth model)
 - \rightarrow ~ 0.02 M_{planet} debris disk (e.g., Canup & Asphaug 2001, Nature)
 - \rightarrow ~ 0.01 M_{planet} single moon (Ida, Canup & Stewart 1997, Nature)

succeeded to reproduce Earth's Moon

(except the identical isotope ratios)

Uranus:

- \succ spin axis is tilted by 98 degrees \leftarrow giant impact: likely
- > 17 hour spin period $\rightarrow \sim 0.1 M_{\text{planet}}$ impact $\rightarrow \sim O(0.01) M_{\text{planet}}$ debris disk $\rightarrow \sim 0.01 M_{\text{planet}}$ single moon?

NO: four small major moons ~ $10^{-4} - 10^{-5} M_{\text{planet}}$

 \rightarrow moons were formed in a different way?

Back-ground: Mysteries of Uranian moon system

- A single-impact model: accretion of moos from an impact debris disk?
 - The giant impact onto slowly spinning Uranus: naturally forms the tilted spin and a similarly inclined prograde satellite system.

Much more simple

Umbrie

Arie

Titania

FSO

Mirand

Problems in the single impact model

- impact: constrained by the current spin period → oblique, $M \sim 0.1 M_{\cup}$ (consistent with oligarchic growth model)
- Disks predicted by giant impact simulated by SPH Slattery et al. (1992), Kegerreis et al. (2018), Kurosaki et al. (2019), Reinhardt et al. (2020)
 - > 10 x more compact ($\sim 2r_U$), 100 x heavier disk ($\sim 10^{-2}M_U$) than the current moon systems
 - ✓ Tidal orbital expansion afterward: not effective Dermott et al. (1988)
 - almost no rock component:
 - \checkmark rocks : central part as a core \leftarrow oblique impact
 - \rightarrow inconsistent with current moons (half rock + half ice) !

The single impact model: inconsistent?

Formation of Uranian moons by a giant impact

Ida, Ueta, Sasaki, Ishizawa (2020, Nature Astron.)

NASA/JPL-Caltech http://www.nasa.gov/multimedia/imagegallery/image_feature_1454.html

Conclusion in advance

Giant impact -- debris disk: too massive (x100), too compact (x10), too low rock/ice

- Debris disk: water vapor + H/He gas
 - \succ vaporized: low vaporization temperature of H₂O, high impact velocity to Uranus
 - substantial viscous disk evolution until re-condensation of H₂O
 - only 1% of initial *M*_{disk,vapor} remains
 - size spreading by x10

~ the current satellites

- ∑_{ice} ∝ r^{3/2} ← viscous heating: inefficient in outer region
 ➢ In situ moon accretion ← low density of H/He gas
 - ightarrow larger moons in outer region

- ~ the current satellites
- rock/ice ratio: enhanced (high condensation temperature of silicates)

Reproduction of the current satellites

 10^{1}

10

 $r [r_U]$

100

1000

1000

10³

 10^{4}

10²

t [y]

10⁰

 10^{1}

Final moon mass is determined by disk evolution until condensation, not by initial disk mass.

-- ice distribution extent \leftarrow initial *M*,*L* of the impact-generated disk

 $r_{\max} \simeq 20 \left[\beta \left(\frac{\langle r_{d,imp} \rangle}{2 \, r_{U}} \right)^{-5/4} \left(\frac{M_{d,imp}}{10^{-2} M_{U}} \right) \right]^{1/4} r_{U} \qquad \text{intersection of envelope of } \Sigma_{disk} \text{ and} \\ \hline M_{d,imp} \text{: initial debris disk mass} \qquad \langle r_{d,imp} \rangle = ((J_{d,imp}/M_{d,imp})/r_{U}^{2} \Omega_{U})^{2} \, r_{U} \text{: initial disk radius} \\ 2 \, r_{U} - \text{viscous spreading} \rightarrow 20 \, r_{U} \\ \leftarrow \rightarrow \text{ current satellites } a < 22.8 \, r_{U} \qquad \textbf{x 10 expansion} \text{ weak dependence on initial disk} \end{cases}$

Ice condensation

-- total mass of condensed ice

$$\begin{split} M_{\rm ice} &\simeq \int_{r_{\rm U}}^{r_{\rm max}} 2\pi r \Sigma_{\rm ice} dr \simeq 0.58 \times 10^{-4} \, \beta^{1/8} \gamma_{03} \left(\frac{\langle r_{\rm d,imp} \rangle}{2 \, r_{\rm U}}\right)^{-5/4} \left(\frac{M_{\rm d,imp}}{10^{-2} M_{\rm U}}\right)^{7/8} M_{\rm U} \\ \beta &= (\alpha/10^{-3}) \\ M_{\rm d,imp}: \text{ initial debris disk mass,} \\ r_{\rm d,imp}: \text{ initial debris disk radius} \\ 10^{-2} M_{\rm U} - \text{viscous diffusion} \rightarrow 10^{-4} M_{\rm U} \\ \leftarrow \rightarrow \text{ current moons } M_{\rm tot} \sim 10^{-4} M_{\rm U} \\ - \text{ in situ moon accretion} \\ t_{\rm grow} \ll t_{\rm drift} \ll t_{\rm diff}. \end{split}$$

Reproduction of the current satellites

Evaporation controls icy moon formation

Rocky planets also evaporate for $M_p > 5-6 M_{earth}$! --> No large moon

Nakajima, Genda, Asphaug, Ida (2022, Nature Comm.)

> NASA/JPL-Caltech http://www.nasa.gov/multimedia/imagegallery/image_feature_1454.html

SPH impact simulation

- latent heat
 rock(silicate) : ~ 1 x 10⁷ J/kg
 - > water ice: $\sim 2 \times 10^6$ J/kg
- SPH
 - ➤ N = 50K or 100K
 - rocky/icy planets: M-ANEOS + SESAME

Results: Vapor Mass Fraction 6 - $M_{\rm T}/M_\oplus$ 4 latent heat $\mathbf{2}$ \succ rock(silicate) : ~ 1 x 10⁷ J/kg \blacktriangleright water ice: ~ 2 x 10⁶ J/kg 0.13■ VFM ~ 1 \rightarrow would not have large moons 1.00 - \succ rock : >~ 5-6 M_{earth} $M_{\rm T}/M_\oplus$ \succ ice : >~ 1 M_{Earth} 0.50

Results: Vapor Mass Fraction $M_{ m T}/M_\oplus$ latent heat \succ rock(silicate) : ~ 1 x 10⁷ J/kg \succ water ice: ~ 2 x 10⁶ J/kg impact energy : ~ 6 x 10⁷ $(M/M_{Earth})^{2/3} (\rho/\rho_{Earth})^{1/3} J/kg$ heating energy : $M_{ m T}/M_\oplus$ ~ 3 x 10⁶ (ε /0.05) (*M*/*M*_{Earth})^{2/3} (ρ / ρ _{Earth})^{1/3} J/kg efficiency factor ↑ determined by SPH impact simulations Exomoons : should be searched around \succ rock planets: <~ 5-6 M_{Farth}

➢ icy planets : <~ 1 M_{Earth}

Summary

Uranian moons formation by an giant impact

- disk evolution until ice condensation controls the moon mass & orbit configuration
 - → The big difference between Earth's Moon & Uranian moons is explained [fractionally similar impactor mass, but 100 times different moon mass]
- Exomoons formed by giant impacts
 - "totally vaporized or not" is the most important
 - survey should target
 - \succ rock planets: <~ 5-6 M_{Earth}
 - \succ icy planets : <~ 1 M_{Earth}

