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Standard picture of star formation

] ] e.q., Larson69
* Underlying physics: Later
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Question of this seminar:
Does accretion affect the thermal/chemical

evolution of stars?
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Basic physics of star formation
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Basic physics of star formation
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Basic physics of star formation
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Basic physics of star formation
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Basic physics of star formation
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Basic physics of star formation
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Standard picture of pre-MS evolution

large radius/luminosity

@ Shrink along the Hayashi
- and Henyey traCkS :

Stellar mass and age
are estimated with
evolutionary tracks

Understanding of pre-MS
evolution is important!

Pre-MS evolutionary
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Luminosity spreads of pre-MS stars
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& Luminosities of pre-MS stars
spread widely (~|dex)
even in the same cluster

& If the classical isochrones are
assumed, the luminosity
spreads correspond to
age spreads (~10Myr)

Possible solutions:

v Age spreads are genuine
v’ Classical isochrones are inaccurate
v Observational errors

T—




Entropy of accreting materials

(Standard PMS evolution is based on [~ Recent simulations suggest A
Spherical accretion Disk accretion

Shock front

Radiative cooling

/
Protostar-%

Free fall
Inefficient radiative cooling Efficient radiative cooling
> Efficient entropy injection from disk’s and stellar surface
to the star > Low-entropy accretion
N JAN Py Y
e.q., Stahler+80, Masunaga+InutsukaOO e.q., Baraffe+09,10,12, Hosokawa+11,
\Vorobyov+17

Aim of this study:
We revisit pre-MS evolution considering low-entropy accretion
and discuss its impact on the observational problem




Method: Basic equations

m Stellar structure equations (1D)
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Method: Heat injection by accretion

Energy Eq. S = Enuc

(s: entropy)

- T@ T €add Sy Sacc

entr Opy in[ection Proto-

by accretion star

e 3

Gadd — é:Lacc/M*

Lacce=GMyM/Rx

We assume that a fraction of the gravitational energy of accreting

materials is injected

In total, injected energy Laad = ELacc



Method: Fiducial settings

> Accretion:  0.01Mo = M=10"Mo/yr = 1Mo

» Heat injection: &=0—0.5

2 Initial radius: Riwi=1.5Ro
» Composition: Z=0.02, Deuterium content Xp = 20 ppm (2x10).

* main mass . .
» accretion pre-main |

phase sequence ;
- . —@= :
= 2nd core

(protostar)



Results:
Pre-MS evolutions with various accretion heating, ¢



PMS evolution with low-entropy accretion

’ Kunitomo et al. (2017a), A&A
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Standard evolution of | Mo stars:
Stars are formed with a large radius and luminosity




PMS evolution with low-entropy accretion

10 ’ Kunitomo et al. (2017a), A&A
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Pre-MS evolution with low-entropy accretion

is totally different from the standard one
e Radius: ~10 times smaller
e Luminosity: ~100 times smaller

Baraffe+09,10,12, Hosokawa+11



Dependence on heat injection efficiency ¢

Kunitomo et al. (2017a), A&A

Pre-MS evolution is controlled by
heat injection and deuterium fusion

+— accretlon —_—

g_g? r Laga= é:Lacc

Deuterium fusion is a strong
exothermic reaction

D+ 'H — 3He + 5.5 MeV

—> entropy generation
-> stars expand

Radius can be different by up to a factor of 10 (o)



Impact on luminosity spread problem
m Fixed ’,fvalu e Kunitomo et al. (2017a), A&A
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The luminosity spreads can be explained with
large age spreads



Impact on luminosity spread problem
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Impact on luminosity spread problem

Kunitomo et al. (2017a), A&A
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Impact on luminosity spread problem
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Impact on luminosity spread problem
= Variable & value with fixed age funtomo etal [FO1 78, A5
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We suggest most (~90%) stars have been formed
with ¢ = 0.1
because the number of underluminous stars is small



Part 2:

Consequences of low-entropy accretion
on stellar surface composition




Composition of protoplanetary disks

® Planets are formed in protoplanetary disks

e Composition of disks:
e mainly H; and He gas
e refractory elements (~0.4%)

(e.g., Fe, Mg, Si, etc.) Asplund+09

rocky
planetesimals

refractory-poor gas

e Planet formation can change the disk
composition

e Disk gas accretes onto the host star

Does planet formation pollute stellar surface composition?

(=change from a primordial one)



Possible observational signatures of pollution

@ Solar composition anomaly

abundant in  volatile refractory ® the Sun has the refractory-
the Sun i a(volatiles) = 0.011 dex poor composition chpared to
] o(refractories) = 0.007 dex ‘ .
— 006 - ‘ most solar twins
§ _ ] ® ~|5% solar-twins also have
& X the solar-like composition
s D 004 |- :
LC‘)’ —_ | ® difference: ~10%
w 9 - e.g., Melendez+09, Ramirez+09
i~
c X 0 r
Q (-
e < : Possible scenarios:
| o
c -0.04 + 5 v Pollution?
=3 ! Al . .
2 Vielenaezt09 v Migration of the solar system
0 500 1000 1500 ;
scarce in the Galaxy?

in the Sun  Condensation temperature [K] Chambers10; Adibekyan+14



Possible observational signatures of pollution

/

)

® Binary systems (16 Cyg, XO-2) Ramirez+11; Damasso+15
The surface composition of planet harboring stars is metal-poor

compared to the other star

/

@ Metallicity gradient of Hyades cluster

In Hyades cluster, higher-mass stars
have lower metallicity

-> stronger impact of planet
formation on higher-mass stars?

[Fe/H]

o4 —m8M ——————
0.3 3
0.2
0.1

0.1
0.2 |

. Takeda+13
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(Pre-Main Sequence)

Internal structure of pre-MS stars

& surface convective zone should be small before disk dispersal

convective radiative
Zone core
refractory-poor gas refractory-poor gas
Fully convective stars Stars with a large radiative core
accreted gas is diluted accreted gas is distributed
in the entire star only in the thin convective zone (CZ)
=> pollution is limited -> strong pollution!

The thickness of surface convective zone is important



Previous study on solar anomaly:

Chambers (2010)

Accretion of 4Ms rocks makes

the solar composition as
refractory-rich as solar twins

using internal structure of
the present-day Sun

\_  Solar twins j

vvvvvvvvvvvvvvvvvvv

0.04- Adding 4 Earth masses ;

o: Adding 4Me rocks to

S’ 0.02"- Mixture Earth + CM chondrite 4 solar surface CZ
S, 0.00F 4 —: Composition of solar
E 0.02F . twins
aS -0.045 Mean -
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Purpose of part 2:
Evaluating the consequences of planet formation
with the up-to-date pre-MS evolution models

The thickness of surface convective zone is important



Determination of the magnitude of pollution

® The magnitude of pollution depends on stellar evolution and
planet formation
® Planet formation model:
® TJotal solid mass in planets, Msqiid
® |ce-to-rock ratio, fice/rock
® Accretion history: pfocs15 & disk lifetime~10Myr Zzg;”ifg;%
® Evolution of convective zone mass, Mcz

Meyg Zgort + Mace Zace Metallicity of
Mcay + M. accretion, Zac, evolve
with planet formation

J

Z surf —

Heavy elements
are kept in
planetary objects




Solids in planets in the solar system

® TJotal solid mass in planets, Msolid

e Terrestrial planets: 2Me
O Jupiter+Satu rn: 30-70Me e.q., Guillot05, Miguel+16, Wahl+17, Helled+Guillot13

® Uranus+Neptune: ~25-28Me e.g., Nettlemann+13
e +Missing objects: ~60—100Me e.g., O'Brien+07, Tsiganis+05, Izidoro (private comm.)

—=> ~|50M¢ solids

-> 0.03Ms metal-free accretion (150Me/Zo, £5=0.0134)
Asplund+09

® |ce-to-rock ratio, fice/rock

® Solar photosphere = 2.0 Lodders03
® Lower fice/rock than 2.0 in planets induces refractory-poor accretion
® Highly uncertain in giant planets



Accretion history

main acc. phase pre-MS
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Internal structure with low-entropy acc.
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Kunitomo et al., in prep.

—1 * With £=0, the surface CZ

shrinks rapidly even before
disk dispersal!

Baraffe+Chabrier10

| ® With the standard evolution, it

takes ~30Myr

Pollution of stellar surface is expected to be stronger in

the low-entropy accretion cases, if planets are formed



* With &=0, the surface CZ
shrinks rapidly even before
disk dispersal!

Underlying physics
low-entropy accretion

=> smaller radius
-> higher temperature (From Virial theorem, T>M/R)

=> smaller opacity
-> radiative core develops
(cf. in Schwarzschild criterion, convective if Vag<Viadxxl)

—




Metallicity gradient in Hyades cluster
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5| Red lines:
| Consequences of planet formation

e Metal-free accretion for 0.03Msin
e higher-mass stars have shallower
convective zone => larger impact

The trend made by planet
formation does not match the

observation with any & value

-> planet formation process is
not the origin



Solar composition anomaly
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With lower fice/rock than 2 (=solar photosphere value),
more refractory elements are deposited in planets
-> refractory-poor accretion



Solar composition anomaly
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ice-to-rock ratio

« With £=0.1 and Ms.iid=150Me, any ice-to-rock ratio value
cannot reproduce the observed refractory-poor composition

* With £=0 and fice/rock=0.7, planet formation can be the origin of
the composition anomaly

¢ W'th Msolid= I OO and 2OOMG—), ﬁce/rock=o.5—o.85



We revisited pre-MS evolutions with low-entropy accretion and found

(1) Stars formed by the low-entropy accretion have a much smaller radius
and luminosity and develop a radiative core more rapidly

(2) Luminosity spreads of pre-MS stars can be explained by different heat
injection ¢

(3) Most (~90%) stars may be formed with & >0.1

(4) Planet formation cannot explain the metallicity gradient in Hyades cluster,
but can explain the solar composition anomaly if =0 and fice/rock ~ 0.5-0.85
are possible

(5) Multidimensional RHD simulations are needed to reveal the heat

injection efficiency ¢
@ RKX
O,

refractory-poor gas
T — —

rocky
planetesimals




