

Established by the European Commission

GO & Hahn, arXiv:1707.07693 GO, Nagai & Ishiyama, arXiv:1604.02866

What sets the central density structure of dark matter halos?

Go Ogiya

(Observatoire de la Côte d'Azur, OCA)

In collaboration with

Oliver Hahn (OCA); Daisuke Nagai (Yale); Tomoaki Ishiyama (Chiba) <u>Outline</u>

- Introduction
- Formation of dark matter halos of the first generation
- Evolution of baby dark matter halos
- Summary

Dark matter in the Universe

≻Dark matter (DM)

- Interacts only through gravity
 - ✓ (Small cross sections for other interactions)
- One of main components
 - \checkmark 27% of the total energy density
 - ✓ 85% of the total mass

Bunch of candidates

- Cold dark matter (CDM)
 - ✓ Weakly interacting massive particle (WIMP), axion
- Warm dark matter (WDM)
 - ✓ Sterile neutrino
- Fuzzy dark matter (FDM)
 - ✓ Ultra-light axion
- Self interacting dark matter (SIDM)
- Hot dark matter (HDM)
 - ✓ Neutrino
- Massive compact halo object (MACHO)
 - ✓ Undetectable PBH, BH, WD, NS, planet ...

Why DM density profile, p?

DM halo = driver of galaxy formation and evolution

Why DM density profile, p?

➤Indirect search of DM in astronomical obs.

• Annihilation signal $\propto \rho^2$

• Decay signal $\propto \rho$

Important for estimating the detectability

DM distribution in a Milky Way sized region

Springel et al. (2008)

Expected annihilation signal $\propto \rho^2$

Springel et al. (2008)

NFW density profile

► Navarro, Frenk & White (NFW)

$$\rho(r) = \frac{\rho_{\rm s}}{(r/r_{\rm s})(1 + r/r_{\rm s})^2}$$

- Central cusp of $ho \propto r^{-1}$ At outskirts, $ho \propto r^{-3}$

• Universal in the standard CDM simulations

Origin is not fully understood yet...

Cosmo. sims with various DM models

Power spectrum, P(k) = How much of density fluctuations at the scale of the wave num., k 10⁶ >Vanilla CDM sims assume DM is initially perfectly cold $P(k) [(Mpc/h)^3]$ Thermally produced DM particles -> Finite T, corr. free-streaming scale m=30eV -> Erasing fluctuations on the small scales -> Cut-off in the matter power spectrum 10^{-12} -> Structure formation is suppressed m=3.5keV beyond the cut-off **Smallest halos = 1st generation** 10^{-18} = Seeds of larger ones 1000k [Mpc⁻¹h]

 10^{6}

CDM (w/o cutoff)

cutoff)

CDM (w/

m=100GeV

HDM

Cosmo. sims of 'microhalos'

Assuming CDM particles with a mass of 100GeV, the cut-off arises in the scale of 10^-6Msun, 'Microhalos'

➤Case-A

- No substructure
- Smooth filaments

➤Case-B

- Lots of substructures
- Significant graininess

Deviation from the universality

Central density structure of the halo $\rho \propto r^{-\alpha}$ • Case-A: α =1.5 • Case-B: α =1 (NFW)

Why do the halos in Case-A have the steeper slope?

 \succ Case-A = DM halos of the 1st gen.

- Formed through monolithic collapse
- Not experienced any mergers

DM halos are formed at points where pi exceeds pc

Formation of DM halos through collapse

1 DM is expanding with the Hubble flow

② DM in the overdense region turns around and falls back towards the center 3 DM halo is formed and virialized

What we'd like to know = first halo formation

Structure of proto-halo patches

>Assumption:
$$ho_{
m i}(r) \propto \xi(r)$$

Density core in the models with the cut-off

- Fluctuations on the small scales erased
- Cuspy structure in the model w/o the cut-off

➤Generalized spherical infall model

$$\rho_{\rm i}(r) \propto (r^2 + r_{\rm c}^2)^{-3\epsilon/2}$$

- rc: core size in the patch
- ε : slope (func. of mass scale)

Role of 'Noises'

➢Noises

- Numerically introduced graininess
- Substructures
- Model them by including the Gaussian noise on the small scales
 - Discuss major mergers later

$$P_{\text{noise}}(k) = g_{\text{amp}}[P_{\text{w/o cut-off}}(k) - P_{\text{w/ cut-off}}(k)]$$

Collapse simulations

Initial particle position and velocity

- Zel'dovich approx. (Zel'dovich 1970)
 - 1. Regular particle lattice
 - 2. Displacement by following the grav. potential
 - 3. Follow the profile of $ho_{
 m i}(r) \propto (r^2+r_{
 m c}^2)^{-3\epsilon/2}$

No physical noise is included, but numerical ones always exist -> + Non-spherical perturbation; to avoid numerical issues

- Noise on the small scales
- 3 params: $\,r_{
 m c},\epsilon,g_{
 m amp}\,$

Numerical parameters

- N=8,680,336
- Tree code for GPU clusters (GO et al. 2013, see also Barnes & Hut 1986)
- Params to control the resolution and accuracy are carefully chosen

Impact of the initial core

$$ho_{\rm i}(r) \propto (r^2 + r_{\rm c}^2)^{-3\epsilon/2}$$

- Density at the outskirts is the same
- ≻In runs with larger rc,
 - Higher central density
 Steeper cusps
 - $\alpha \sim 1.5$ in runs with the core

Consistent with cosmo. sims of microhalos

Ishiyama et al. (2010); Ishiyama (2014); Angulo et al. (2017)

Impacts of the initial slope

$$\rho_{\rm i}(r) \propto (r^2 + r_{\rm c}^2)^{-3\epsilon/2}$$

Profiles of α ~ 1.5 are obtained independently of ε

 \geq Q. Why α = 1.5?

• Free-fall motion makes the density profile

✓ Bertschinger (1985); Shu (1977)

 Because of rapid mass accretion, free-fall motion is kept

Impact of the noise

- [Upper] Varying gamp
 Shallower central cusp in runs with larger gamp
- ►[Lower] Evolution
 - Noise disturbs the halo formation
 - Halos do not have the high central density and steep slope

$$P_{\text{noise}}(k) = g_{\text{amp}}[P_{\text{w/o cut-off}}(k) - P_{\text{w/ cut-off}}(k)]$$

2,5 Overview purely radial В \geq Runs w/o the noise Resultant inner slope, Red points roughly follow solid red line \checkmark Fillmore & Goldreich (1984); Bertschinger (1985) • Black points: $\alpha \approx 1.5$ isotropic $\rho_{\rm i}(r) \propto (r^2 + r_{\rm c}^2)^{-3\epsilon/2}$ ×: w/o core, w/o noise **•**: w/ core, w/o noise 0,5 ×: w/o core, w/ noise •: w/ core, w/ noise constant L 0,01 0,1Initial slope, ε

22

Overview

≻Runs w/ the noise

- w/ core: Formation is significantly affected
- w/o core: Impacts of the noise is weaker

$$P_{\text{noise}}(k) = g_{\text{amp}}[P_{\text{w/o cut-off}}(k) - P_{\text{w/ cut-off}}(k)]$$

Overview

 \succ Gray, red and pink ones at $\epsilon < 0.3$, $\alpha \sim 1$

➤Q. What is the role of the noise?

'Noises' in cosmo sims make the cusp shallower and lead to the state of $\alpha = 1$ (NFW profile)

Halos of the 2nd, 3rd ... gens

How do their descendants evolve?
Inner density slope gets
shallower as microhalos grow

- Shallowing central cusps due to major mergers?
 - Because of lack of substructures

Merger progenitors
$$\rho(r) = \frac{\rho_0 r_0^3}{r^{\alpha} (r+r_0)^{3-\alpha}}$$

➤Typical orbit in cosmo sims

 e.g. Khochfar & Burkert (2006); Wetzel (2011)

➤Consecutive mergers

- e.g. Progenitors of 2nd merger
 = remnant of 1st merger
- Typical orbit

- ➤Consecutive mergers
 - e.g. Progenitors of 2nd merger
 = remnant of 1st merger
 - Typical orbit

- ➤Consecutive mergers
 - e.g. Progenitors of 2nd merger
 = remnant of 1st merger
 - Typical orbit

Central cusp gets shallower in each merger event
 NFW profile is more resilient

Why is the NFW halo more resilient?

- Major mergers lead significant changes in potential
 - Violent relaxation (Lynden-Bell 1967)
 - Particles exchange energy
 - Orbits of a fraction of particles expand
 - Lower central density and shallower slope

Would work more efficiently in dynamically hotter systems

- -> α =1 (NFW) is more resilient
- -> Universality?

What about WDM and HDM halos?

➤They are halos of the 1st gen. as well

- ➢ But the NFW profile (α=1) works well for WDM and HDM halos
 - WDM: Bode et al. (2001); Avila-Reese et al. (2001); Busha et al. (2007); Lovell et al. (2014); but see also *Polisensky & Ricotti (2015; α=1.5)*
 - HDM: Wang & White (2009)

Cusps may have been made shallower by

- Discreteness noises?
- Mergers?
 - ✓ WDM works studied MW sized halos, > 1000 times greater than the smallest mass scale

Summary: an expected story of DM density profile

Thank you for your attention!