

"Other Science" GTO with SPHERE

Eric Lagadec Laboratoire Lagrange Observatoire de la Côte d'Azur

SPHERE: The VLT planet finder

New generation extreme adaptive optics on the VLT First light in 2014 Visible and NIR imaging, polarimetry, IFU Consortium: IPAG, LAM, LESIA, Lagrange, Amsterdam, Heidelberg, Zurich, Geneva

• 250 nights of GTO!

Stars are 1 billion times brighter than planet. Like a glow worm next to a lighthouse...

And very far! A glow worm in New York.

3 instruments in one

- Extreme adaptive optics (~1400 actuators)
- Many coronographs
- IRDIS: NIR differential imaging + polarimetry + spectroscopy(13.5"*13.5")
- ZIMPOL: optical imaging + polarimetry (3.5"*3.5")
- IFS: NIR Integral Field Spectroscopy (1.75"* 1.75")

Deformable mirror

SPHERE: fairly stable !

SPHERE: the lord of the rings

Angular differential imaging

We use the rotation of the field to enhance the contrast!

Angular differential imaging

Spectral differential imaging

Speckles move with wavelenght, planets do not!

Polarisation differential imaging

Light from the star (usually) not polarized, discs/planets polarized

SPHERE performances

SPHERE performances

SPHERE and Lagrange

Technical contributions:

- Apodising coronographs
- Opto-mecanics
- High contrast laboratory tests Planet detection algorithms:
 - Integration to the SPHERE pipeline

End to end numerical simulations

• CAOS/SPHERE

SPHERE Data Center

- Reduction of calibrations (every 24h)
- GTO data reduction within 24h
- Reduction for all data after ~2 years
- PI data reduction on demand
- Development of pipelines

Institut Pythéas Observatoire des Sciences de l'Univers Aix*Marseille Université

Discs!!

Ceci n'est pas un modèle!

Sauron's eye

Harvesting disks

Goals of "Other Science"

- Science cases non related to planets/disks
- Show the community that SPHERE is versatile
- A few temporal monitoring programs
- Short program that should then lead to successful open time proposals
- Evolved stars, solar system, jets, AGNs etc...

AGBs and RSGs: physics at all spatial scales

Photosphere

Interferometry (1.64µm, Haubois et al. 2009)

Model (1.64µm, Chiavassa et al. 2010)

50 mas

IOTA, NIR, Haubois et al., 2016

Photosphere

Betelgeuse

SPHERE/VLT, optical, Kervella et al., 2016

Inner envelope

Betelgeuse

VISIR/VLT 10 µm, Kervella et al. 2011

Intermediate envelope

Betelgeuse

Herschel 70-250 µm, Decin et al. 2012

Intermediate envelope

Betelgeuse

Herschel 70-250 µm, Decin et al. 2012

Betelgeuse

Herschel 70-250 µm, Decin et al. 2012

Different types of binary interactions

tidal interaction

wind accretion & tidally enhanced winds

Roche-lobe overflow

common envelope evolution

Figure from Pols, 2005

Wind Roche lobe overflow

www.eso.org

• AGB star mass: 1.6 M_{\odot}

- Companion: 0.25 M_{\odot}
- Separation: 60 AU

Mohamed and Podsiadlowski, (2007)
ALMA: spirals formation due to binaries

ALMA (ESO/NAOJ/NRAO)

Maercker et al., 2012

Kim et al., 2017

Will not form bipolar PNe?

Spirals and SPHERE/VLT

- Pi1 Gru (nearby AGB star with distant companion)
- Spiral pattern: nearby companion?
- Looked for the binary in R Scl (Maercker's spiral): companion non detected

AFGL 4106: spiral

- Massive evolved star
- Spectroscopic binary
- Spiral mapped in the IR
- Expected separation: 0.3"

AFGL 4106: binary

•

- Massive evolved star
- Spectroscopic binary
- Spiral mapped in the IR
- Expected separation: 0.3"
- Bingo!

Lagadec et al., in prep

- Binary WC+O stars: dustars producing huge amounts of dust (10⁻⁶ M_{sun}/yr)
- Spiral due to wind collision
- First direct image ever
- Where is the shock/dust formation zone?
- Combination with AMBER/VLTI to map the inner parts

Soulain et al., submitted

Binaries and jets: R Aqr

- Binary system with a red giant and a compact companion
- Binary system resolved for the first time (40mas=8au)
- Precessing jet from the secondary
- Polarimetry: jet is carving the dust
- Orbit being determined
- Benchmark for the physics of jets!
- ALMA observations to come: dynamics!

Schmid et al., in prep

AGB stars morphology

map of R Hor in V

of R Hor in V

in NR

Mic in V

Fig. 105: Intensity map of T Fig. 106: Intensity map of T Mic in NR

of R Hor in NR

Fig. 99: Degree of polarisation Fig. 100: Degree of polarisation map of R Hor in NR

Fig. 107: Degree of polarisation map of T Mic in V

Fig. 108: Degree of polarisation map of T Mic in NR

Fig. 101: Polarisation flux map Fig. 102: Polarisation flux map Fig. 109: Polarisation flux map Fig. 110: Polarisation flux map of T Mic in V

of T Mic in NR

• Filler (bright targets, broad range of RA and Dec)

- 17 AGB stars observed
- V and R band filters
- ZIMPOL polarimetry

AGBs not spherical at small spatial scale

Lagadec et al., in prep

Morphologies of AGB stars and Planetary Nebulae

AGB star

Different PNe

Influence of a compagion

Credit: StScI

L2 Puppis

- Nearby AGB star (64 pc)
- Edgee-on disk seen with ZIMPOL
- Inner rim of the disk (6 AU) seen in P maps
- Secondary source at 2 AU
- Spiral patterns+ plumes

Kervella et al., 2015

L2 Pup: the birth of a bipolar PN?

L2 Pup b: the future of earth? Plume Red Giant ALMA candidate planet E ALL

Cycle 3, special extended configuration (16 km)
Band 7, CO J=3-2 emission + others (346 GHz)
Maximum angular resolution 0.015"

Eta Carinae

Binary system Massive LBV + O star Mass: 100-200 M_☉ Eruption in 1843 (1847?)

Eta Carinae: deconvolution

ZIMPOL: into the core of Eta Carinae

Millour, Lagadec et al (about to be submitted)

Eta Carinae in « slow » motion

- Lesser eruption in 1890
- Blobs imaged since 1988
- Motion of the Weigelt blobs!

Millour, Lagadec et al (about to be submitted)

Eta Carinae: wind-wind collision zone?

ZIMPOL polarisation map

Polarisation map, with predicted orbits of the binary

Millour, Lagadec et al (about to be submitted)

Asteroids

- Relics of the solar system formation
- Knowing their density is important to better understand their physical structure
- Ground-based images+ rotation: cheap 3D structures
- Binaries: mass

Large programme (Vernazza et al.) accepted

51 Daphne (ZIMPOL)

Carry et al., in prep

Proxima

- Trendy lately since the discovery of Proxima Cen b
- IRDIFS observations for more than 18 months
- Constraints on planets at large separation

Mass of Proxima Cen (Alice Zurlo, Marseille-ESO)

Astrometric shift up to 1.5mas expected

Mass of proxima!

Mass measured before (M-L) 0,12 M_o Mass from lensing:0.145 M_o (± 0.05) 2nd star ever to be weighted by lensing!

~2 years of IRDIFS observations

Zurlo et al., submitted

NGC3603

- Most massive visible cluster in our Galaxy
- Age ~ 2 Myr
- M_{phot} ~ 1.2E+4
 M_{sun}
- D~ 6.3 kpc

R136

- Age ~ 3 Myr ; M_{phot} ~ 1.0 E+5 M_{sun}
- D~ 50 kpc

Goals

- Prototype of compact starburst clusters: study the binary fraction and verify the mass segregation scenario
- Dual IRDIS imaging: well suited to extract simultaneously the astrometric shift of a binary system due to the spectral types of its components.

SPHERE vs HST

Resolution: better than the HST!

NGC 3603 (Khorrami)

• Map of the core of the cluster

- Extinction maps
- MF in the core
- No segregation?

R 136 (Khorrami)

R136 a1

- Most massive star known in the universe 265 Msun
- Important for top part of the IMF (limit usually accepted: 150 Msun)
- Pair-instability SNe in the vicinity of the MW?

Is R136 A1 a binary??

Cepheids

- Envelopes? (would affect the flux measurement and thus the PL relation)
- Companion? (same, and color effects)
- Observations of L Pup and Y Oph

Thèse de Vincent Hocdé (avec Nicolas Nardetto)

Thank you!

ZCma (S. Antoniucci, Rome)

- Binary system (0.1" sep):
 FU Ori and eruptive Herbig Be (EXor)
- Unique to study ejection of matter in young stars with outbursts due to accretion (2008-2010)
- <u>Connection accretion-</u> <u>ejection?</u>
- <u>Magneto-centrifugal scenario</u> <u>for intermediate mass?</u>
- Interaction disk-jets?

ALMA: spirals formation due to binaries

ALMA (ESO/NAOJ/NRAO)

Maercker et al., 2012

Kim et al., 2017

Will not form bipolar PNe?

Goals of "Other Science"

- Science cases non related to planets/disks
- Show the community that SPHERE is versatile
- A few temporal monitoring programs
- Short program that should then lead to successful open time proposals

Starburst region R 136 and NGC 3602

- Best place to find the most massive stars: young starburst massive clusters
- BUT we should be careful about :
- M_{tot} high enough so IMF can sample up to M > 100 M_{sun}
- Should be young enough for massive stars Age < 3-4 Myr
- Should be close enough (spatially resolved)

Conclusions and perspectives

- SPHERE is opening a new window on the sky:lots of exciting topics/questions to be answered
- Promising results for AGB stars, extended circumstellar environments, jets, binaries, solar system objects
- More to come!!

Mission and ground based facilities for the observations of AGB-SAGB and massive stars

Eric Lagadec Lagrange laboratory (Observatoire de la Côte d'Azur)

Mass-loss process

st28gm06n25; Surface Intensity(3r), time(1.0)= 6.346 yrs

- Convection and pulsation: shocks
- Dust formation behind the shocks
- Radiation pressure: acceleration
- Gas dragged via collisions

dust-driven wind: a two-stage rocket

dust-free pulsating atmosphere

time

What can high angular resolution tell us about the mass-loss mechanism?

- Interferometry: extension of the atmosphere, gas dynamics, convection, dust formation
- Extreme AO+polarisation: grain size, convection
- Time series: link pulsation+ convection with shocks and dust formation

IR interferometry of AGBs and RSGs

- Imaging capibilities: can resolve convective cells!
- Spectral resolution: map MOLSPHERE and study gas dynamics
- Haubois et al., 2009 MIR: map dust formation

Betelgeuse

50 mas

Resolution down to 1 mas!! can even map the surface of some stars

NIR interferometery: convection

- Atmosphere appears different across the CO line profile
- Inhomogeneous velocity field
- Changes within a year
- Seen also in Betelgeuse

Problem for O-rich dust!

Can form close to the star but transparent

Form too far from the star for radiation pressure to work

Woitke et al., 2003

Scattering by large grains

 If grains are large (similar to the peak wavelength, a few microns) scattering can trigger the mass loss (Hoefner, 2008)

Large grains seen by SPHERE/VLT

Three clumpy dust clouds Dust, neutral and ionised gas coexist within 2-3 R* Large grains (0.4-0.5 microns) Consistent with scattering by large grains Consistent with convection

Non spherical mass loss: extra momentum?

ALMA observations of VY Cma (RSG) Two massive dust clumps Continuated, directed mass loss over 30-50 years (not compatible with convection) Magnetic field? Third stage for the mass-loss rocket? Fried Egg nebula with ALMA: similar spur? (Wallstrom et al., 2016)