

The Large Binocular Telescope Fizeau Interferometer Fundamental gain in high-contrast imaging

Fabien Patru & the THD2 team Observatoire de Paris Meudon, LESIA OCA, Nice 06/02/2018

Fabien Patru

LBTI

The 23-m binocular at LBT

The 23-m binocular at LBT

Optical ray-tracing of the LBTI

The LBTI telescope

Rear View of LBT

The LBTI beam combiner

The LBTI beam combiner

Fabien Patru

The LBTI focal image

MNRAS paper I.

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **472**, 2544–2553 (2017) Advance Access publication 2017 August 3 doi:10.1093/mnras/stx1961

The LBTI Fizeau imager – I. Fundamental gain in high-contrast imaging

F. Patru,^{1,2★} S. Esposito,² A. Puglisi,² A. Riccardi,² E. Pinna,² C. Arcidiacono,³ J. Antichi,^{2,4} B. Mennesson,⁵ D. Defrère,^{6,7} P. M. Hinz⁷ and J. M. Hill⁷

¹PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, Observatoire de Paris, LESIA, 5 place Jules Janssen, F-92195 Meudon cedex, France
²INAF Osservatorio Astrofisico di Arcetri, 5 Largo Enrico Fermi, I-50125 Firenze, Italy
³INAF Osservatorio Astronomico di Bologna, 1 Via Ranzani, I-40127 Bologna, Italy
⁴Airbus Defense and Space GmbH, Space Systems, Robert Koch Str. 1 - D-82024 Taufkirchen, Munich, Germany
⁵Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
⁶Space Sciences, Technologies and Astrophysics Research Institute, University of Liége, 7 place du 20-Aožt, B-4000 Liége, Belgium
⁷Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

Accepted 2017 July 28. Received 2017 July 26; in original form 2017 April 5

The theoretical PSF of the LBTI

The PSF of the LBTI is made of :

- rings (subaperture Airy pattern) &
- fringes (interference cosine pattern).

A huge contrast in narrow zones can be achieved when both a dark fringe and a dark ring overlap.

LBT vs LBTI point spread function

LBT/LBTI contrast gain map

Contrast gain vs sky rotation

=> **ADI** Fizeau mode

Contrast gain vs parallactic angle vs radial distance

Contrast gain vs piston errors

AO RMS = $\lambda/8$ (~100nm at 750nm)

Piston RMS = $\lambda/16$, $\lambda/8$, $\lambda/4$, $\lambda/2$ (~50, 100, 200, 400 nm at 750nm)

The averaged contrast gain of ~10 over the AO FOV is **insensitive to piston errors in short exposures**

Fabien Patru

MNRAS paper II.

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **472**, 3288–3297 (2017) Advance Access publication 2017 August 8

doi:10.1093/mnras/stx2016

The LBTI Fizeau imager – II. Sensitivity of the PSF and the MTF to adaptive optics errors and to piston errors

F. Patru,^{1,2★} S. Esposito,² A. Puglisi,² A. Riccardi,² E. Pinna,² C. Arcidiacono,³ J. Antichi,^{4,2} B. Mennesson,⁵ D. Defrère,^{6,7} P. M. Hinz⁷ and J. M. Hill⁷

¹PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, Observatoire de Paris, LESIA, 5 place Jules Janssen, F-92195 Meudon cedex, France ²INAF Osservatorio Astrofisico di Arcetri, 5 Largo Enrico Fermi, I-50125 Firenze, Italy

³INAF Osservatorio Astronomico di Bologna, 1 Via Ranzani, I-40127 Bologna, Italy

⁴Airbus Defense and Space GmbH, Space Systems, Robert Koch Str. D-82024 Taufkirchen, Munich, Germany

⁵ Jet Propulsion Laboratory, 4800 Oak Grove Drive, CA 91109, Pasadena, United States

⁶Space Sciences, Technologies and Astrophysics Research Institute, University of Liége, 7 place du 20-Aožt, B-4000 Liége, Belgium

⁷Steward Observatory, University of Arizona, 933 N. Cherry Avenue, 85721, Tucson, United States

Accepted 2017 August 3. Received 2017 July 26; in original form 2017 April 5

LBTI PSF & MTF vs AO & piston errors

Fabien Patru

LBTI

LBTI PSF & MTF merit functions

Fabien Patru

The LBTI Fizeau imager : In brief

• Fundamental gain in high-contrast imaging

- Global gain by a factor of **2 in long exposures** & of **10 in short exposures**
 - **One-directional** interferometric sampling,
 - Independent correction of AO & piston errors,
 - LBTI Fizeau imager vs **speckle interferometry** (Labeyrie 1970) using AO.
- Compared to a single 8-m aperture, the 23-m LBTI Fizeau imager provides:
 - a gain in **sensitivity** (by a factor of 4),
 - a gain in **angular resolution** (by a factor of 3),
 - a gain in raw **contrast** (by a factor of 2–1000 varying over the AO FOV).

• Low sensitivity of the PSF & MTF against AO & piston errors

- A Fizeau image of high-quality (Strehl > 70%) requires both at a time:
 - an **AO correction** better than $\approx \lambda/18$ RMS for short & long exposures,
 - a **piston correction** better than $\approx \lambda/8$ RMS for long exposures or simply below the coherence length for short exposures.
- Limitations for high-contrast imaging: broadband, *vibrations*, ...
- Right now feasible in the near-infrared (technical proposal on LMIRCam ?)

Thank you for your attention

