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Weak cosmological lensing

Lensing by LSS:  
~ 3% distortion  
κ, γ ≈ 0.03

“Weak lensing”

zs ~ 1

Example of very strong distortion: arcs

The cluster of galaxies Abell 2218

• Sensitive to total (baryonic +  
dark) matter 
No need to assume relation 
(bias) between galaxies & DM

• Low (z~0.1 … 1) redshifts  
Epoch of acceleration

• Probes geometry & structure  
Modified gravity
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WL: Gaussian statistics

3

• Probes small scales, down to sub-Mpc at late time: non-Gaussian 
structures. 

• However so far mainly used 2-point correlation function or other 2nd-order 
stats (functions of on power spectrum) 

variance 
smoothed at R: 
σ2(!) = σ2(")

CONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011
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2-point shear correlation function

4

Prediction 
(WMAP7 cosmology):  

Flat Universe
Ωm = 0.27
σ8 = 0.8
w = -1

Smith et al. (2003)  
non-linear power spectrum

8 Kilbinger et al.

multi-bin tomographic shear survey, p can easily be of the order of
several hundreds or more if other probes are jointly measured such
as galaxy clustering or magnification. This necessitates on the order
of a thousand and more independent lines of sight. This number has
to be multiplied by many if a proper treatment of the cosmology-
dependence is to be taken into account. Moreover, a simple up-
scaling of smaller simulated fields to full survey size might not be
easy because of the different area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al.
(2012a), which accounts for a potential additive shear bias c and
multiplicative bias m,

εobs = (1 +m) εtrue + c. (12)

The additive bias is found to be consistent with zero for ε1. The sec-
ond ellipticity component ε2 shows a signal-to-noise ratio (S/N )
and size-dependent bias which we subtract for each galaxy. This
represents a correction which is on average at the level of 2×10−3.
The multiplicative bias m is modelled as a function of the galaxy
S/N and size r. It is fit simultaneously in 20 bins of S/N and r,
see Miller et al. (2012). We use the best-fitting function m(S/N, r)
and perform the global correction to the shear 2PCFs, see eqs. (19)
and (20) of Miller et al. (2012). Accordingly, we calculate the cali-
bration factor 1+K as the weighted correlation function of 1+m,

1 +K(ϑ) =

∑
ij wiwj(1 +mi)(1 +mj)∑

ij wiwj
. (13)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this un-
certainty, and show in Sect. 6.2 that the cosmological results remain
unchanged by adding this term to the analysis.

Figure 6 shows the combined and corrected 2PCFs, which are
the weighted averages over the four Wide patches with the number
of pairs as weights. Note that the data points are strongly corre-
lated, in particular ξ+ on scales larger than about 10 arcmin. Cos-
mological results using this data will be presented in Sect. 5. The
correlation signal split up into the contributions from the four Wide
patches is plotted in Fig. 7. There is no apparent outlier field. The
scatter is larger than suggested by the Poisson noise on large scales,
in agreement with the expected cosmic variance.

3.5 E- and B-modes

The aperture-mass dispersion is shown in the upper panel of Fig. 8.
The B-mode is consistent with zero on all scales. We quantify this
by performing a null χ2 test, taking into account the B-mode Pois-
son covariance C× as measured on the Clone,

χ2
B =

∑

ij

⟨M×⟩ (θi)
[
C−1

×
]
ij
⟨M×⟩ (θj). (14)

Since here the covariance is entirely estimated from the Clone line-
of-sight, the inverse has to be de-biased using the Anderson-Hartlap
factor. We consider the B-mode over the angular range [5.5; 140]
arcmin. As discussed before, the lower scale is where the B-mode
due to leakage is down to a few per cent. The upper limit is given
by the largest scale accessible to the Clone, which is much smaller

10-7

10-6

10-5

10-4

 1  10  100

Sh
ea

r c
or

re
la

tio
n

� [arcmin]

j+(�)
j<(�)

Figure 6. The measured shear correlation functions ξ+ (black squares) and
ξ− (blue circles), combined from all four Wide patches. The error bars cor-
respond to the total covariance diagonal. Negative values are shown as thin
points with dotted error bars. The lines are the theoretical prediction using
the WMAP7 best-fitting cosmology and the non-linear model described in
Sect. 4.3. The data points and error bars are listed in Table B1.
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

than the largest CFHTLenS scale: It is 280 arcmin, resulting in an
upper limit of ⟨M2

ap⟩ of half that scale. The resulting χ2/dof of
14.9/15 = 0.99 , corresponding to a non-null B-mode probability
of 46 per cent. Even if we only take the highest six (positive) data
points, we find the χ2per degree of freedom (dof) to be χ2/dof =
4.12/6 = 0.69, which is less than 1σ significance. The non-zero
B-mode signal at around 50 - 120 arcmin from F08 is not detected
here.

The top-hat shear rms B-mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,

c⃝ 2009 RAS, MNRAS 000, 1–18
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Cosmological Constraints from Cosmic Shear 
in CFHTLenS

Abstract
We present constraints on cosmological parameters from weak gravitational 
lensing by the large-scale structure. Using multi-band optical data over 155 
square degrees of the CFHTLenS survey, we measure the shear correlation out 
to very large, linear scales. We sample the parameter space using Population 
Monte Carlo (PMC), and obtain robust constraints on LCDM  parameters.

E- and B-mode
To first order, the cosmological shear field is curl-free, and shows a pure 
gradient or ‘E-mode’ (the green patterns in Fig. 1).  The curl or B-mode’ (red 
patterns) is expected to vanish, and can be used as a test for residual 
systematics in the data. The aperture-mass dispersion separates the two 
modes. Indeed, the B-mode is consistent with zero between 1 and 230 arcmin 
(Fig. 1, left panel).

Shear correlation functions
The full second-order information of the cosmological weak lensing signal in 
real space is contained in the shear two-point correlation functions (2PCF):

They are measured by averaging over the shape correlations of pairs of galaxies 
at a given angular distance ϑ. Both the tangential and cross-component of 
shear are considered. We measure the 2PCF from 0.9 to 331 arcmin (Fig.2).

References
• Harnois-Deraps, Vafaei, Van Waerbeke, 2012 (in prep.)
• Kilbinger & Schneider, 2004, A&A, 413, 465
• Kilbinger et al. 2011,  arXiv:1101.0950, www.cosmopmc.info
• Sato et al. 2011, ApJ, 734, 76
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• Correlation of the shear at two points yields four quantities
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Alignment of galaxies:

Decompose shear ! 
into tangential t and 
cross-component x

Shear two-point correlation functions:Weak
lens-
ing
and
cosmologyWeak lensing and cosmology Second-order cosmic shear statistics

Separating the E- and B-mode

E mode

B mode

mass
trough

mass
peak

E mode

B mode

mass
trough

mass
peak

• Local measure for E- and B-mode: �M2
ap⇥

• Remember: Map(⇥) =
�

d2⇤ Q�(⇤)�t(�).
• Define: M�(⇥) =

�
d2⇤ Q�(⇤)��(�).

• Dispersion �M2
�⇥ is only sensitive to B-mode, i.e., vanishes if there

is no B-mode.
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Grav. lensing produces only E-mode pattern (to first order)

= projections of P"(k)

Wednesday, March 16, 2011

Covariance
We calculate the covariance of the data as follows:

• Gaussian part on large scales: Kilbinger & Schneider (2004), taking into 
account the CFHTLenS survey geometry and masks

• Non-Gaussian correction on small scales: Fitting formula of Sato et al. 
(2011), calibrated with simulations

We check the accuracy of this approach by comparing to N-body and ray-
tracing simulations, created for CFHTLenS (Harnoid-Deraps et al. 2012). From 
these simulations, we create a ‘Clone’ of the CFHTLenS data with the same 

galaxy redshift distribution, masks and noise properties. The agreement is good 
on scales > 1 arcmin (Fig. 3).

Parameter constraints
By comparing the measured shear correlations (Fig. 4) to theoretical 
predictions of the large-scale structure, we obtain constraints on cosmological 
parameters. The multi-dimensional parameter space is sampled using 
Population Monte Carlo (PMC), implemented in the free software 
cosmo_pmc (Kilbinger et al. 2011).

Assuming a flat ΛCDM Universe, CFHTLenS together with WMAP7 constrain 
Ωm to 4% and, σ8 to 2% (at 68.3% confidence). Dropping flatness, the error 
bars double (Table 1).

M. Kilbinger1, CFHTLenS Collaboration2

1-CEA Saclay, AIM/SAp, F-91191 Gif-sur-Yvette, France
2-www.cfhtlens.org
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Fig. 2. Shear correlations 
measured in CFHTLenS, and 
best-fit ΛCDM model.

Fig. 3. Diagonal of the 
covariance. of ξ+. The 
non-Gaussian correction 
matches the ‘cloned’ 
CFHTLenS simulation. 

ΩK=0 (flat) Free curvature 

Parameter Mean±68.3%cl.

Ωm 0.257± 0.011
σ8 0.797± 0.014
Ωb 0.0440± 0.0011
h 0.716+0.014

−0.013

ns 0.966± 0.013

Parameter Mean±68.3%cl.

Ωm 0.254+0.019
−0.018

σ8 0.804+0.031
−0.025

Ωb 0.0430+0.0043
−0.0038

h 0.725+0.034
−0.037

ns 0.965+0.014
−0.013

Ωde 0.744± 0.010

Table 1. Mean and 68.3% confidence intervals for ΛCDM, 
with zero (left) and free curvature (right).

Fig.1. Left: E- and B-modes 
measured in CFHTLenS. 
Right: typical E- and B-mode 
shear patterns. 
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Fig. 4. Constraints (68.3%, 95.5%) on the matter density Ωm 
and the amplitude of density fluctuations σ8. Left: flat 
model. Right: model with a free curvature parameter.
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Cosmological Constraints from Cosmic Shear 
in CFHTLenS

Abstract
We present constraints on cosmological parameters from weak gravitational 
lensing by the large-scale structure. Using multi-band optical data over 155 
square degrees of the CFHTLenS survey, we measure the shear correlation out 
to very large, linear scales. We sample the parameter space using Population 
Monte Carlo (PMC), and obtain robust constraints on LCDM  parameters.

E- and B-mode
To first order, the cosmological shear field is curl-free, and shows a pure 
gradient or ‘E-mode’ (the green patterns in Fig. 1).  The curl or B-mode’ (red 
patterns) is expected to vanish, and can be used as a test for residual 
systematics in the data. The aperture-mass dispersion separates the two 
modes. Indeed, the B-mode is consistent with zero between 1 and 230 arcmin 
(Fig. 1, left panel).

Shear correlation functions
The full second-order information of the cosmological weak lensing signal in 
real space is contained in the shear two-point correlation functions (2PCF):

They are measured by averaging over the shape correlations of pairs of galaxies 
at a given angular distance ϑ. Both the tangential and cross-component of 
shear are considered. We measure the 2PCF from 0.9 to 331 arcmin (Fig.2).

References
• Harnois-Deraps, Vafaei, Van Waerbeke, 2012 (in prep.)
• Kilbinger & Schneider, 2004, A&A, 413, 465
• Kilbinger et al. 2011,  arXiv:1101.0950, www.cosmopmc.info
• Sato et al. 2011, ApJ, 734, 76
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Alignment of galaxies:

Decompose shear ! 

into tangential t and 
cross-component x
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Separating the E- and B-mode
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• Local measure for E- and B-mode: �M2
ap⇥
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is no B-mode.
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Grav. lensing produces only E-mode pattern (to first order)

= projections of P"(k)
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Covariance
We calculate the covariance of the data as follows:

• Gaussian part on large scales: Kilbinger & Schneider (2004), taking into 
account the CFHTLenS survey geometry and masks

• Non-Gaussian correction on small scales: Fitting formula of Sato et al. 
(2011), calibrated with simulations

We check the accuracy of this approach by comparing to N-body and ray-
tracing simulations, created for CFHTLenS (Harnoid-Deraps et al. 2012). From 
these simulations, we create a ‘Clone’ of the CFHTLenS data with the same 

galaxy redshift distribution, masks and noise properties. The agreement is good 
on scales > 1 arcmin (Fig. 3).

Parameter constraints
By comparing the measured shear correlations (Fig. 4) to theoretical 
predictions of the large-scale structure, we obtain constraints on cosmological 
parameters. The multi-dimensional parameter space is sampled using 
Population Monte Carlo (PMC), implemented in the free software 
cosmo_pmc (Kilbinger et al. 2011).

Assuming a flat ΛCDM Universe, CFHTLenS together with WMAP7 constrain 
Ωm to 4% and, σ8 to 2% (at 68.3% confidence). Dropping flatness, the error 
bars double (Table 1).

M. Kilbinger1, CFHTLenS Collaboration2

1-CEA Saclay, AIM/SAp, F-91191 Gif-sur-Yvette, France
2-www.cfhtlens.org
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Fig. 2. Shear correlations 
measured in CFHTLenS, and 
best-fit ΛCDM model.

Fig. 3. Diagonal of the 
covariance. of ξ+. The 
non-Gaussian correction 
matches the ‘cloned’ 
CFHTLenS simulation. 

ΩK=0 (flat) Free curvature 

Parameter Mean±68.3%cl.

Ωm 0.257± 0.011
σ8 0.797± 0.014
Ωb 0.0440± 0.0011
h 0.716+0.014

−0.013

ns 0.966± 0.013

Parameter Mean±68.3%cl.

Ωm 0.254+0.019
−0.018

σ8 0.804+0.031
−0.025

Ωb 0.0430+0.0043
−0.0038

h 0.725+0.034
−0.037

ns 0.965+0.014
−0.013

Ωde 0.744± 0.010

Table 1. Mean and 68.3% confidence intervals for ΛCDM, 
with zero (left) and free curvature (right).

Fig.1. Left: E- and B-modes 
measured in CFHTLenS. 
Right: typical E- and B-mode 
shear patterns. 
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of ⟨M2

ap⟩
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
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ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.
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on the parameter constraints. We calculate the covariance of ⟨M2
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from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-

c⃝ 2009 RAS, MNRAS 000, 1–18

clu
mpie

r L
SS

CFHTLenS
Cosmic shear: state of the art 2013

Normalisation 
consistent with WMAP, 
but lower than Planck! 

Tension?



Martin KilbingerWL: higher-order stats. / 456

Heymans et al. (2013)

CFHTLenS
Cosmic shear: state of the art 2013

CFHTLenS

WMAP7
Planck

CFHTLenS: tomographic weak lensing 2443

ij and each statistic (+/−). We then define a free parameter α
ij
±

which allows the overall amplitude of the model to vary, but keeps
the angular dependence fixed. The best-fitting amplitude α

ij
± is then

found from a χ2 minimization of α
ij
±ξ

ij
fid(θ ) to the shear correlation

functions measured at five angular scales in each ij bin and each
statistic. A best-fitting value of α

ij
± = 1 implies that the data in

bin ij are well fitted by a WMAP7 GG-only cosmology. Following
Schrabback et al. (2010), each bin is then assigned a single value
of αij ξ̂

ij
fid(θ = 1 arcmin) which can be interpreted as the amplitude

of the two-point shear correlation function measured in bin ij at an
angular scale of θ = 1 arcmin.

To compress the information in the redshift bin combination,
we calculate the lensing efficiency function q i(w) (equation 7) for
each redshift bin i, and then determine the peak redshift zpeak of
the combined lensing sensitivity q i(w)q j(w) for each redshift bin
ij combination. This peak redshift locates the epoch that is the
most efficient at lensing the two-galaxy samples in the redshift
bin combination ij, but we note that these distributions are very
broad, particularly for the redshift bins with a significant fraction
of catastrophic outliers in the photometric redshift distribution (see
Fig. 1).

Fig. 3 shows the resulting compressed 21 data points for
each statistic, ξ+ (circles) and ξ− (crosses), plotting αij ξ̂

ij
fid(θ =

1 arcmin) against zpeak. This can be compared to the fiducial cos-
mology prediction (shown dotted, by setting α = 1). Note that the
relatively high fraction of catastrophic redshift outliers in the lowest
redshift bin impacts on the expected signal measured from redshift
bin combinations that include this bin. The expected increase in
signal, as zpeak increases, is therefore not smooth. This can be seen
in the theoretical curve in Fig. 3 which displays a slight kink at
zpeak = 0.22. To recover αij from this figure, one simply divides
the value of each data point by the value of the fiducial model,
shown dotted, at that zpeak. Consistent values for αij are measured
from both the ξ+ and ξ− statistic. We find a signal that rises as
the peak redshift of the lensing efficiency function increases; the
more large-scale structure the light from our background galaxies

Figure 3. Compressed CFHTLenS tomographic data where each point rep-
resents a different tomographic bin combination ij as indicated by zpeak, the
peak redshift of the lensing efficiency for that bin combination. The best-
fitting amplitude αij of the data relative to a fixed fiducial GG-only cosmol-
ogy model is shown, multiplied by the fiducial model at θ = 1 arcmin for ξ+
(circles) and ξ− (crosses, offset along the zpeak axis for clarity). The error
bars show the 1σ constraints on the fit. The data can be compared to the
fiducial GG-only model, shown dotted. Note that the colour of the points
follow the same colour-scheme as Fig. 1, and indicates the lower redshift
bin that is used for each point.

propagates through, the stronger the lensing effect. In general, the
data are well fitted by the WMAP7 GG-only fiducial model, but
we do see an indication of an excess signal at low redshifts where,
for a fixed angular scale, the smaller physical scales probed are
more likely to be contaminated by the intrinsic galaxy alignment
signal. This is however also the regime where the analysis is most
affected by catastrophic outliers in our photometric redshift distri-
bution. Based on the cross-correlation analysis of Benjamin et al.
(2013), we expect these errors to be accounted for by our use of
photometric redshift distributions P(z). In Heymans et al. (2012),
we also show that the catalogues used in this analysis present no
significant redshift-dependent systematic bias when tested with a
cosmology-insensitive galaxy–galaxy lensing analysis. This gives
us confidence in the robustness of our results at all redshifts. We
note that in order to make this visualization of the data, the different
redshift bin combinations and the ξ+ and ξ− statistics are consid-
ered to be uncorrelated. The plotted 1σ errors on α are therefore
underestimated but we re-iterate at this point that this data compres-
sion is purely for visualization purposes and it is not used in any of
the cosmological parameter constraints that follow.

4.2 Comparison of parameter constraints from weak lensing
in a flat !CDM cosmology

The measurement of cosmological weak lensing alone is most sen-
sitive to the overall amplitude of the matter power spectrum. This
depends on a degenerate combination of the clustering amplitude
σ 8 and the matter density parameter &m, and it is therefore in this
parameter space that we choose to compare the constraints we find
from weak lensing alone using different analysis techniques. We
limit this comparison to flat 'CDM cosmologies. Fig. 4 compares
three cases. In blue we show the 68 per cent Bayesian confidence
limits from a 2D weak lensing analysis of CFHTLenS, limited to
the same angular scales as our tomography analysis with θ < 35 ar-
cmin. This can be compared to the 68 per cent constraints from our

Figure 4. Flat 'CDM parameter constraints (68 per cent confidence) on
the amplitude of the matter power spectrum controlled by σ 8 and the matter
density parameter &m from CFHTLenS-only, comparing three cases: 2D
weak lensing (blue) and six-bin tomographic lensing where intrinsic align-
ments are assumed to be zero (pale blue) and are marginalized over (pink).
For reference, the black cross shows the corresponding best-fitting values
from WMAP7 (Komatsu et al. 2011).
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2015: DES
Cosmic shear: results since 2013

Dark Energy Collaboration (2015)

SVD, 139 deg2

Three tomographic redshift bins

6 The Dark Energy Survey Collaboration

Figure 2. Constraints on the amplitude of fluctuations �8 and
the matter density ⌦m from DES SV cosmic shear (purple filled
contours) compared with constraints from Planck (red filled con-
tours) and CFHTLenS (orange filled, using the correlation func-
tions and covariances presented in Heymans et al. (2013), and the
‘original conservative scale cuts’ described in Section 6.1.1). DES
SV and CFHTLenS are marginalised over the same astrophysical
systematics parameters and DES SV is additionally marginalised
over uncertainties in photometric redshifts and shear calibration.
Planck is marginalised over the 6 parameters of ⇤CDM (the 5 we
vary in our fiducial analysis plus ⌧). The DES SV and CFHTLenS
constraints are marginalised over wide flat priors on ns, ⌦b and
h (see text), assuming a flat universe. For each dataset, we show
contours which encapsulate 68% and 95% of the probability, as is
the case for subsequent contour plots.

The fiducial data vector is the real-space shear–shear
angular correlation function ⇠±(✓) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <

0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, ⌦m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <

⌦b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vector
is modified to account for a potential unaccounted multi-
plicative bias ⇠ij ! (1+mi)(1+mj)⇠

ij . We place a separate
Gaussian prior on each of the three mi parameters. Each is

centred on 0 and of width 0.05, as advocated by J15. See
Section 5.1 for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to de-
scribe photometric redshift calibration uncertainties. We al-
low for an independent shift of the estimated photomet-
ric redshift distribution ni(z) in redshift bin i i.e. ni(z) !

ni(z � �zi). We use independent Gaussian priors on each of
the three �zi values of width 0.05 as recommended by Bo15.
See Section 5.2 for more details.
(iii) Intrinsic alignments: We assume an unknown ampli-
tude of the intrinsic alignment signal and marginalise over
this single parameter, assuming the non-linear alignment
model of Bridle & King (2007). See Section 5.3 for more
details of our implementation and tests on the sensitivity of
our results to intrinsic alignment model choice.
(iv) Matter power spectrum: We use halofit (Smith
et al. 2003a), with updates from Takahashi et al. (2012) to
model the non-linear matter power spectrum, and refer to
this prescription simply as ‘halofit’ henceforth. The range
of scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
statistical uncertainties (see Sections 4.2 and 5.4, and Table
2 for the minimum angular scale for each bin combination).
We thus marginalise over 3 + 3 + 1 = 7 nuisance parame-
ters characterising potential biases in the shear calibration,
photometric redshift estimates and intrinsic alignments re-
spectively.

Figure 2 shows our main DES SV cosmological con-
straints in the ⌦m � �8 plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints, we
use the same six redshift bin data vector and covariance as
H13, but apply the conservative cuts to small scales used
as a consistency test in that work (for ⇠+ we exclude an-
gles < 30 for redshift bin combinations involving the lowest
two redshift bins, and for ⇠�, we exclude angles < 300 for
bin combinations involving the lowest four redshift bins, and
angles < 160 for bin combinations involving the highest two
redshift bins). We see that in this plane, our results are mid-
way between the two datasets and are compatible with both.
We discuss this further in Section 6.1.

Using the MCMC chains generated for Figure 2 we find
the best fit power law �8(⌦m/0.3)↵ to describe the degen-
eracy direction in the �8, ⌦m plane (we estimate ↵ using
the covariance of the samples in the chain in log�8 � log⌦m

space). We find ↵ = 0.478 and so use a fiducial value for ↵

of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 ⌘ �8(⌦m/0.3)0.5 = 0.81± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either ⌦m or �8 alone are weaker; we find
⌦m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES
SV constraints instead of a full likelihood analysis - S8 is sensi-
tive to the tails of the probability distribution, and also weakly
depends on the priors used on the other cosmological parameters.

MNRAS 000, 1–20 (2015)
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Figure 5. Tomographic measurements of ⇠+ (upper-left panels) and ⇠� (lower-right panels) from the full KiDS-450 dataset. The
errors shown here correspond to the diagonal of the analytical covariance matrix (Section 5.3). The theoretical model using the best-fit
cosmological parameters from Table F1 is shown (solid) which is composed of a cosmic shear term (GG, dotted), and two intrinsic
alignment terms (GI, dot-dashed, and II, dashed).

add in any prior information through h. This is necessary as
non-CMB analyses usually report constraints in terms of h

instead of ✓MC.

For our top-hat prior on ⌦bh
2 we use big bang nucle-

osynthesis constraints from Olive et al. (2014), again adopt-
ing a conservative width ±5� such that 0.019 < ⌦bh

2
<

0.026. Our other prior choices are broad.

The best-fit e↵ective �
2 is defined as �

2

e↵(✓̂) =
�2 lnLmax, where ✓̂ is the vector of the model parameters

that yields the maximum likelihood Lmax. For purposes of
model selection, we use the Deviance Information Criterion
(DIC; Spiegelhalter et al. 2002, also see Joudaki et al. 2016
for further details):

DIC ⌘ �
2

e↵(✓̂) + 2pD , (13)

where pD = �
2

e↵
(✓) � �

2

e↵(✓̂) is the Bayesian complexity,

which acts to penalise more complex models. �
2

e↵
(✓) repre-

sents �
2 averaged over the posterior distribution. The di↵er-

MNRAS 000, 1–49 (2016)

KiDS: Cosmological Parameters 9

Figure 2. Comparison of the normalised redshift distributions for the four tomographic bins as estimated from the weighted direct
calibration (DIR, blue with errors), the calibration with cross-correlations (CC, red with errors), the re-calibrated stacked Precal(z)
(BOR, purple with errors that are barely visible), and the original stacked P (z) from bpz (green). The gray-shaded regions indicate the
target redshift range selected by cuts on the Bayesian photo-z zB. Errors shown here do not include the e↵ects of sample variance in the
spec-z calibration sample.

and � and fit it to the results of all the redshift bins with
0 < zspec < 1.2. For zspec > 1.2 we fit a constant r0 and �.

The cross-correlation functions are estimated with a
finer binning in spec-z in order to obtain redshift distribu-
tions for the tomographic bins with high resolution. The
raw cross-correlations are corrected for evolving galaxy bias
with the recipe by Newman (2008) and Matthews & New-
man (2010). We estimate statistical uncertainties from a
bootstrap re-sampling of the spectroscopic training set (1000
bootstrap samples). The whole re-calibration procedure, in-
cluding correlation function estimates and bias correction,
is run for each bootstrap sample.

Note that the cross-correlation function can attain neg-
ative values that would lead to unphysical negative ampli-
tudes in the n(z). Nevertheless, it is important to allow
for these negative values in the estimation of the cross-
correlation functions so as not to introduce any bias. Such
negative amplitudes can for example be caused by local over-
or underdensities in the spec-z catalogue as explained by
Rahman et al. (2015). Only after the full redshift recovery
process do we re-bin the distributions with a coarser redshift
resolution to attain positive values for n(z) throughout.

The redshift distributions from this method, based on

the combination of the DEEP2 and zCOSMOS results, are
displayed in Fig. 2 (red line with confidence regions). Note
that the uncertainties on the redshift distributions from the
cross-correlation technique are larger than the uncertainties
on the weighted direct calibration, owing to the relatively
small area of sky covered by the spec-z catalogues. As will
be shown in Section 6, propagating the n(z) and associated
errors from the CC method into the cosmological analysis
yields cosmological parameters that are consistent with the
ones that are obtained when using the DIR redshift distribu-
tions, despite some di↵erences in the details of the redshift
distributions.

3.4 Re-calibration of the photometric P(z ) (BOR)

Many photo-z codes estimate a full redshift likelihood, L(z),
for each galaxy or a posterior probability distribution, P (z),
in case of a Bayesian code like bpz. Bordoloi et al. (2010)
suggested to use a representative spectroscopic training sam-
ple and analyse the properties of the photometric redshift
likelihoods of those galaxies.

For each spectroscopic training object the photometric
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Figure 10. Constraints on S8 for the di↵erent runs considered in the KiDS-450 analysis as well as several literature measurements.
The grey band indicates the 1� constraints from our primary analysis. Note that most of the runs which test for systematic errors (blue
data points) switch o↵ some of the astrophysical or redshift systematics. Hence not all data points shown here are fully comparable. For
numerical values of the plotted data points see Table F1.

2016), which are based on deeper, and hence harder to cal-
ibrate, data. For a full overview of the constraints obtained
from older cosmic shear measurements see Kilbinger (2015)
and references therein.

The greatest tension, at 2.3 �, is found when compar-
ing to the 2015 Planck results (Planck Collaboration et al.
2016a), though the tension is diminished in the Spergel et al.
(2015) re-analysis of the Planck data. The uncertainty on the
KiDS-450 result for S8 is about a factor of two larger than
the uncertainty from Planck and almost identical to the un-
certainty from the best pre-Planck analyses and CFHTLenS.
Understanding the cause of the discordance between the lat-
est CMB and cosmic shear datasets is an important chal-
lenge for observational cosmology.

It is interesting to compare to recent results based on al-
ternative measurements that also constrain �8 and ⌦m. For
instance, the number density of massive clusters of galaxies
as a function of redshift is a sensitive probe of the large-
scale structure growth rate. New wide-area millimeter sur-
veys that detect large numbers of galaxy clusters with rel-
atively well-defined selection functions through the thermal
Sunyaev-Zel’dovich e↵ect (e.g. Hasselfield et al. 2013; Bleem
et al. 2015; Planck Collaboration et al. 2016c), and improve-
ments in the calibration of cluster masses (Applegate et al.
2014; Hoekstra et al. 2015), have resulted in constraints on
cosmological parameters of comparable power to the KiDS-
450 cosmic shear results. Planck Collaboration et al. (2016b)
use a sample of 439 clusters. Although the accuracy is still

a↵ected by uncertainties in the mass calibration, they re-
port values for �8 that are lower than the best fit values
from the primary CMB, but agree well with our results.
Similarly de Haan et al. (2016) used 377 cluster candidates
from the South Pole Telescope and found �8 = 0.772±0.029
(for ⌦m = 0.3) in excellent agreement with our results. Sim-
ilar low values for �8 are found in recent studies that make
use of a combination of galaxy-galaxy lensing and galaxy
clustering (Cacciato et al. 2013; Mandelbaum et al. 2013;
More et al. 2015). This complementary approach does not
trace the matter power spectrum directly, but instead mea-
sures the mass associated with galaxies as well as their linear
density bias.

Measurements of redshift space distortions, using large
spectroscopic surveys, provide another interesting avenue to
study the growth rate. Planck Collaboration et al. (2016a)
present a compilation of constraints from redshift space dis-
tortions as a function of redshift, again indicating a prefer-
ence for lower growth rates compared to the predictions from
the best fit ⇤CDM model to the CMB. For instance, Beutler
et al. (2014) use the Baryon Oscillation Spectroscopic Survey
(BOSS) CMASS DR11 sample and conversion of their re-
sults at ze↵ = 0.57 implies �8 = 0.73± 0.05, while Samushia
et al. (2014) use the same data to find �8 = 0.77 ± 0.05.
More recent analyses of the BOSS CMASS DR12 sample
(Gil-Maŕın et al. 2016a,b) confirm these results with tighter
error bars. Generally, most redshift space distortion results
seem to be in agreement with our measurements even if the
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Table 4. Setups for the di↵erent MCMC runs. The first column gives a short descriptive name to the setup and the second and third
column refer the reader to the section and figure in which the setup is discussed. Columns 4–6 indicate which astrophysical systematics
are marginalised over in each run. Column 7 and column 8 report the choices for the redshift distribution and the covariance matrix,
respectively. Column 8, 9, and 10 indicate whether the equation-of-state parameter w is varied, the KiDS results are combined with
Planck (TT + lowP), and 2 ⇥ ⇠B is subtracted from ⇠+. The last column gives the angular scales used for ⇠+. For ⇠� we use scales of
4.2–300 arcmin for all setups.

Setup Sect. Fig. baryons IA photo-z n(z) covariance w comb. w. B mode scales
error Planck subtr. ⇠+

KiDS-450 6.2 6
p p p

DIR analytical – – – 0.05 – 720

DIR 6.3 7 –
p p

DIR analytical – – – 0.05 – 720

CC 6.3 7 –
p p

CC analytical – – – 0.05 – 720

BOR 6.3 7 –
p

– BOR analytical – – – 0.05 – 720

BPZ 6.3 7 –
p

– BPZ analytical – – – 0.05 – 720

no systematics 6.4 – – – – DIR analytical – – – 0.05 – 720

N -body 6.4 – – – – DIR N -body – – – 0.05 – 720

DIR no error 6.5 8 –
p

– DIR analytical – – – 0.05 – 720

B mode 6.5 8 –
p

– DIR analytical – –
p

0.05 – 720

⇠+ large-scale 6.5 8 –
p

– DIR analytical – – – 4.02 – 720

wCDM 6.7 9
p p p

DIR analytical
p

– – 0.05 – 720

+Planck 7 –
p p p

DIR analytical –
p

– 0.05 – 720
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the
present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.
The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

pact on the overall result, and since for a sensitivity test
we are more interested in parameter changes than in actual
values, we revert to a dark-matter only power spectrum in
this comparison. This choice also enables us to switch from
HMcode to the faster Takahashi et al. (2012) model for the
non-linear power spectrum.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while

larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��

2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR

MNRAS 000, 1–49 (2016)

2.3σ tension with Planck (substantial discordance).

Thorough testing:
• Shape measurement bias (would need unaccounted Δm~0.16 to get to Planck)
• Photometric redshifts (compared 4 methods; would need Δz~0.14)
• Covariance matrix (super-survey modes; analytical vs. N-body)
• Intrinsic alignment & baryons (used large scales only)
• Blinded analysis
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Figure 8. Joint parameter constraints on the dark energy equation of state parameter w0 and the matter density parameter ⌦m, and curvature parameter ⌦K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).

Figure 9. Compressed CFHTLenS tomographic data for two galaxy sam-
ples; early-type (circles) and late-type (cross) galaxies. As in Figure 3, each
point represents a different tomographic bin combination ij as indicated
by zpeak, the peak redshift of the lensing efficiency for that bin. The best-
fitting amplitude ↵ij of the data relative to a fixed fiducial GG-only cos-
mology model is shown, multiplied by the fiducial model at ✓ = 1 arcmin
for ⇠+. The error bars show the 1� constraints on the fit. The data can be
compared to the fiducial GG-only model, shown dotted.

the data. The resulting best-fitting amplitude ↵
ij is shown, multi-

plied by the fiducial model at ✓ = 1 arcmin for ⇠+. With only 20 per
cent of the data contained in the early-type sample, it is unsurpris-
ing that the measured signal to noise is significantly weaker than
for the late-type sample which are well fit by the fiducial GG-only
model, shown dotted. We can, however, optimise the measurement
of the intrinsic alignment signal from early-type galaxies, to get a
clearer picture, if we assume the II contribution to cross-correlated
bins is small in comparison to the GI signal. If this is the case, we
can decrease the noise on the GI measurement by using the full

galaxy sample as background galaxies to correlate with the early-
type galaxies in the foreground bin. The result of this optimised
analysis is shown, in compressed tomographic data form, in Fig-
ure 10. The open circles show the tomographic signal measured in
the auto-correlated redshift bins between early-type galaxies (these
auto-correlation bins are also shown in Figure 9). The closed sym-
bols show the tomographic signal in the cross-correlated redshift
bins where early-type galaxies populate the foreground bin and the
full galaxy sample populates the background higher redshift bin.
The data can be compared to the fiducial GG-only model, shown
dotted. What is interesting to note from this Figure is that at low
redshifts, where the intrinsic alignment signal is expected to be
the most prominent, the auto-correlated bins tend to lie above the
GG-only model. We expect this from the II term. For the cross-
correlated bins, however, the measured signal tends to lie below
the GG-only model. We expect this from the GI term.

Figure 11 combines the CFHTLenS data split by galaxy type,
and our optimised early-type galaxy tomography analysis, with
auxiliary data from WMAP7, BOSS and R11 to constrain the am-
plitude of the intrinsic alignment model A. Assuming a flat ⇤CDM
model, the resulting 68 per cent and 95 per cent confidence limits
on A and the matter density parameter ⌦m can be compared4. In
the left panel we show constraints from the two galaxy samples
split by SED type. The early-type galaxy constraints are shown
in red and the late-type galaxy constraints are shown in blue. In
the right panel, constraints are shown for the full galaxy sample
in purple and the optimised early-type intrinsic alignment analysis
in pink. The marginalised 68 per cent confidence errors on A, from
the combination of CFHTLenS data with WMAP7, BOSS and R11,
for the four different measurements are

Alate = 0.18+0.83
�0.82 , (17)

Aearly = 5.15+1.74
�2.32 , (18)

4 Note that the constraints on cosmological parameters other than A are
consistent between the early-type and late-type analysis, and that both sets
of parameter constraints, with the exception of A, are consistent with the
full galaxy sample analysis reported in table 3.
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presented in McDonald, Trac & Contaldi (2006). We make use of
the scaling correction provided in Schrabback et al. (2010) to apply
this formalism across our full range of parameter space. However it
should be noted that our results only have a weak dependence on this
correction. The mean values of µ0, !0 and w all change by less than
0.02 when the prescription from Schrabback et al. (2010) is omit-
ted, which is well within our statistical errors. The value of the !0

parameter has no impact on structure formation, and while we may
expect non-zero values of µ0 to alter the non-linear correction to
the matter power spectrum, we do not attempt to correct it here. We
expect the prescription of Smith et al. (2003) to remain a reasonably
good approximation in the presence of a simple scale-independent
modification to the growth of structure such as that induced by µ0.
To first order the correction associated with non-linear power is
simply a function of the ambient linear power at that epoch; how
quickly it arrives at this state is of less importance. In any case,
modified behaviour on non-linear scales would still weaken the fit
to the data achievable within the framework of GR.

6 R ESULTS

6.1 !CDM

We begin with the simple case of a flat "CDM geometry. In this sce-
nario we are making a strong assumption about the form of the cos-
mic expansion history H(z), but in doing so make significant gains
in the precision of our likelihood contours. Any apparent deviation
from GR witnessed at this stage must be interpreted with caution
due to the strong assumptions of this relatively simple model.

The left-hand panel of Fig. 5 illustrates the variety of 1 and 2σ

confidence intervals for different combinations of data sets. Each

of these contours include the auxiliary data of WMAP7 (ℓ ≥ 100)
and a prior on H0. The horizontal (green) contours reflect the pure
µ0 measurement established with the WiggleZ data. The !0 pa-
rameter is unconstrained since the peculiar motions of galaxies are
slow (v ≪ c), and are therefore insensitive to the spatial curvature
%(x, t). The near-vertical (red) contours correspond to the cosmic
shear data from CFHTLenS. Unsurprisingly, this is predominantly
a measure of !0 due to its direct influence on the lensing potential.
The mild sensitivity to µ0 arises from the amplitude of the matter
power spectrum entering in equation (8). A positive value of µ0

enhances the growth of structure and thus strengthens the cosmic
shear signal (for a given primordial amplitude). This can be offset
with a negative value of !0, weakening the deflection of light and
leading to the negatively sloped degeneracy direction seen in the
red contours of Fig. 5. When combined (blue), the near-orthogonal
degeneracy directions of WiggleZ and CFHTLenS produce a con-
siderable reduction in the permitted area of parameter space. The
tightest constraints (white) emerge from adding in BAO from BOSS
and the ISW large-scale anisotropies (ℓ < 100) from WMAP7. None
of these combinations shows any preference for non-zero values of
either µ0 or !0, suggesting that GR remains a successful model
of gravitation on cosmological scales, for both relativistic and non-
relativistic particles.

The mean and 1σ errors in the modified gravity parameters are
found to be µ0 = 0.05 ± 0.25 and !0 = 0.00 ± 0.14. The results
for other combinations of data sets can be found in Table 1.

How sensitive are we to the choice of auxiliary data? The right-
hand panel of Fig. 5 contains the same data sets and layout as the
left-hand panel, except here we have replaced the prior on H0 with
the BAO data summarized in Section 3.2. The BAO prefer a higher
value of &m (or equivalently, a lower value of H0), and this does

Figure 5. Left: constraints on the modified gravity parameters in a flat "CDM background from RSDs (green), weak lensing (red) and combined (blue). (68
and 95 per cent CL). The dashed and solid contours represent the 68 and 95 per cent confidence intervals, respectively. Two auxiliary data sets are used here
to break degeneracies with the conventional cosmological parameters. These are the small-angle anisotropies from WMAP7 (ℓ ≥ 100), and a prior on H0 from
(Riess et al. 2011). The cross positioned at the origin denotes the prediction of GR. Right: the red, green and blue contours are the same as the left-hand panel,
except the prior on H0 has been replaced by measurements of the BAO as detailed in Section 3.2. The yellow contours signify the constraints derived from the
full WMAP7 power spectra, including the large angular scales (ℓ < 100). The white contours in the left-hand panel show the constraints when all data sets are
analysed in combination.
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Figure 9. Left: Marginalized posterior contours in the �8 � ⌦m plane (inner 68% CL, outer 95% CL) in a universe with a constant dark energy equation of
state for KiDS in green and Planck in red. For comparison, dashed contours assume fiducial ⇤CDM. Right: Marginalized posterior contours in the w � S8

plane for KiDS in green, Planck in red, KiDS+Planck in blue, and KiDS+Planck with informative H0 prior in grey (from Riess et al. 2016). The dashed
horizontal line denotes the ⇤CDM prediction.

tude. Meanwhile, CMB temperature measurements of the curvature
are highly correlated with the Hubble constant and matter density
(due to their degeneracy in the angular diameter distance to the last
scattering surface). The Planck constraint on the curvature mainly
originates from the signatures of lensing in the CMB temperature
power spectrum, the late-time integrated Sachs-Wolfe effect, and
the lower boundary of the H0 prior (e.g. Komatsu et al. 2009; Ade
et al. 2016a).

As a result, given that we exclude CMB lensing (��), Planck
is no longer able to constrain the matter density well when allowing
⌦k to vary, causing a nearly horizontal elongation of the Planck
contour towards larger values of the matter density in the �8 �
⌦m plane of Figure 8 (and thereby larger S8), while KiDS largely
moves along the degeneracy direction towards smaller values of the
matter density (with a minor offset that decreases S8). The overall
effect of these changes is to increase the tension between KiDS
and Planck to 3.5� in S8 (where the main cause of the increased
tension is the new Planck constraint, which has shifted by a factor
of six of the original uncertainty in S8). Although Planck constrains
S8 more strongly than KiDS in a flat ⇤CDM universe (by a factor
of 1.7), the KiDS constraint on S8 is a factor of 1.6 stronger than
the constraint from Planck when ⌦k is allowed to vary.

Accounting for the full parameter space, log I = �1.7, which
corresponds to ‘strong discordance’ between the KiDS and Planck
datasets. In the ⌦k � S8 plane of Figure 8, the KiDS and Planck
contours prefer ⌦k < 0, both at approximately 95% CL. Despite
the deviation from flatness, the KiDS intrinsic alignment ampli-
tude remains robustly determined as shown in Figure 4, marginally
widening to �0.38 < AIA < 2.8 (95% CL). While Planck weakly-
to-moderately favors nonzero curvature with �DIC = �4.3
(down from ��

2
e↵ = �5.8 due to the increased Bayesian complex-

ity), the additional degree of freedom is not favored by KiDS, with
�DIC ' 0. Moreover, as shown in Figure 7, the Planck constraint
on the Hubble constant (0.46 < h < 0.65 at 95% CL) moves it
further away from the Riess et al. (2016) result. Although the com-
bination of weak lensing and CMB can significantly improve the
constraint on the curvature (e.g. Kilbinger et al. 2013; Ade et al.
2016a), we do not provide joint KiDS+Planck constraints on ⌦k as
the two datasets are discordant in this extended cosmology.

3.4 Dark energy (constant w)

We now turn away from the assumption of a cosmological constant
by considering evolving dark energy. We begin by allowing for a
constant dark energy equation of state w that can vary freely in our
MCMC analyses. While we have discussed HMCODE’s ability to
account for the impact of baryons and massive neutrinos in the non-
linear matter power spectrum, HMCODE’s calibration to the Coyote
N-body simulations also included models with �0.7 < w < 1.3
(Mead et al. 2015). Our prior on w extends beyond this range, but
we expect our results to be only marginally biased, as the cosmo-
logical constraints are either too weak or tend to lie near w = �1.
Moreover, in contrast to e.g. a fitting function, the physical ground-
ing of HMCODE in the halo model allows one to probe fairly ex-
treme values of w and still trust the modeling, as changes to the un-
derlying cosmology diffuse through into the matter power spectrum
prediction in a natural way (via the mass-concentration relation and
evolution of the halo mass function).

In Figure 1, we show the imprint of a constant dark energy
equation of state on the shear correlation functions, while keep-
ing all primary parameters fixed. An increase in the equation of
state, such that w > �1, causes a scale-dependent suppression
in the matter power spectrum relative to a cosmological constant
(e.g. Joudaki & Kaplinghat 2012; Mead et al. 2016). For a fixed
Hubble constant, w > �1 also suppresses the lensing kernel rela-
tive to a cosmological constant (as it boosts H(z)/H0), but this is
not the case in Figure 1 as ✓MC is kept fixed in lieu of the Hubble
constant which varies from one cosmology to another (since ✓MC

is a primary parameter while H0 is treated as a derived parameter).
Thus, when fixing our primary parameters, the lensing kernel in-
creases for w > �1, partly canceling the suppression in the matter
power spectrum.

In Figure 9, we show the constraints in the �8�⌦m and w�S8

planes when allowing for w 6= �1. The KiDS and Planck contours
now overlap in the �8 � ⌦m plane, both due to a fairly uniform
increase in the area of the KiDS contour perpendicular to the lens-
ing degeneracy direction (noting that the lensing constraints paral-
lel to the degeneracy direction are prior-dependent), and due to a
shift in the Planck contour perpendicular to the lensing degeneracy
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Figure 10. Left: Marginalized posterior contours in the �8 � ⌦m plane (inner 68% CL, outer 95% CL) in a universe with a time-dependent dark energy
equation of state for KiDS in green and Planck in red. For comparison, dashed contours assume fiducial ⇤CDM. Right: Marginalized posterior contours in the
w0 �wa plane for KiDS in green, Planck in red, JLA SNe in purple, KiDS+Planck in blue, and KiDS+Planck with informative H0 prior in grey (from Riess
et al. 2016). The dashed lines denote the ⇤CDM prediction.

direction. The realignment of the CMB contour along the lensing
degeneracy direction was also found for CFHTLenS and WMAP7
in Kilbinger et al. (2013), and the extension of the Planck contour
along the ⌦m axis is due to the same geometric degeneracy as in
the case of a nonzero curvature. As a result, the respective KiDS
and Planck S8 constraints agree at 1� (despite seemingly being
in tension in the w � S8 plane). Accounting for the full parame-
ter space, we find log I = 0.99, which effectively corresponds to
‘strong concordance’ between the KiDS and Planck datasets. In ad-
dition to removing the tension between these datasets, the Planck
constraint on the Hubble constant is now also wider than in ⇤CDM
(0.66 < h < 1.0 at 95% CL, where the upper bound is hitting
against the prior) and in agreement with the Riess et al. (2016) di-
rect measurement of H0.

In the w � S8 plane, KiDS and Planck are both in agree-
ment with a cosmological constant, while the combined analysis
of KiDS+Planck seems to favor a 2.6� deviation from ⇤CDM
(marginalized constraint of �1.93 < w < �1.06 at 99% CL). As
noted in Ade et al. (2016a), deviations from a cosmological con-
stant seem to be preferred by large values of the Hubble constant
(that are arguably ruled out), and so we also consider a ±5� uni-
form Riess et al. (2016) prior on H0. While the KiDS+Planck+H0

contour tightens and moves towards w = �1, we still find an ap-
proximately 2� deviation from a cosmological constant (marginal-
ized constraint of �1.42 < w < �1.01 at 95% CL). As in other
extended cosmologies, the intrinsic alignment amplitude remains
robustly determined when allowing w to vary, with 95% confidence
levels at �0.50 < AIA < 2.9 for KiDS, 0.27 < AIA < 3.0 for
KiDS+Planck, and 0.38 < AIA < 2.4 for KiDS+Planck+H0.

We have shown that the introduction of a constant dark en-
ergy equation of state seems to remove the discordance between
KiDS and Planck, and between local Hubble constant measure-
ments and Planck, while moreover deviating from a cosmologi-
cal constant when these measurements are combined. However,
we also want to know to what extent the constant w model is fa-
vored or disfavored by the data. We find that KiDS and Planck on
their own show no preference for w 6= �1, with �DIC = 2.3
for KiDS and �DIC = �0.20 for Planck (respectively degraded
from ��

2
e↵ = 0.074 and ��

2
e↵ = �3.1 due to the increased

Bayesian complexity). However, the combination of KiDS+Planck
seems to prefer the constant dark energy equation of state model
with �DIC = �5.4 (with near identical Bayesian complexity to
⇤CDM), while this preference reduces to �DIC = �2.9 when
further considering KiDS+Planck+H0 (marginally degraded from
��

2
e↵ = �3.4). Thus, from the point of model selection, we only

find weak preference in favor of a constant dark energy equation of
state model as compared to standard ⇤CDM.

3.5 Dark energy (w0-wa)

Although a constant dark energy equation of state as a free param-
eter constitutes the simplest deviation from a w = �1 model, there
is no strong theoretical motivation to keep the equation of state con-
stant once one has moved away from the cosmological constant
scenario. We therefore also consider a time-dependent parameter-
ization to the equation of state, in the form of a first-order Taylor
expansion with two free parameters:

w(a) = w0 + (1 � a)wa, (5)

where a is the cosmic scale factor, w0 is the dark energy equation
of state at present, and wa = �dw/da|a=1 (which can also be
expressed as wa = �2dw/d ln a|a=1/2; Linder 2003).

In Figure 1, we show the impact of a time dependence of the
equation of state on the shear correlation functions. Since a neg-
ative wa makes the overall equation of state more negative with
time, it has the opposite impact on the matter power spectrum and
lensing kernel (and thereby shear correlation functions) to the case
where w > �1 discussed in Section 3.4. Clearly the benefit of
two degrees of freedom to describe the dark energy is that more
complex behavior of the shear correlation functions is allowed than
when only a constant equation of state is considered, enhancing the
ability of the theoretical model to describe the data. Meanwhile,
the extra degree of freedom from nonzero wa further adds to the
geometric degeneracy of the CMB measurements.

Along with the case where the dark energy equation of state is
constant, HMCODE accurately accounts for the impact of w0 � wa

models on the nonlinear matter power spectrum, as demonstrated
by the N-body simulations in Mead et al. (2016), covering �1.0 <

c� 2016 RAS, MNRAS 000, 000–000

KiDS (Joudaki et al. 2016)
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Non-Gaussian observables: 

• Bispectrum, three-point correlation function, aperture-mass 3rd moment  
(Jarvis et al. 2004, Semboloni et al. 2011, Fu, MK et al. 2014)  

• Minkowski functions,  
higher-order ! moments 
(Petri et al. 2015)  

• Peak counts  
(Liu J. et al. 2014,  
Liu X. et al. 2014) 

CONVERGENCE & SHEAR

Projected matter density
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−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011
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CDM paradigm
Bispectrum: Probing the filamentary structure on
large scales

θ

k
−1

1

k
−1

2

VIRGO consortium
Cosmological Parameters from 2nd and 3rd Order Cosmic Shear Statistics – p.7/17

CDM paradigm
Bispectrum: Probing halos on small scales

VIRGO consortium
Cosmological Parameters from 2nd and 3rd Order Cosmic Shear Statistics – p.7/17

Large scales

Bispectrum probes filaments and voids
Modulation with opening angle

Small scales

Bispectrum probes halos
No modulation
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ysis remains competitive. This could be attributed to the larger
sensitivity of the three-point statistics to non-linear effects for
shallow surveys as a consequence of the projection of mass along

the line-of-sight (i.e. identical angular scale probes more non-lin-
ear scales for shallow rather than deep survey). For the joint
two- and three-point statistics analysis, the medium depth surveys
(mlim ¼ 23:5 or 24.0) appear optimal. It is clear that for a fixed
observing time, our results favor the medium shallow-wide sur-
veys. The gain factor GF is defined as the ratio of the 1r error width
of the hj2i contours over that of joint hj2i–hj3i measurements
which quantifies the improvement when the joint statistics is con-
sidered. The values of the GF corresponding to the likelihood con-
tours of Fig. 8 are shown in Table 2.

Unfortunately, the skewness of the convergence, defined in Eq.
(3), does not appear to yield as powerful constraints as the com-
bined two- and three-point statistics. Fig. 9 shows the error con-
tours using S3 for three choices of limiting magnitude and survey
area. The observing time here was fixed, like for the previous anal-
ysis. As expected, the dependence on r8 is very weak, but one can
see that the width of the contours along the Xm axis is much larger
than the Xm constraints one gets from the joint analysis shown in
Fig. 8. Following the same trend as joint hj2i–hj3i likelihood re-
sults shown in Fig. 8, the medium depth surveys lead to the most
optimal skewness measurement. The constraints for the shallower
surveys (i.e. mlim ¼ 22:5 and 23.0) are not shown here. Those sur-
veys give poor cosmological constraints, as the mixed Cns term of
the covariance at the scales of interest becomes large. Overall,
the skewness does not appear to be as attractive a statistic to break
the r8–Xm degeneracy as previously advocated [5,6]). Measuring
the skewness on the current and near future lensing surveys will
be very challenging, and it is clear that a large fraction of the sky
is needed in order to bring the noise contributions to a low enough
level for precision cosmology.

The reason why the skewness is hard to measure lies in the fact
that the variation of the skewness amplitude for different Xm mod-
els is largely absorbed by the cosmic variance of this estimator.
This is not the case for the two- and three-point statistics taken
separately. Fig. 10 shows the comparison between various pre-
dicted cosmological models and the measurements from the simu-
lations. hj2i; hj3i and S3 were measured for survey area of
12.84 deg2 of limiting magnitude of 24.5 over the 60 lines of sight.
The blue line shows the measured data points; the errorbars con-
tain both cosmic variance and statistical noise. The pink (solid) line
is the fiducial model (Xm ¼ 0:24; XK ¼ 0:76 and r8 ¼ 0:74). The
black (dotted), green (dashed) and red (dash-dotted) lines are
models with the same r8 ¼ 0:75 and values of Xm ¼ 0:20;0:40
and 0.80 respectively, while the purple (dash-dot-dotted) line cor-
responds to a model with Xm ¼ 0:30 but r8 ¼ 0:50. The plot shows
that the measurement of hj2i and hj3i are much more sensitive to
the Xm, r8 parameters than the skewness S3, therefore their ability
to separate various cosmological models is stronger.

5. Canada–France–Hawaii Telescope Legacy Survey three-point
statistics predictions

The Canada–France–Hawaii Telescope Legacy Survey covers
170 deg2 in four patches [2]. Measurements of the two-point cos-
mic shear statistics have been published using the first year
[38,39,1] and third year data release [2] in addition to studies of
galactic scale dark matter halos [40]. In this study the expected
improvement for cosmological parameter constraints, using a com-
bination of two- and three-point lensing statistics on the com-
pleted CFHTLS-wide survey was determined. A mock CFHTLS-
wide survey type of 170 deg2 was generated using a limiting mag-
nitude of mlim ¼ 24:5 (i-band) with ng ¼ 22 galaxies per arcmin2,
zmed ¼ 0:91 and r! ¼ 0:44 and the potential contamination by
residual systematics was ignored.

Table 2
The area and i-band limiting magnitude and the corresponding galaxy number
density of different surveys with the same observing time. The gain factor GF is the
ratio between the Xm1r width of the two-point statistics contours over that of the
two- and three-point statistics joint contour.

Area (deg2) 1400 1150 900 514 257 115 45 20
mlim 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0
ng=arcmin2 2 5 9 14 22 28 37 45

GF 1.8 4.0 5.0 2.5 2.4 1.5 1.3 –*

* Due to the truncated likelihood 1r contours the GF is not calculated for the
deepest survey.

Fig. 8. The likelihood analysis for various survey depths and areas with fixed
observing time for hj2i; hj3i smoothed with the top-hat filter. The observing time is
equal for all cases, while the survey area and depth vary. Table 2 shows the values
for mlim with the corresponding survey areas. The pink (dark grey) contours
indicates the 1r;2r and 3r errors for the hj2i statistics and the cyan (light grey)
contours are the same for the hj3i. The covariance matrix contains both the cosmic
variance and the statistical noise. Here the joint likelihood shown in filled contours
is calculated by taking into the account the hj2i–hj3i correlations at different
scales. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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MK & Schneider et al. 2005 

2nd + 3rd-order: Lifting parameter degeneracies (simulations)
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Figure 2. The third-order aperture-mass E- and B-mode components as
function of smoothing scale θ , measured from CFHTLenS data. Upper
panel: the EEE component is shown as blue filled circles. The prediction
from WMAP9 is shown as red solid line, the third moment measured from the
Clone is the black dash–dotted curve. Lower panel: the B-mode components
(EEB: green crosses; EBB: magenta circles; BBB: cyan squares), measured
from the full mosaic data. The shaded scales are not used for cosmological
constraints.

bars are calculated from the 184 independent Clone fields of view,
rescaled to the observed survey area, and contain Poisson noise and
cosmic variance.

There is good agreement of the E-mode signal with the theo-
retical model using the WMAP9 best-fitting parameters, and the

measurement from the Clone simulations. We note a non-zero B-
mode detection. The smallest scale of 2 arcmin shows two non-zero
B-mode data points. This scale may suffer from numerical integra-
tion imprecisions due to the small number of available triangles.
Furthermore, intrinsic alignment (IA) may create a B-mode sig-
nal on small scales (Semboloni et al. 2008, hereafter SHvWS08).
More thorough tests of systematics of the third-order aperture-mass
moment is performed in the companion paper Semboloni et al. (in
preparation). On larger scales, the BBB component is non-zero. This
component is not parity invariant and is only produced when the
observed shear field shows a parity violation. We discuss possible
origins of this contribution in Section 7.

A further consistency check is the comparison of the third mo-
ment from the mosaic catalogue to the one measured on single
MegaCam pointings individually. To obtain the error bars of the
latter, we subdivide the Clone fields into 3 × 3 parts, to account
for the smaller observed field size. This results in larger error bars,
in particular on large angular scales, where substantially fewer tri-
angles are available. As can be seen in Fig. 2, the two methods of
obtaining the third moment are consistent. As expected, the great-
est differences occur on large scales, where the relative number of
common triangles is smallest.

Figs 3 and 4 show examples of the generalized third-order
aperture-mass components for a few combinations of angular
smoothing radii (θ1, θ2, θ3). Except on the smallest scale, the
agreement of the CFHTLenS third-moment E-mode with WMAP9
predictions are very good. The B-mode is non-zero for a few data
points, similar to the diagonal case as discussed above.

4.3 E- and B-mode measurement significance

We perform χ2 null tests of the various E-/B-mode components.
The χ2 function is given as the Gaussian distribution (34) where
the model y is zero everywhere. Thus, the full Clone covariance
is taken into account for the significance test, accounting for the
correlation between angular scales. Contrary to the E-mode, the B-
modes covariance only contains shape noise and no cosmic variance,
since there is no cosmological B-mode signal in the Clone. The error
bars on the B-mode are therefore much smaller than for EEE. Since
there is no IA in the Clone simulations, the cosmic variance from
this contribution is therefore not included in our covariance, which
might over-estimate the χ2 significance.

Figure 3. The generalized third-order aperture-mass E-mode EEE(θ1, θ2, θ3) measured from the CFHTLenS mosaic catalogue (blue surface, with open circle)
is compared to the prediction from WMAP9 (red surface). In each panel, one angular scale θ1 is fixed, from left to right: θ1 = 2 arcmin, 5.477 arcmin, 15 arcmin.
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Figure 2. The third-order aperture-mass E- and B-mode components as
function of smoothing scale θ , measured from CFHTLenS data. Upper
panel: the EEE component is shown as blue filled circles. The prediction
from WMAP9 is shown as red solid line, the third moment measured from the
Clone is the black dash–dotted curve. Lower panel: the B-mode components
(EEB: green crosses; EBB: magenta circles; BBB: cyan squares), measured
from the full mosaic data. The shaded scales are not used for cosmological
constraints.

bars are calculated from the 184 independent Clone fields of view,
rescaled to the observed survey area, and contain Poisson noise and
cosmic variance.

There is good agreement of the E-mode signal with the theo-
retical model using the WMAP9 best-fitting parameters, and the

measurement from the Clone simulations. We note a non-zero B-
mode detection. The smallest scale of 2 arcmin shows two non-zero
B-mode data points. This scale may suffer from numerical integra-
tion imprecisions due to the small number of available triangles.
Furthermore, intrinsic alignment (IA) may create a B-mode sig-
nal on small scales (Semboloni et al. 2008, hereafter SHvWS08).
More thorough tests of systematics of the third-order aperture-mass
moment is performed in the companion paper Semboloni et al. (in
preparation). On larger scales, the BBB component is non-zero. This
component is not parity invariant and is only produced when the
observed shear field shows a parity violation. We discuss possible
origins of this contribution in Section 7.

A further consistency check is the comparison of the third mo-
ment from the mosaic catalogue to the one measured on single
MegaCam pointings individually. To obtain the error bars of the
latter, we subdivide the Clone fields into 3 × 3 parts, to account
for the smaller observed field size. This results in larger error bars,
in particular on large angular scales, where substantially fewer tri-
angles are available. As can be seen in Fig. 2, the two methods of
obtaining the third moment are consistent. As expected, the great-
est differences occur on large scales, where the relative number of
common triangles is smallest.

Figs 3 and 4 show examples of the generalized third-order
aperture-mass components for a few combinations of angular
smoothing radii (θ1, θ2, θ3). Except on the smallest scale, the
agreement of the CFHTLenS third-moment E-mode with WMAP9
predictions are very good. The B-mode is non-zero for a few data
points, similar to the diagonal case as discussed above.

4.3 E- and B-mode measurement significance

We perform χ2 null tests of the various E-/B-mode components.
The χ2 function is given as the Gaussian distribution (34) where
the model y is zero everywhere. Thus, the full Clone covariance
is taken into account for the significance test, accounting for the
correlation between angular scales. Contrary to the E-mode, the B-
modes covariance only contains shape noise and no cosmic variance,
since there is no cosmological B-mode signal in the Clone. The error
bars on the B-mode are therefore much smaller than for EEE. Since
there is no IA in the Clone simulations, the cosmic variance from
this contribution is therefore not included in our covariance, which
might over-estimate the χ2 significance.

Figure 3. The generalized third-order aperture-mass E-mode EEE(θ1, θ2, θ3) measured from the CFHTLenS mosaic catalogue (blue surface, with open circle)
is compared to the prediction from WMAP9 (red surface). In each panel, one angular scale θ1 is fixed, from left to right: θ1 = 2 arcmin, 5.477 arcmin, 15 arcmin.
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Figure 4. The generalized third-order aperture-mass B-mode components EEB(θ1, θ2, θ3) (left-hand panel), EBB(θ1, θ2, θ3) (middle), BBB(θ1, θ2, θ3) (right),
measured from the CFHTLenS mosaic catalogue are shown for one fixed radius θ1 = 5.477 arcmin. The red grid is the zero surface.

Figure 5. Each box shows the value σ of a significance test, where the
number in the box denotes the significance in σ . The first and third (second
and fourth) columns correspond to the diagonal (generalized) third moments,
and are labelled ‘3d’ (‘3g’). The first two columns use Poisson error only, the
last two columns also include cosmic variance (which is not present in the
Clone for B-mode components). The first row is the cosmological detection
significance, for which higher numbers are better. All subsequent rows are
null tests, for which smaller numbers are better.

As for the cosmological analysis, we use scales between 5.5 and
15 arcmin. We also check the consistency of the E-mode signal
with theory, in which case the assumed model y is the WMAP9
prediction. Given the degrees of freedom 3 for the diagonal and 10
for the general third moment, the resulting χ2 is translated into a
significance level. The results are shown in Fig. 5.

The significance of the E-mode is about 2σ when we include
the cosmic variance. Using Poisson noise only, we obtain a much
higher significance of more than 8σ . This covariance would be the
correct one to use in case of absence of EEE, since in this case there
would be no cosmic variance. Thus, we can reject the hypothesis of
a null third-order lensing signal with 9σ .

The EEE signal is in very good agreement with the WMAP9 best-
fitting model. All diagonal B-mode components are less significant
than the E-mode, and their amplitude is below the E-mode. How-
ever, both the generalized EEB and generalized BBB components
are non-null at about 3σ .

At this time, we do not know the origin of those B-modes. Further
speculations are presented in Section 7.2. Note that for the joint
CFHTLenS+CMB constraints, presented in Section 6, we only use

Figure 6. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for the CFHTLenS third-order aperture mass. The diag-
onal third moment (‘3d’; orange lines) is compared to the generalized third
moment (‘3g’; blue contours). The model is flat $CDM.

the diagonal third moment, for which the B-mode significance is
lower.

4.4 Cosmological constraints

We test two predictions about third-order weak lensing statistics: (1)
the generalized third-order aperture-mass moment contains more in-
formation about cosmology than the ‘diagonal’ term (Kilbinger &
Schneider 2005; Schneider et al. 2005). (2) Combined with second-
order, parameter degeneracies are partially lifted, leading to signifi-
cantly improved joint constraints (Takada & Jain 2004; Kilbinger &
Schneider 2005). We have already explored these two predictions
using the CFHTLenS Clone simulations (Section A1).

In Fig. 6, we show the marginalized constraints for %m and σ 8,
the parameters that are best constraints from weak cosmological
lensing. Symbols used in the following figures are explained in
Table 3. The generalized third-order aperture mass covers indeed
a smaller part of parameter space compared to the diagonal one.
Adding the non-equal smoothing scale measurements of the gener-
alized third moment rules out those models with a very low σ 8 and
%m. The amplitude parameter &8 is larger than zero at more than
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Figure 2. The third-order aperture-mass E- and B-mode components as
function of smoothing scale θ , measured from CFHTLenS data. Upper
panel: the EEE component is shown as blue filled circles. The prediction
from WMAP9 is shown as red solid line, the third moment measured from the
Clone is the black dash–dotted curve. Lower panel: the B-mode components
(EEB: green crosses; EBB: magenta circles; BBB: cyan squares), measured
from the full mosaic data. The shaded scales are not used for cosmological
constraints.

bars are calculated from the 184 independent Clone fields of view,
rescaled to the observed survey area, and contain Poisson noise and
cosmic variance.

There is good agreement of the E-mode signal with the theo-
retical model using the WMAP9 best-fitting parameters, and the

measurement from the Clone simulations. We note a non-zero B-
mode detection. The smallest scale of 2 arcmin shows two non-zero
B-mode data points. This scale may suffer from numerical integra-
tion imprecisions due to the small number of available triangles.
Furthermore, intrinsic alignment (IA) may create a B-mode sig-
nal on small scales (Semboloni et al. 2008, hereafter SHvWS08).
More thorough tests of systematics of the third-order aperture-mass
moment is performed in the companion paper Semboloni et al. (in
preparation). On larger scales, the BBB component is non-zero. This
component is not parity invariant and is only produced when the
observed shear field shows a parity violation. We discuss possible
origins of this contribution in Section 7.

A further consistency check is the comparison of the third mo-
ment from the mosaic catalogue to the one measured on single
MegaCam pointings individually. To obtain the error bars of the
latter, we subdivide the Clone fields into 3 × 3 parts, to account
for the smaller observed field size. This results in larger error bars,
in particular on large angular scales, where substantially fewer tri-
angles are available. As can be seen in Fig. 2, the two methods of
obtaining the third moment are consistent. As expected, the great-
est differences occur on large scales, where the relative number of
common triangles is smallest.

Figs 3 and 4 show examples of the generalized third-order
aperture-mass components for a few combinations of angular
smoothing radii (θ1, θ2, θ3). Except on the smallest scale, the
agreement of the CFHTLenS third-moment E-mode with WMAP9
predictions are very good. The B-mode is non-zero for a few data
points, similar to the diagonal case as discussed above.

4.3 E- and B-mode measurement significance

We perform χ2 null tests of the various E-/B-mode components.
The χ2 function is given as the Gaussian distribution (34) where
the model y is zero everywhere. Thus, the full Clone covariance
is taken into account for the significance test, accounting for the
correlation between angular scales. Contrary to the E-mode, the B-
modes covariance only contains shape noise and no cosmic variance,
since there is no cosmological B-mode signal in the Clone. The error
bars on the B-mode are therefore much smaller than for EEE. Since
there is no IA in the Clone simulations, the cosmic variance from
this contribution is therefore not included in our covariance, which
might over-estimate the χ2 significance.

Figure 3. The generalized third-order aperture-mass E-mode EEE(θ1, θ2, θ3) measured from the CFHTLenS mosaic catalogue (blue surface, with open circle)
is compared to the prediction from WMAP9 (red surface). In each panel, one angular scale θ1 is fixed, from left to right: θ1 = 2 arcmin, 5.477 arcmin, 15 arcmin.
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Figure 2. The third-order aperture-mass E- and B-mode components as
function of smoothing scale θ , measured from CFHTLenS data. Upper
panel: the EEE component is shown as blue filled circles. The prediction
from WMAP9 is shown as red solid line, the third moment measured from the
Clone is the black dash–dotted curve. Lower panel: the B-mode components
(EEB: green crosses; EBB: magenta circles; BBB: cyan squares), measured
from the full mosaic data. The shaded scales are not used for cosmological
constraints.

bars are calculated from the 184 independent Clone fields of view,
rescaled to the observed survey area, and contain Poisson noise and
cosmic variance.

There is good agreement of the E-mode signal with the theo-
retical model using the WMAP9 best-fitting parameters, and the

measurement from the Clone simulations. We note a non-zero B-
mode detection. The smallest scale of 2 arcmin shows two non-zero
B-mode data points. This scale may suffer from numerical integra-
tion imprecisions due to the small number of available triangles.
Furthermore, intrinsic alignment (IA) may create a B-mode sig-
nal on small scales (Semboloni et al. 2008, hereafter SHvWS08).
More thorough tests of systematics of the third-order aperture-mass
moment is performed in the companion paper Semboloni et al. (in
preparation). On larger scales, the BBB component is non-zero. This
component is not parity invariant and is only produced when the
observed shear field shows a parity violation. We discuss possible
origins of this contribution in Section 7.

A further consistency check is the comparison of the third mo-
ment from the mosaic catalogue to the one measured on single
MegaCam pointings individually. To obtain the error bars of the
latter, we subdivide the Clone fields into 3 × 3 parts, to account
for the smaller observed field size. This results in larger error bars,
in particular on large angular scales, where substantially fewer tri-
angles are available. As can be seen in Fig. 2, the two methods of
obtaining the third moment are consistent. As expected, the great-
est differences occur on large scales, where the relative number of
common triangles is smallest.

Figs 3 and 4 show examples of the generalized third-order
aperture-mass components for a few combinations of angular
smoothing radii (θ1, θ2, θ3). Except on the smallest scale, the
agreement of the CFHTLenS third-moment E-mode with WMAP9
predictions are very good. The B-mode is non-zero for a few data
points, similar to the diagonal case as discussed above.

4.3 E- and B-mode measurement significance

We perform χ2 null tests of the various E-/B-mode components.
The χ2 function is given as the Gaussian distribution (34) where
the model y is zero everywhere. Thus, the full Clone covariance
is taken into account for the significance test, accounting for the
correlation between angular scales. Contrary to the E-mode, the B-
modes covariance only contains shape noise and no cosmic variance,
since there is no cosmological B-mode signal in the Clone. The error
bars on the B-mode are therefore much smaller than for EEE. Since
there is no IA in the Clone simulations, the cosmic variance from
this contribution is therefore not included in our covariance, which
might over-estimate the χ2 significance.

Figure 3. The generalized third-order aperture-mass E-mode EEE(θ1, θ2, θ3) measured from the CFHTLenS mosaic catalogue (blue surface, with open circle)
is compared to the prediction from WMAP9 (red surface). In each panel, one angular scale θ1 is fixed, from left to right: θ1 = 2 arcmin, 5.477 arcmin, 15 arcmin.

MNRAS 441, 2725–2743 (2014)

 at C
EA

 SA
C

LA
Y

 on Septem
ber 5, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

E-mode B-modes

Fu, MK et al. (2014) 

Dectection of B-modes 
and parity-modes on 

small scales



Martin KilbingerWL: higher-order stats. / 45

CFHTLenS: 2nd- and 3rd-order combined

17

2734 L. Fu et al.

Table 3. Second- and third-order measures and the corresponding
symbols used in plots.

Symbol Description

2 ⟨M2
ap⟩(θ ), aperture-mass dispersion

2 COSEBis, a second-order E-/B-mode measure
(Schneider et al. 2010)

3da ⟨M3
ap,diag⟩ = ⟨M3

ap⟩(θ ), diagonal third-order
aperture-mass moment, evaluated for one filter scale

3g ⟨M3
ap,gen⟩ = ⟨M3

ap⟩(θ1, θ2, θ3), generalized third-order
aperture-mass moment, correlating three filter scales

SLC (diagonal) third-order aperture-mass moment from
source-lens clustering (Section 5.1)

IA (diagonal) third-order aperture-mass moment from
intrinsic alignments (Section 5.2)

aNote that the symbol ‘3d’ indicates the third-moment diagonal, and is
not to be confused with three-dimensional (3D) lensing, e.g. Kitching
et al. (2014).

3σ for both the diagonal and general third moment. This is at much
higher significance than the non-zero detection of EEE (previous
section). This result is stronger, since it involves parameter fitting
within the framework of an assuming theoretical model. In particu-
lar, the shape of the signal plays a role and adds information that is
not used in a simple χ2 null test. This result is consistent with what
we see in the Clone simulations.

Secondly, adding second-order measures reduces the allowed
parameter space, however, not by much as shown in Fig. 7. Third-
order lensing probes a shallower slope α of the parameter %8 =
σ 8(&m/0.27)α , in agreement with the theoretical prediction from
Kilbinger & Schneider (2004) and Vafaei et al. (2010). Mainly in
the region of extreme &m and σ 8 is where the ⟨M2

ap⟩- and ⟨M3
ap⟩-

constraints differ. The constraints orthogonal to the &m-σ 8 degener-
acy direction are reduced by 10 per cent (40 per cent) when adding
third-order to COSEBIs (aperture-mass dispersion). Here, we see
an example where a Fisher matrix analysis (Takada & Jain 2004;
Kilbinger & Schneider 2005) can provide overly optimistic predic-
tions (Wolz et al. 2012). Even though the slope of the constraints at
the fiducial model is different, the curved, non-linear shape of the pa-
rameter degeneracy directions of the two probes largely negates this
difference, leading to a larger overlap between the allowed regions.
This shows the necessity to explore the full likelihood function, in
our case with Monte Carlo sampling, to obtain realistic joint con-
straints. We explore extensions from the standard model 'CDM
model, by adding (1) curvature, and (2) dark energy in the form of
a constant equation-of-state parameter w. For those extensions, the
results on &m and σ 8 are similar to the standard case, see Fig. 8.
For further parameters, we combine CFHTLenS with other probes,
see Section 6.

5 A STRO PHYSICAL WEAK-LENSING
C O N TA M I NA N T S

Third-order cosmic shear statistics suffer from two major contami-
nants of astrophysical origin: IA and source-lens clustering (SLC).
Contrary to second-order statistics, IA and SLC contribute to a much
higher level. The correlations they introduce can be comparable in
amplitude to the cosmological weak-lensing skewness.

Figure 7. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for &m and σ 8 from CFHTLenS. Second-order statistics
(magenta contours) are the aperture-mass dispersion (top panel) and the
COSEBIs (bottom). The blue contours correspond to the generalized third-
order aperture mass. Both second- and third-order measures are combined
to yield joint constraints (green). The model is flat 'CDM.

5.1 Source-lens clustering

SLC, see Bernardeau (1998); Hamana et al. (2002), denotes the
fact that galaxies in a weak-lensing survey act both as sources and
lenses. More precisely, source galaxies are correlated to structures
that cause the lensing effect on other source galaxies. For a given
line of sight, this clustering gives rise to a modulation of the lensing
signal, since the source redshift distribution is changed with respect
to the average in a way that correlates with the lensing signal. This
introduces an additional variance, skewness, etc. of the convergence
field.

To model SLC, we have to use a locally varying source galaxy
density p(θ , w) instead of the mean distribution p̄(w), which are
related to each other as

p(θ , w) = p̄(w)
[
1 + δg(θ , w)

]
. (35)
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than GGG, an in fact consistent with zero for CFHTLS-type
surveys (SHvWS08).

The mixed terms, stemming from the correlation be-
tween intrinsic shape and shear, are produced by galaxy
triples at all redshift ranges, and can be very large com-
pared to GGG. The redshift scaling of these terms is easy
to calculate, since it only depends on the geometry of the
Universe. For the angular scaling, we follow SHvWS08 and
assume a simple power-law dependence for the third-order
aperture-mass.

Following Hirata & Seljak (2004), the redshift-
dependence of the shear-shape (GI) correlation is straight-
forwardly calculated. The lensing of a source galaxy at red-
shift zs by structures correlated to a galaxy at lens redshift
zl scales as fK [w(zs)− w(zl)]/fK [w(zs)]. For GGI and GII,
we take into account the redshifts of the galaxy triple, and
integrate over the redshift distributions, neglecting the clus-
tering of galaxies as a higher-order contribution. Using a
simple exponential scaling with angular distance (King 2005,
SHvWS08) we obtain

MGII = AGII × exp

(
− θ
θGII

) zlim∫

0

dzl p
2(zl)

×
zl∫

0

dzs p(zs)
fK [w(zs)−w(zl)]

fK [w(zs)]
;

MGGI = AGGI × exp

(
− θ
θGGI

) zlim∫

0

dzl p(zl)

×
zl∫

0

dzs1

zl∫

0

dzs2

2∏

i=1

p(zsi)
fK [w(zsi)− w(zl)]

fK [w(zsi)]
. (42)

The IA model parameters are the amplitudes AGII , AGGI

and the characteristic angular scales θGII and θGGI .
We add MGGI and MGII to our theoretical third-order

aperture-mass, and try to jointly sample cosmological and
IA parameters. Due to the relatively low statistical signif-
icance of the CFHTLenS weak-lensing skewness and very
limited redshift resolution, we do not aim to obtain interest-
ing constraints on very general IA parameters. Rather, our
goal is to use a realistic IA model to assess the influence on
our cosmological results.

We therefore use the results from SHvWS08 as priors
on our IA parameters. We use two models of the galaxy pop-
ulation: A realistic one (mixed early- and late-types) and a
pessimistic case (early-types only). The redshift combina-
tions tested in SHvWS08 closest to the CFHTLenS range
correspond to the case of lens galaxies at zl < 1 and source
galaxies at zs = 1. This corresponds roughly to our mean
source redshift of z̄ = 0.75, and lens redshifts probed by a
single redshift bin. The best-fit values and error bars for the
four IA parameters are given in Table 4. We translate those
into Gaussian priors with width equal to three times the 1σ
error, while we exclude unphysical negative scales θGGI and
θGII .

5.3 Baryonic physics

The presence of baryons in dark-matter halos in the form of
stars and gas changes halo properties compared to pure dark

flat ΛCDM

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2

0.4
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1.0

1.2

1.4
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σ
8

3d
3d+IA

3d+SLC

Figure 9. Marginalised posterior density contours (68.3%,
95.5%) for Ωm and σ8 from CFHTLenS. We use the aperture-mass
diagonal third moment which we model with the three cases of
neglecting astrophysical systematics (‘3d’; magenta lines), adding
intrinsic alignment (‘3d+IA’; blue), and source-lens clustering
(‘3d+SLC’; green).

matter. This has an influence on the total power spectrum
and bispectrum on small and medium scales. Prescriptions
to quantify and model this, e.g. with a halo-model approach,
have been obtained by using hydro-dynamical N-body sim-
ulations (e.g. Jing et al. 2006; Rudd et al. 2008; van Daalen
et al. 2011; Semboloni et al. 2011a). The effect depends on
the assumed details of baryonic physics. In the most realistic
case, the amplitude of the third-order aperture moment at
5.5 arcmin is suppressed by 10-15 per cent compared to dark
matter only (Semboloni et al. 2013). Contrary to IA or SLC,
the relative effect strongly decreases towards larger scales.
At 15 arcmin, the dark-matter only prediction is biased high
by less than 5 per cent.

We do not include a model of baryonic effects for the
power- and bispectrum in this work. Using a simple calcula-
tion, where we model the decrease of ⟨M3

ap⟩ as a function of
angular scale according to Fig. 1 of Semboloni et al. (2013),
we find that Σ8 increases by 0.040 (0.022) for the model
with larger (smaller) baryonic suppression. So our value of
Σ8, ignoring baryonic suppression, might be biased high by
3.1 to 5.5 per cent.

5.4 Results

Adding IA and SLC changes the amplitude parameter Σ8

within the statistical uncertainty of CFHTLenS. The ampli-
tude change is comparible in size with the difference between
the diagonal and generalized third moments, see Fig. 9.

As expected, the total IA contribution (GGI plus GII)
reduces the skewness, and the amplitude parameter in-
creases to compensate. There is only a mild degeneracy be-
tween σ8 and the IA amplitudes AGGI and AGII . The same
is true for the Σ8. The two IA amplitude parameters are
strongly anti-correlated, since they contribute to the skew-

c⃝ 2009 RAS, MNRAS 000, 1–18

Systematics: 
+ Intrinsic alignment (IA) 
+ Source-lens clustering (SLC) 
 - Baryonic physics (3%-5% bias on σ8)

Statistics: 
2nd-order statistics  
3rd-order statistics 
combination (with xcorrelation)

Fu, MK et al. (2014) 
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Wide EEE

WMAP5
Wide EEB

Wide EBB

Wide BBB

Wide EEE

WMAP5
Wide EEB

Wide EBB

Wide BBB

Figure 5. Left panel: comparison of the CFHTLenS EEE mode of
〈

M3
ap(θ)

〉

(black data points) to the absolute values of EEB, EBB, and BBB modes (red,
green, and blue lines). The error bars have been computed using the clone. The dashed black line is a WMAP5 prediction. Right panel: same quantities as in
the left panel after excluding elliptical galaxies, i.e., sources with BPZ TB ! 2.

Our result therefore suggests that (i) the systematics are associated
to residual PSF systematics which affect late-type galaxies more
than early-type galaxies and (ii) that the precision of the measure-
ment is still not sufficient to set constraints on the IA from the
three-points statistics alone. For reason (i), we decide not to ap-
ply a morphological cut for our cosmological analysis. Hence our
final catalogue is composed of 120 pass fields with the original se-
lection cuts previously described in Section 2. The final selection of
pointings correspond to a total effective area of roughly 100 square
degrees, with masked regions taken into account. IA more quanti-
tatively?

Figure 6 shows, for this final catalogue, the measurement of
the full

〈

M3
ap(θ1, θ2, θ3)

〉

in comparison to the WMAP5 predic-
tions and the clone measurement. As before with the equilat-
eral

〈

M3
ap(θ)

〉

we find a reasonable agreement also between the
full statistics of the measurement, WMAP5 prediction, and the
clone. For θi " 5 arcmin, the SC01 model falls slightly below
the clone, on larger scales the CFHTLenS measurement appears
to be below the prediction; the statistical errors are, however, rel-
atively large in this regime. In the next section, we use this vector
of data points for θi # 5 arcmin to infer cosmological parameters
through a likelihood analysis.

4.3 Evidence for a non-Gaussian likelihood

The matter density field obeys non-Gaussian statistics for smooth-
ing scales below the typical size of large galaxy clusters, and it
asymptotically approaches Gaussian statistics towards larger scales
and higher redshifts for a Gaussian primordial density field. Be-
cause of this non-Gaussian nature on small physical scales we ex-
pect that measurements of the three-point statistics of cosmic shear
will exhibit a distinct non-Gaussian distribution on small angular
scales, if these scales are not dominated by the shape noise of the
sources. In order to investigate whether the estimator of

〈

M3
ap

〉

shows any signs of non-Gaussianity, we study its distribution in
184 realisations of the clone for both the noise-free and the noisy
samples. For this purpose, we compute estimates of

〈

M3
ap

〉

for the
same combination of aperture radii as for the CFHTLenS data. The

Figure 7. Top panels: frequency of values of the equilateral
〈

M3
ap(θ)

〉

from
184 lines-of-sight from noisy version of the clone (12.84 deg2). In the
left plot, we show the result for θ = 3.438 arcmin, while on the right panel
we show the distribution for θ = 30 arcmin. Black dashed lines show the
average values, while the solid red lines, indicate the best-fitting Gaussian.
The black solid line indicates the zero value. Bottom panel: the same as the
top panels for the noise-free version of the clone.

resulting 184 simulated data vectors represent the likelihood of ob-
taining a value of

〈

M3
ap(θ)

〉

on a 12.84 deg2 survey (correspond-
ing to the field of view of each simulation), given the particular set
of cosmological parameters in the clone.

The distributions are shown in Figure 7, for angular scales
θ = 3.4, 30.0 arcmin of the equilateral

〈

M3
ap

〉

. The functional
form of these distributions depends on the sampling and the pres-
ence of shape noise (noisy). In order to better illustrate the non-
Gaussian feature of the likelihoods we plot their best-fitting Gaus-
sian inside the panel; the Gaussian fits have the same mean and
variance as our observed values. In this figure, we find clear devi-
ations from a Gaussian model in the absence of shape noise, the
observed distributions are skewed towards large values of

〈

M3
ap

〉

c⃝ 0000 RAS, MNRAS 000, 000–000

pdf(3rd-order moments) from N-body

[Simon et al. 2015]



Martin KilbingerWL: higher-order stats. / 45

3rd-order WL statistics: summary

19

• Additional (non-Gaussian) information  
about LSS 

• Lift parameter degeneracies 

• Prone to residual systematics in data 
• Astrophysical systematics (IA, SLC, baryons) 
• Model uncertainties 
• non-Gaussian pdf, likelihood?

WL peak counts interesting alternative?

✓

❌

❌

❌

❌

✓
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Weak-lensing peak counts
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• WL peaks probe high-density regions ↔ non-Gaussian tail of LSS 
• First-order in observed shear: less sensitive to systematics, circular average! 
• High-density regions ↔ halo mass function, but indirect probe: 

• Intrinsic ellipticity shape noise, creating false positives, up-scatter in S/N 
• Projections along line of sight

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

Chapter 5 — Peak-count modelling

Figure 5.9: Similar to Fig. 5.4, comparison between four cases on the large field. Here, Case 1 is only
indicative since it is still the result from the small field.

Galaxy redshift, redshift errors, tomography One can either suppose a constant source
redshift or generate sources from a distribution law. If a model for photo-z or other redshift
errors is provided, our forward model generates without any di�culties a series of realis-
tic observed redshifts for galaxies. To better extract cosmological information, performing
tomographic studies is also feasible.

Galaxy shape noise & intrinsic alignment Another extension for our model is the noise
model. When isotropy for galaxy shape orientation is assumed, Gaussian noise is added.
Beyond Gaussian noise, some physically-motivated models for IA can be added easily. In this
case, one needs to identify pairs of galaxy and hosted halo. The galaxy orientation can be
provided by an IA model depending, on its type and the distance to the halo center.

Inversion & filtering A large number of options are available for our model to make a mass
map. For example, using a Ÿ-peak approach, one could compute directly the convergence
signal without worrying about the inversion problem (see Sect. 4.4), while a more realistic
way would be simulating shears and using inversion techniques (Kaiser & Squires 1993, Seitz &
Schneider 1995, etc.) to get convergence maps. Besides, one can also adopt an aperture-mass
approach: convolving the shear field with a zero-mean filter. By definition, the aperture mass
is already a smoothing, while both Ÿ-peak methods require in addition filtering techniques,
linear or nonlinear ones, to reduce noise (see further Chap. 8). For all three modelling
approaches, taking masking into account is not necessarily trivial. Reducing the e�ective
survey area, determining near-mask areas with a higher noise level (Liu X. et al. 2014), or
filling missing data with inpainting (method: Pires et al. 2009b, data application: Jullo et al.
2014), are di�erent options.

S/N determination In most studies, the noise level in S/N is a global value derived from
the whole survey, which yields a global significance. However, in reality, depending on mask
and the galaxy spatial distribution, the local noise level is not uniform. Taking the local
significance into account would make the modelling more accurate (see also Chap. 8).

100 PhD thesis of Chieh-An Lin

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

interpretation ?

modelling

counting
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Lin & Kilbinger: A New Model to Predict WL Peak Counts I.

Fig. 3. We show here a patch of a map projected with regard to its center, taken from a realization of fast simulations. The left, middle, and
right panels respectively give the fields 1/3, 1/3n , and K

1/3
N

. We have taken the cubic root to emphasize the contrast. It is clear that the signal is
completely dominated by the noise. Even though the smoothed map is quite di↵erent from the original one, the structures, high-signal regions are
still conserved and traced.

Fig. 4. Comparison of the peak abundance from di↵erent cases. On the upper panel, blue solid line: full N-body runs (case 1); green circles:
replacement of halos by NFW profiles (case 2); red squares: replacement of halos by NFW profiles and randomization of halo angular positions
(case 3); cyan diamonds: fast simulations, corresponding to our model (case 4); magenta dashed line: peaks from noise-only maps. On the lower
panel, we draw the upper and lower limits of error bars shifted with regard to the N-body values. This refers to the standard deviation over 4 maps
(green dash-dotted line for case 2) or 16 maps (red dashed line for case 3, cyan solid line for case 4). The field of view is 53.7 deg2.

of high-peak counts and decrease of medium-peak counts from
NFW profiles, diminution from randomization, and compensa-
tion from the analytical mass function. We remark that the Pois-
son fluctuation has largely been suppressed. The uncertainty is
about < 5% for medium peaks and < 20% for high peaks. This
shows that the Poisson noise still has an important e↵ect on our
small 53.7 deg2 field, hence creates a bias for counts from case 1.

5.2. Comparison to an analytical model

In Fig. 6, we draw peak histograms obtained from the analytical
model of FSL10 and from our model. The computation for the
FSL10 model is done with the same halo profiles and parameters,
and the same mass function. For our model, we use our large-
field result mentioned in the previous section. Both models are
computed with the same parameter set as the Aardvark N-body
simulation inputs.

We observe that the FSL10 model is also in a good agreement
with N-body runs. The under-counts for 4.25  ⌫  6, 25, which

Article number, page 7 of 10

WL basic observable is shear ". 
To convert to convergence !: inverse problem; 
need to regularise/filter/pixelize. 

Both " and ! are very noisy. 

Clusters have characteristic scale(s).

Need to filter WL data! 
 
E.g. Gaussian, compensated 
filter (aperture-mass). 
 
Non-Gaussian filters: combine  
scales, denoise.
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WL peak modelling
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[Early studies: cluster detection, can only use at very high S/N (>5)]

Analytical modelling
Gaussian random field theory (Fan, Shan & Liu J. 2011; Maturi et al. 2010) 
 
Limitations: Additions for high-end tail; Gaussian filtering only; difficult to model  
systematics (e.g. photo-z errors, masks; intrinsic alignment, baryons,  
halo substructure, triaxiality) 

Forward modelling

N-body simulations 
 (Haiman group; Dietrich & Hartlap (2010).  
 
 Limitations: Large computation time; limited to few std parameters.  
 Need large boxes (High S/N peaks are rare events) and good resolution 
 (resolve group-scale halos) 

Fast simulations 
 Lin & MK (2015a, b) Lin, MK & Pires (2016), Peel et al. (2017)
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WL peak modelling
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[Early studies: cluster detection, can only use at very high S/N (>5)]

Analytical modelling
Gaussian random field theory (Fan, Shan & Liu J. 2011; Maturi et al. 2010) 
 
Limitations: Additions for high-end tail; Gaussian filtering only; difficult to model  
systematics (e.g. photo-z errors, masks; intrinsic alignment, baryons,  
halo substructure, triaxiality) 

Forward modelling

N-body simulations 
 (Haiman group; Dietrich & Hartlap (2010).  
 
 Limitations: Large computation time; limited to few std parameters.  
 Need large boxes (High S/N peaks are rare events) and good resolution 
 (resolve group-scale halos) 

Fast simulations 
 Lin & MK (2015a, b), Lin, MK & Pires (2016), Peel et al. (2017)

Straight-forward to 
include systematics 

& complex distributions
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Fast simulations for WL peak counts
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linc.tw Chieh-An Lin (CEA Saclay)

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term
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Fast simulations for WL peak counts
Hypotheses:

1. Clustering of halos not important for counting peaks  
(along los: Marian et al. 2013) 

2. Unbound LSS does not contribute to WL peaks

Test:

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Results (on a small field)

Field of view = 54 deg2; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, zs = 1.0

A New Model to Predict Weak Lensing Peak Counts IAS — January 27th, 2015 30
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linc.tw Chieh-An Lin (CEA Saclay)

Validation

Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 8

Fast simulations for WL peak counts

Test with larger field of view (but same for full N-body):
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Fast.
  Few sec for 25 deg2 field on single CPU  

Flexible.
  Easy to include astrophysical & observational 
  effects, non-Gaussian filters. 

Full pdf:  
  Model is stochastic, drawing samples from distribution 
           of the observables. 

Our model is:
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p(⇡|x,m) =
L(x|⇡,m)P (⇡|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model
d : data
� : model parameter

p(�|d, m) =
L(d|�, m)⇥(�|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)
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⇡ : parameters
x : data
m : model

Bayes’ theorem

Parameter constraints = integrals over the posterior

For example:

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation,  
frequentist evaluation, ABC, …

Z
dn⇡ h(⇡)p(⇡|x,m)

h(⇡) = ⇡ : mean
h(⇡) = 168% : 68% credible region
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Data vector x = x(ti). Different cases:

- Abundance of peaks ni as fct. of SNR ν (PDF; binned histogram) or 
- SNR values νi at some percentile values of peak CDF) 

- with or without lower cut νmin.
Cosmology with the shear-peak statistics 5

Figure 2. Construction of the function S. The solid black line
is the cumulative SNR distribution of peaks detected in one
of our 35 realizations of the fiducial cosmology. The horizontal
dashed lines are the logarithmically spaced percentiles from
fmin = 0.5 to fmax = 0.98 at which the cumulative SNR dis-
tribution is sampled. The corresponding SNR values denoted
by the vertical dashed lines are the values in our data vector.

gives the SNR at which the cumulative distribution ex-
ceeds the fth percentile for nbin values of f ranging from
fmin to fmax. Figure 2 illustrates how S is constructed.

We measured S(Ωm, σ8) for nbin = 5 logarithmically
spaced values from fmin = 0.50 to fmax = 0.98. At the
fiducial cosmology these percentiles corresponds to SNR
values of 3.5σ and 5.7σ, respectively. Typically several
hundred peaks per 36 sq. deg. field were detected so that
the 98%ile could be reliably measured.

We used bilinear smoothing splines (Dierckx 1993)
to interpolate S(Ωm, σ8) on the grid covered by our N-
body simulations. In this section splines are a sufficient
description of the variation of S over our parameter space
because we only seek to qualitatively demonstrate the
ability of the peak statistics to constrain cosmological
parameters and to illustrate some of its properties. We
will use a more quantitative approach in the following
sections.

Figure 3 shows the confidence contours derived from
this statistics in the Ωm-σ8 plane. They have a shape
similar to that seen in constraints derived from clus-
ter cosmology (e.g., Henry et al. 2009) and cosmic shear
(Fu et al. 2008, e.g.,) for a CFHTLS like 180 sq. deg.
surey. In order to achieve this, we scaled the covariance,
which we computed for the individual 36 sq. deg. fields
back to the full survey. The similarity of the constraints
is of course no surprise since the peak statistics measures
the same density fluctuations as clusters of galaxies and
cosmic shear.

Although the spline interpolation is mostly illustra-
tive, we defined a figure of merit (FoM), in analogy to
the FoM of the Dark Energy Task Force (Albrecht et al.
2006), as the inverse of the area inside the 95% confidence
contour. We used this FoM to characterize how the peak
statistics changes when parameters entering the function
S are modified. Here in particular we examined the de-

Figure 3. Confidence contours of the aperture mass peak
statistics. Shown are the 1-, 2-, and 3σ confidence contours
of the S statistics. The white cross denotes the fiducial cos-
mology.

pendence of the cosmological constrains on the minimum
significance of a detection.

The detection threshold employed in the produc-
tion of Fig. 3 is very low and a sizable fraction of the
peaks detected in this way are simply due to shape noise
(Dietrich et al. 2007) and do not carry cosmological in-
formation. However, at such a low detection threshold
most peaks not caused by noise fluctuations are also not
due to a single massive halo but caused by the alignment
of LSS along the LOS. We demonstrate that these low
significance peaks indeed carry cosmological information
by comparing the FoM of the statistics in Fig. 3 to the
FoM resulting from the same function S with a detection
threshold of 4.5σ. While the constraints in Fig. 3 cor-
respond to a FoM of 40, the higher detection threshold
results in a FoM of only 20. We note that the 95% con-
fidence interval is not fully contained in the support of
our flat prior. For the low SNR detection, the 95% con-
fidence interval is cut off by the prior only at the high
Ωm/low σ8 end. The prior terminates the banana shaped
confidence region at both ends for the high SNR detec-
tion constraints. Consequently, the true figures of merit

c⃝ 2009 RAS, MNRAS 000, 1–11

CDF

Dietrich & Hartlap (2010)

xi  = SNR values …
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(2000) as

�2
pix =

�2
✏

2
1

ngApix
. (20)

We have �✏ = 0.4 and ngApix is chosen to be 1, so that
�pix ⇡ 0.283. We can also estimate �noise with Eq. (18) and ob-
tain �noise ⇡ 0.024. This shows that a real map is in general
dominated by the noise (Fig. 3). Even for a peak at ⌫ = 5, the
lensing signal is only at the order of  = 0.12, less than half of
the pixel noise amplitude.

5. Results

5.1. Validation of our model: comparison to N-body runs

To validate our model, we compare it to the N-body simulations.
We compute peak abundance histograms from both simulations,
together with two intermediate steps. This results in four cases
in total:

case 1: full N-body runs;
case 2: replacing N-body halos with NFW profiles with the

same masses;
case 3: randomizing angular positions of halos from case 2;
case 4: fast simulations, corresponding to our model.

These cases form a progressive transition from full N-body
runs towards our model. More precisely, case 2 tests the hypothe-
sis corresponding to the second step of our model (see Sect. 3.1),
i.e. di↵use, unbound matter contributes little to peak counts.
Case 3 additionally tests the assumption made in the third step
(halo clustering plays a minor role). Finally, case 4 completes
our model with the missing first step. As a result, the halo pop-
ulation and their redshifts are identical to N-body runs in case 2
and case 3.

Figure 4 shows the peak abundance histograms for the four
cases. In this section, the field of view is 53.7 deg2, since we
are limited by the available information of ray-tracing for the N-
body runs. For cases 1 and 2, we compute the average in each
histogram bin for 8 noise maps. For cases 3 and 4, this is done
with 8 realizations (of randomization and of fast simulations,
respectively), and 8 noise maps, thus 64 maps in total. Hence, the
error bars refer to the combination of the statistical fluctuation
due to the random process, and the shape noise uncertainty.

For low peaks, with ⌫  3.75, we observe that npeak(⌫) re-
mains almost unchanged between the di↵erent cases. This is not
suprising because in this regime, npeak(⌫) is mainly contributed
by noise. This argument is supported by the noise-only peak his-
togram, shown as the magenta dashed line. The lower panel of
Fig. 4 shows that there exist some systematic over-counts in this
regime at the order of 10%. The cause of this bias is ambiguous.
One possibility might be the use of NFW profiles for ray-tracing
simulations. It might also come from the subtraction of the mean
 value from the maps. We leave this to future studies. Another
observation in this regime is that by adding the signal to the noise
field, the number of peaks with ⌫  2.75 decreases. This proves
that the e↵ect of noise is not additive for peak counts.

In the regime of ⌫ � 3.75, we observe that replacement
by NFW profiles creates an enhancement for very high peaks,
⌫ � 5.75, whereas an under-count is produced for medium peaks,
3.75  ⌫  5.75. One possibility to explain this could be NFW
profiles. With the presence of the noise, peaks can be shifted
from the center of halos, thus some peak heights are determined
by the profile value at these shifted positions. If NFW profiles

systematically overestimate mass in the center region and un-
derestimate elsewhere, then peak histograms would match to the
scenario presented in Fig. 4. It could also be an e↵ect of tilted
M-c relation. We might over-estimate cNFW for large M and en-
der estimate for small M. Between case 1 and case 2, the di↵er-
ence in medium-peak bins is only few percent. This shows that
neglecting lensing contribution from unbound matter is a good
approximation for peak counting.

Comparing case 2 and case 3, we discover that position ran-
domization decreases peak counts by 10%–50%. Apparently,
decorrelating angular positions breaks down the two-halo term,
so that halos overlap less on the field of view and decreases high-
peak counts. Yang et al. (2011) showed that high peaks with
⌫ � 4.8 are majorly contributed by one single halo, and about
12% of total high-peak counts are contributed by multiple ha-
los. This number is in agreement with the under-count from our
hypothesis of randomization.

The impact of the mass function is shown by comparing case
3 to case 4. Peak counts are more numerous in our forward model
based on the mass function of Jenkins et al. (2001). This excess
compensates the deficit from randomization. However, as shown
by Fig. 2, the real mass function in N-body runs is coherent to
the analytical model that we use, except for the low-mass deficit
tails from N-body runs. To test the impact from this, we run fast
simulations with di↵erent lower limit for the halo sampling, and
we discover that peak counts do not depend on the lower sam-
pling limit Mmin when Mmin remains lower than 1013

M�/h. This
proves that the deficit tails are not the cause of the peak count
enhancement. Lack of explanation, we may have to test with
another N-body simulation set to understand the origin of this
e↵ect.

Fig. 5. Similar plot to Fig. 4, but on a larger field. Cases 2, 3, and 4 are
carried out for 859 deg2. Case 1 should only be taken as an indication
since its size of field is the same as in Fig. 4, and therefore 16 times
smaller than cases 2–4. Note that the fluctuation from high ⌫ bins is
much reduced compared to Fig. 4.

Figure 5 shows a similar study of case 2, 3 and 4 for a larger
field of 859 deg2. One can recover the same e↵ects: increase
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Data vector x, model $, covariance C. 

Parameter constraints: 

- Gaussian 
 
 
 

- Copula 
 

- `True’ likelihood (+ KDE) 
 

- ABC

A&A proofs: manuscript no. Submit1

Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with x
abd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right

panel, while the colored areas are from Lsvg. The black star stands for ⇡in and grey areas represents the non-explored parameter space. The dotted
lines are di↵erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e↵ect. The parameter-dependent determinant term does not contribute significantly.

4. Testing the copula transform

4.1. Formalism

Consider a multivariate joint distribution P(x1, . . . , xd). In gen-
eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
is to evaluate the likelihood in a new observable space in which
the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)

where ui ⌘ Fi(xi). The function c is called the copula density.
On the other hand, let qi ⌘ �

�1
i (ui), where �i is the CDF of the

normal distribution with the same means µi and variances �2
i as

the laws Pi, such that

�i(qi) ⌘
Z qi

�1

�i(q0)dq0, (12)

�i(qi) ⌘
1

q
2⇡�2

i

exp
2
66664�

(qi � µi)2

2�2
i

3
77775 . (13)

We can then define a new joint PDF P0 in the q-space that corre-
sponds to P in x-space, i.e. P0(q) = P(x). The marginal PDF and
CDF of P0 are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P0 and �i, one gets

P0(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P0(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P0 are identical to a multi-
variate Gaussian distribution � with mean µ and covariance C,
where C is the covariance matrix of x. The PDF of � is given by

�(q) ⌘
1

p
(2⇡)d det C

exp

2
6666664�

1
2

X

i, j

(qi � µi)C�1
i j (q j � µ j)

3
7777775 . (16)

Finally, by approximating P0 to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) ⇡ �(x). Apply-
ing the Gaussian copula transform means that we carry out this
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Fig. 2. Middle panel: the likelihood value using x
abd5 on the ⌦m-⌃8 plane. The green star represents the input cosmology ⇡in. Since log�8 and

log⌦m form an approximately linear degenerency, the quantity ⌃8 ⌘ �8(⌦m/0.27)↵ allows us to characterize the banana-shape contour thickness.
Right panel: the marginalized PDF of ⌃8. The dashed lines give the 1-� interval (68.3%), while the borders of the shaded areas represent 2-�
limits (95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give corresponding value for 1 and 2-�
significance levels, respectively.

Gaussian (labelled vg) log-likelihoods as

Lcg ⌘ �x
T (⇡)dC�1(⇡obs) �x(⇡), (8)

Lsvg ⌘ �x
T (⇡)dC�1(⇡) �x(⇡), and (9)

Lvg ⌘ ln
h
detbC(⇡)

i
+ �x

T (⇡)dC�1(⇡) �x(⇡). (10)

Here, the termdC�1(⇡obs) in Eq. (8) refers todC�1(⇡in), where ⇡in is
described in Sect. 2.2. By comparing the contours derived from
di↵erent likelihoods, we aim to measure (1) the evolution of the
�2 term by substituing the constant matrix with the true vary-
ing dC�1, and (2) the impact from adding the determinant term.
Therefore, Lsvg is just an illustrative case to assess the influence
of the two terms in the likelihood.

3.2. The �2
term

The left panel of Fig. 3 shows the comparison between confi-
dence regions derived from Lcg and Lsvg with x

abd. It shows a
clear di↵erence of the contours between Lcg and Lsvg. Since the
o↵-diagonal correlation coe�cients are weak (as shown in Ta-
ble 3), the variation of diagonal terms of C plays a major role in
the size of credible regions. The isolines for Ĉ55 are also drawn
in Fig. 3. These isolines cross the⌦m-�8 degenerency lines from
Lcg and thus shrink the credible region. We also find that the iso-
lines for Ĉ11 and Ĉ22 are noisy, and that those for Ĉ33 and Ĉ44
coincide well with the original degeneracy direction.

Table 4 shows the values of both criteria for di↵erent like-
lihoods. We observe that using Lsvg improves significantly the
constraints by 24% in terms of FoM. Regarding �⌃8, the im-
provement is weak. As a result, using varying covariance ma-
trices breaks down part of the banana-shape degenerency and
shrinks the contour length, but does not reduce the thickness.

We show in the left panels of Fig. 4 the same constraints de-
rived from two other observables x

pct5 and x
cut5. We see a similar

CDC e↵ect for both. We observe that x
pct5 has less constraining

power than x
abd5, and x

cut5 is outperformed by both other data
vectors. This is due to the cuto↵ value ⌫min. Introducing a cuto↵
at ⌫min = 3 decreases the total number of peaks and amplifies
the fluctuation of high-peak values in the CDF. When we use

percentiles to define observables, the distribution of each com-
ponent of x

cut5 becomes wider than the one of the corresponding
component of x

pct5, and this greater scatter in the CDF enlarges
the contours. However, the cuto↵ also introduces a tilt of the
contours. Table 5 shows the best-fit ↵ for the di↵erent cases.
The di↵erence of the tilt could be a useful tool to improve the
constraining power. This has also been observed by Dietrich &
Hartlap (2010). Nevertheless, we do not procced any joint analy-
sis since x

abd5 and x
cut5 contain essentially the same information.

3.3. Impact from the determinant term

The right panel of Fig. 3 shows the comparison between Lsvg and
Lvg with x

abd5. It shows that adding the determinant term does
not result in significant changes of the parameter constraints. The
isolines from ln(det Ĉ) explain this, since the graidents are per-
pendicular to the degenerency lines. We observe that including
the determinant makes the contours slightly larger, but almost
negligibly so. The total improvement of the contour area com-
pared to Lcg is 22%.

However, a di↵erent change is seen for x
pct5 and x

cut5.
Adding the determinant to the likelihood computed from these
observables induces a shift of contours toward the higher-⌦m
area. In the case of x

cut5, this shift compensates the contour o↵-
set from the varying �2 term, but does not improve significantly
either �⌃8 or FoM, as shown in Table 4. As a result, using the
Gaussian likelihood, the total CDC e↵ect can be summed up as
an improvement of at least 14% in terms of thickness and 38%
in terms of area.

The results from Bayesian inference is very similar to the
likelihood-ratio test. Thus, we only show their �⌃8 and FoM in
Table 6 and best fits in Table 7. We recall that a similar analy-
sis has been done by Eifler et al. (2009) on shear covariances.
Our observations agree with their conlusions: a relatively large
impact from the �2 term and negligible change from the deter-
minant term. However, the total CDC e↵ect is more significant
in the peak-count framework than for the power spectrum.
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Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with x
abd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right

panel, while the colored areas are from Lsvg. The black star stands for ⇡in and grey areas represents the non-explored parameter space. The dotted
lines are di↵erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e↵ect. The parameter-dependent determinant term does not contribute significantly.
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eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
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the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)
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On the other hand, let qi ⌘ �
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i (ui), where �i is the CDF of the

normal distribution with the same means µi and variances �2
i as

the laws Pi, such that

�i(qi) ⌘
Z qi

�1

�i(q0)dq0, (12)

�i(qi) ⌘
1

q
2⇡�2

i

exp
2
66664�

(qi � µi)2

2�2
i

3
77775 . (13)

We can then define a new joint PDF P0 in the q-space that corre-
sponds to P in x-space, i.e. P0(q) = P(x). The marginal PDF and
CDF of P0 are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P0 and �i, one gets

P0(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P0(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P0 are identical to a multi-
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Finally, by approximating P0 to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) ⇡ �(x). Apply-
ing the Gaussian copula transform means that we carry out this

Article number, page 6 of 15

C.-A. Lin & M. Kilbinger: A new model to predict weak-lensing peak counts II.

Fig. 2. Middle panel: the likelihood value using x
abd5 on the ⌦m-⌃8 plane. The green star represents the input cosmology ⇡in. Since log�8 and

log⌦m form an approximately linear degenerency, the quantity ⌃8 ⌘ �8(⌦m/0.27)↵ allows us to characterize the banana-shape contour thickness.
Right panel: the marginalized PDF of ⌃8. The dashed lines give the 1-� interval (68.3%), while the borders of the shaded areas represent 2-�
limits (95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give corresponding value for 1 and 2-�
significance levels, respectively.

Gaussian (labelled vg) log-likelihoods as

Lcg ⌘ �x
T (⇡)dC�1(⇡obs) �x(⇡), (8)

Lsvg ⌘ �x
T (⇡)dC�1(⇡) �x(⇡), and (9)

Lvg ⌘ ln
h
detbC(⇡)

i
+ �x

T (⇡)dC�1(⇡) �x(⇡). (10)

Here, the termdC�1(⇡obs) in Eq. (8) refers todC�1(⇡in), where ⇡in is
described in Sect. 2.2. By comparing the contours derived from
di↵erent likelihoods, we aim to measure (1) the evolution of the
�2 term by substituing the constant matrix with the true vary-
ing dC�1, and (2) the impact from adding the determinant term.
Therefore, Lsvg is just an illustrative case to assess the influence
of the two terms in the likelihood.

3.2. The �2
term

The left panel of Fig. 3 shows the comparison between confi-
dence regions derived from Lcg and Lsvg with x

abd. It shows a
clear di↵erence of the contours between Lcg and Lsvg. Since the
o↵-diagonal correlation coe�cients are weak (as shown in Ta-
ble 3), the variation of diagonal terms of C plays a major role in
the size of credible regions. The isolines for Ĉ55 are also drawn
in Fig. 3. These isolines cross the⌦m-�8 degenerency lines from
Lcg and thus shrink the credible region. We also find that the iso-
lines for Ĉ11 and Ĉ22 are noisy, and that those for Ĉ33 and Ĉ44
coincide well with the original degeneracy direction.

Table 4 shows the values of both criteria for di↵erent like-
lihoods. We observe that using Lsvg improves significantly the
constraints by 24% in terms of FoM. Regarding �⌃8, the im-
provement is weak. As a result, using varying covariance ma-
trices breaks down part of the banana-shape degenerency and
shrinks the contour length, but does not reduce the thickness.

We show in the left panels of Fig. 4 the same constraints de-
rived from two other observables x

pct5 and x
cut5. We see a similar

CDC e↵ect for both. We observe that x
pct5 has less constraining

power than x
abd5, and x

cut5 is outperformed by both other data
vectors. This is due to the cuto↵ value ⌫min. Introducing a cuto↵
at ⌫min = 3 decreases the total number of peaks and amplifies
the fluctuation of high-peak values in the CDF. When we use

percentiles to define observables, the distribution of each com-
ponent of x

cut5 becomes wider than the one of the corresponding
component of x

pct5, and this greater scatter in the CDF enlarges
the contours. However, the cuto↵ also introduces a tilt of the
contours. Table 5 shows the best-fit ↵ for the di↵erent cases.
The di↵erence of the tilt could be a useful tool to improve the
constraining power. This has also been observed by Dietrich &
Hartlap (2010). Nevertheless, we do not procced any joint analy-
sis since x

abd5 and x
cut5 contain essentially the same information.

3.3. Impact from the determinant term

The right panel of Fig. 3 shows the comparison between Lsvg and
Lvg with x

abd5. It shows that adding the determinant term does
not result in significant changes of the parameter constraints. The
isolines from ln(det Ĉ) explain this, since the graidents are per-
pendicular to the degenerency lines. We observe that including
the determinant makes the contours slightly larger, but almost
negligibly so. The total improvement of the contour area com-
pared to Lcg is 22%.

However, a di↵erent change is seen for x
pct5 and x

cut5.
Adding the determinant to the likelihood computed from these
observables induces a shift of contours toward the higher-⌦m
area. In the case of x

cut5, this shift compensates the contour o↵-
set from the varying �2 term, but does not improve significantly
either �⌃8 or FoM, as shown in Table 4. As a result, using the
Gaussian likelihood, the total CDC e↵ect can be summed up as
an improvement of at least 14% in terms of thickness and 38%
in terms of area.

The results from Bayesian inference is very similar to the
likelihood-ratio test. Thus, we only show their �⌃8 and FoM in
Table 6 and best fits in Table 7. We recall that a similar analy-
sis has been done by Eifler et al. (2009) on shear covariances.
Our observations agree with their conlusions: a relatively large
impact from the �2 term and negligible change from the deter-
minant term. However, the total CDC e↵ect is more significant
in the peak-count framework than for the power spectrum.
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Chapter 6 — Parameter constraint strategies

Figure 6.6: An example that the copula transform is insensitive. The multivariate distribution is not very
“Gaussian”, but its two marginals are both perfectly Gaussian, so the copula will not do adjustment.

Here, „ is just the 2D standard normal distribution and � is the Heaviside step function.
The value of f is 2 times „2 if x and y have the same sign and 0 otherwise. The marginal
PDF of f and „2 turn out to be the same (see Fig. 6.6). As a result, the Gaussian copula
transform does nothing for f . The copula likelihood of f is exactly the original Gaussian
likelihood, while f remains “highly” non Gaussian. This example proves that the copula is
not the ultimate solution. However, if we do not have any prior knowledge, then the result
with the copula transformation should be at least as good as the usual Gaussian likelihood.

6.3.2 Copula likelihood

We can now write down the copula likelihood. By applying Eq. (6.27) to P (xobs|fi), xi

becomes x
obs
i and qi becomes q

obs
i similarly. The copula likelihood Lc is then

Lc(fi) = 1
Ò

(2fi)d| det C|
◊ exp

S

U≠1
2

dÿ

i=1

dÿ

j=1

1
q

obs
i ≠ x

mod
i

2
C

≠1
ij

1
q

obs
j ≠ x

mod
j

2
T

V

◊
dŸ

i=1

S

U 1
Ò

2fi‡
2
i

exp
A

≠
!
q

obs
i ≠ x

mod
i

"2

2‡
2
i

BT

V
≠1

◊
dŸ

i=1
Pi(xobs

i ), (6.29)

where µi, the mean of qi, is also the mean of xi thus is replaced by x
mod
i . By detailing the

dependency on fi for all quantities and ‚ for estimated terms, the varying-covariance copula
log-likelihood (labelled vc) is

Lvc(fi) = cst + ln
---det ‚C(fi)

--- +
dÿ

i=1

dÿ

j=1

Ë
q

obs
i (fi) ≠ x

mod
i (fi)

È ‰
C

≠1
ij (fi)

Ë
q

obs
j (fi) ≠ x

mod
j (fi)

È

≠ 2
dÿ

i=1
ln ‡̂i(fi) ≠

dÿ

i=1

A
q

obs
i (fi) ≠ x

mod
i (fi)

‡̂i(fi)

B2

≠ 2
dÿ

i=1
ln P̂i(xobs

i |fi). (6.30)

Here, P̂i(xobs
i |fi) should be understood as a one-point evaluation of P̂i( · |fi) on x

obs
i , and

P̂i( · |fi) is the i-th marginal PDF in the x space, which is fi-dependent. This can be computed
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Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with x
abd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right

panel, while the colored areas are from Lsvg. The black star stands for ⇡in and grey areas represents the non-explored parameter space. The dotted
lines are di↵erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e↵ect. The parameter-dependent determinant term does not contribute significantly.

4. Testing the copula transform

4.1. Formalism

Consider a multivariate joint distribution P(x1, . . . , xd). In gen-
eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
is to evaluate the likelihood in a new observable space in which
the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)

where ui ⌘ Fi(xi). The function c is called the copula density.
On the other hand, let qi ⌘ �

�1
i (ui), where �i is the CDF of the

normal distribution with the same means µi and variances �2
i as

the laws Pi, such that

�i(qi) ⌘
Z qi

�1

�i(q0)dq0, (12)

�i(qi) ⌘
1

q
2⇡�2

i

exp
2
66664�

(qi � µi)2

2�2
i

3
77775 . (13)

We can then define a new joint PDF P0 in the q-space that corre-
sponds to P in x-space, i.e. P0(q) = P(x). The marginal PDF and
CDF of P0 are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P0 and �i, one gets

P0(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P0(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P0 are identical to a multi-
variate Gaussian distribution � with mean µ and covariance C,
where C is the covariance matrix of x. The PDF of � is given by

�(q) ⌘
1

p
(2⇡)d det C

exp

2
6666664�

1
2

X

i, j

(qi � µi)C�1
i j (q j � µ j)

3
7777775 . (16)

Finally, by approximating P0 to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) ⇡ �(x). Apply-
ing the Gaussian copula transform means that we carry out this
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Fig. 5. Confidence regions derived from copula analyses. Left panel: comparison between contours from Lcg (solid and dashed lines) and Lcc
(colored areas). Right panel: comparison between contours from Lcc (colored areas) and Lvc (solid and dashed lines). The evolution tendance from
Lcc to Lvc is similar to the evolution from Lcg to Lvg.

Table 5. Best fits of (⌃8,↵) from all analyses using likelihood-ratio test and p-value analysis (confidence region). The description of Lcg, Lsvg, and
Lvg can be found in Sect. 3, Lcc and Lcg in Sect. 4, and Ltrue and p-value in Sect. 5. We note that the best fits for ⌃8 are indicative since we do not
use the real observational data in this study.

x
abd5

x
pct5

x
cut5

⌃8
+1�
�1� ↵ ⌃8

+1�
�1� ↵ ⌃8

+1�
�1� ↵

Lcg 0.831+0.016
�0.016 0.54 0.822+0.018

�0.019 0.54 0.800+0.030
�0.035 0.45

Lsvg 0.831+0.016
�0.015 0.52 0.820+0.015

�0.016 0.51 0.800+0.031
�0.023 0.40

Lvg 0.829+0.015
�0.015 0.52 0.819+0.015

�0.016 0.52 0.800+0.024
�0.028 0.42

Lcc 0.830+0.016
�0.016 0.54 0.825+0.018

�0.020 0.54 0.807+0.025
�0.031 0.46

Lvc 0.829+0.016
�0.016 0.52 0.823+0.016

�0.019 0.53 0.798+0.029
�0.029 0.44

Ltrue 0.828+0.018
�0.015 0.53 0.823+0.015

�0.020 0.53 0.800+0.028
�0.030 0.44

p-value 0.835+0.016
�0.019 0.54 0.823+0.018

�0.018 0.54 0.798+0.032
�0.034 0.45

Table 6. Similar to Table 4, but for credible regions. The description of
ABC can be found in Sect. 6.

x
abd5

x
pct5

x
cut5

�⌃8 FoM �⌃8 FoM �⌃8 FoM
Lcg 0.033 43 0.038 31 0.066 15
Lsvg 0.031 53 0.033 41 0.056 20
Lvg 0.031 53 0.032 40 0.055 18
Lcc 0.033 40 0.040 30 0.071 14
Lvc 0.033 47 0.035 36 0.060 16
Ltrue 0.034 49 0.036 36 0.061 17
ABC 0.056 31 0.044 33 0.068 16

5.2. p-value analysis

Another non-analytic technique is the p-value analysis. This fre-
quentist approach provides the significance level by determining
directly the p-value assciated with a observation x

obs. The p-

value is defined as

p ⌘ 1 �
Z

dd
x P̂(x|⇡) ⇥ ⇥

⇣
P̂(x|⇡) � P̂(x

obs
|⇡)
⌘
, (26)

where ⇥ denotes the Heaviside step function. The integral ex-
tends over the region where x is more probable then x

obs for a
given ⇡, as shown by Fig. 6. Thus, the interpretation of Eq. (26)
is that if we generated N universes, then at least (1 � p)N of
them should have an observational result “better” than x

obs. In
this context, better refers to a more probable realization. The
significance level is determined by the chi-squared distribution
with d = 2 degree of freedom, for two free parameters ⌦m and
�8. Just as Fig. 7 shows, this provides a straightforward way to
distinguish di↵erent cosmological models.

As in Sect. 4.2, we use KDE to estimate the multivariate
PDF, and numerically integrate Eq. (26) to obtain the p-value.
Monte Carlo integration is used for evaluating the 5-dimensional
integrals.
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Table 7. Similar to Table 5, but for Bayesian inference (credible region). The description of ABC can be found in Sect. 6. We note that the best
fits for ⌃8 are indicative since we do not use the real observational data in this study.

x
abd5

x
pct5

x
cut5

⌃8
+1�
�1� ↵ ⌃8

+1�
�1� ↵ ⌃8

+1�
�1� ↵

Lcg 0.831+0.017
�0.016 0.54 0.822+0.018

�0.020 0.54 0.800+0.030
�0.036 0.45

Lsvg 0.831+0.016
�0.015 0.52 0.820+0.016

�0.017 0.51 0.800+0.032
�0.024 0.40

Lvg 0.829+0.015
�0.015 0.52 0.819+0.015

�0.017 0.52 0.800+0.025
�0.029 0.42

Lcc 0.830+0.017
�0.017 0.54 0.825+0.018

�0.022 0.54 0.807+0.030
�0.041 0.46

Lvc 0.829+0.016
�0.016 0.52 0.823+0.016

�0.019 0.53 0.798+0.030
�0.030 0.44

Ltrue 0.828+0.019
�0.015 0.53 0.823+0.015

�0.021 0.53 0.800+0.030
�0.032 0.44

ABC 0.819+0.030
�0.025 0.50 0.817+0.022

�0.022 0.51 0.799+0.034
�0.034 0.42

Fig. 8. Left panel: confidence regions derived from Lvc (colored areas) and Ltrue (solid and dashed lines) with x
abd5. Right panel: confidence regions

derived from Lvc (colored areas) and p-value analysis (solid and dashed lines). The contours from Ltrue and p-value analysis are noisy due to a
relatively low N for probability estimation. We notice that Lvc and Ltrue yield very similar results.

5.3. Parameter constraints

Figure 8 shows the confidence contours from Ltrue and p-value
analysis with observables x

abd5. We notice that these constraints
are very noisy. This is due to a relatively low number of real-
izations to estimate the probability and prevents us from making
definite conclusions. Nevertheless, the result from the left panel
reveals a good agreement between constraints from two likeli-
hoods. This suggests that we may substitue Ltrue with the CDC-
copula likelihood to bypass the drawback of noisy estimation
from Ltrue. In the right panel, the result from p-value analysis
seems to be larger. We have reduced the noise for the p-value
analysis by combining x

abd5 into a 2-component vector. In this
case, the p-value is evaluated using the grid integration. This data
compression technique does not significantly enlarge but visibly
smoothens the contours.

In the Ltrue case, the probability information that we need
is local since the likelihood P is only evaluated at x

obs. For p-
value analysis, one needs to determine the region where P(x) <
P(x

obs) and integrate over it, so a more global knowledge on P(x)
is needed in this case. We recall that KDE is smoothing, thus the

estimation is always biased (Zambom & Dias 2012). Other es-
timations, for example using the Voronoi-Delaunay tessellation
(see e.g. Schaap 2007; Guio & Achilleos 2009), could be an al-
ternative to the KDE technique. As a result, observable choice,
data compression, and density estimation need to be considered
jointly for all non-analytic approaches.

Recent results from CFHTLenS (LPH15) and Stripe-82
(LPL15) resulted in �⌃8 ⇠ 0.1, about 2–3 times larger than
this study. However, we would like to highlight that redshift
errors are not taken into account here, and that the simulated
galaxy density used in this work is much larger. Also, we choose
zs = 1 which is higher than the median redshift of both surveys
(⇠ 0.75). All these factors contribute to our smaller error bars.

6. Approximate Bayesian computation

6.1. PMC ABC algorithm

In the previous section, we presented parameter constraints de-
rived from directly evaluating the underlying PDF. Now, we want
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Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = x

obs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(x
obs
|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = x

obs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� x

obs
|  ✏. What is retained after repeating this process is

an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = x

abd5, x
pct5, or x

cut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � x

obs
|  ✏ used above is generalized to

D(s(X), s(x
obs))  ✏. We highlight that the summary statistic

can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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Approximate Bayesian Computation (ABC)
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p(⇡|x,m) =
L(x|⇡,m)P (⇡|m)

E(x|m)
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Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model
d : data
� : model parameter

p(�|d, m) =
L(d|�, m)⇥(�|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3

Monday, June 14, 2010

⇡ : parameters
x : data
m : model

xLikelihood: how likely is it that model prediction                 reproduces data    ?xmod(⇡)
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Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = x

obs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(x
obs
|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = x

obs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� x

obs
|  ✏. What is retained after repeating this process is

an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = x

abd5, x
pct5, or x

cut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � x

obs
|  ✏ used above is generalized to

D(s(X), s(x
obs))  ✏. We highlight that the summary statistic

can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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Alternative: compute fraction of models  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ABC can be performed if: 

• it is possible and easy to sample from L 
 

ABC is useful when: 

• functional form of L is unknown 
• evaluation of L is expensive 
• model is intrinsically stochastic

Probability = p/N in frequentist sense. 

Magic: Don’t need to sample N models. 
One per parameter     is sufficient  
with accept-reject algorithm.

⇡
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Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = x

obs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(x
obs
|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = x

obs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� x

obs
|  ✏. What is retained after repeating this process is

an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = x

abd5, x
pct5, or x

cut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � x

obs
|  ✏ used above is generalized to

D(s(X), s(x
obs))  ✏. We highlight that the summary statistic

can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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Figure 14. Illustration of the ABC accept-reject method in one dimension. Sample points (with
positions indicated at the top) are sampled from the underlying likelihood function L of some
observable x. The observed data point marked at d. We want to obtain the likelihood function
at the position of the data, L(x = d). A Monte-Carlo estimate of L(d) is given by the density of
sample points at d. ABC approximates this density by defining a tolerance " around d, and counting
the number of points within this limit, normalised by the total number of samples. In a one-sample
test limit, this frequency is the acceptance probability, which is equal to the green area divided by
the total area under the L curve.

they fall within some tolerance level " of d. For multi-variate data, this also requires a metric D that

can be compared to ". In addition, the complexity of high-dimensional data is typically reduced to

a lower-dimensional space using a summary statistic s of the data. Thus, a model x is accepted if

D[s(d), s(x)] < "; or equivalently x 2 D"[s(d)], (62)

where D"(z) is the q-dimensional ball with radius " centred on z.

The accepted points follow a distribution that is a modified version of (61),

⇡ABC,"(p|d, M) = L"(d|p, M)P (p|M), (63)

where L"(d|M) is the probability that a proposed parameter p passes the one-sample tolerance test

(62),

L"(d|p, M) ⌘

Z
dq

x L(x|p, M)1D"[s(d)][s(x)]. (64)

The sum over discrete events xi is now an integral over models, and the Kronecker delta has been

replaced with the indicator function 1A(x), which is unity if x 2 A, and zero otherwise. This

accept-reject algorithm is illustrated in Fig. 14.

The main assumption of ABC is now that the probability distribution function (64) is a good

approximation of the true, underlying likelihood function L of the data d,

L"(d|p, M) ⇡ L(d|p, M). (65)

and consequently the ABC posterior (63) an approximation of the true posterior ⇡.
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
Easier: Make lots of soups with different ingredients, compare.
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Example: let’s make soup.

Questions: 
• What aspect of data and simulations do we compare? (summary statistic) 
• How do we compare? (metric, distance) 
• When do we accept? (tolerance) 
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• Summary statistic 
 
s = x (data vector for 2 cases)  

• Metric  D: two cases  
 
 
 
 

• ABC algorithm: iterative importance 
sampling (PMC) with decreasing  
tolerance

A&A 593, A88 (2016)

Fig. 4. Distribution of evaluated parameter points on the ⌦m-�8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.
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for the estimations, where d is the dimension of x, W is the
Gaussian kernel, and hi = (4/3N)1/5�̂i. Note that the model pre-
diction xmod is nothing but the average over the realization set;
the inverse covariance matrix is unbiased (Hartlap et al. 2007) to
good accuracy (see also Sellentin & Heavens 2016); and Eq. (35)
is a kernel density estimation (KDE).

We evaluated the copula likelihoods, given by Eq. (31), on a
grid. The range of wde

0 is [–1.8, 0], with �wde
0 = 0.04. Concerning

⌦m and �8, only some particular values were chosen for eval-
uation in order to reduce the computing cost. This resulted in
816 points in the ⌦m-�8 plane, as displayed in Fig. 4, and the
total number of parameter sets was 37536. For each parameter
set, we carried out N = 400 realizations of our model, to es-
timate L using Eqs. (31)–(35). Each realization produced data
vectors for three cases: (1) the Gaussian kernel; (2) the starlet
kernel; (3) MRLens, so that the comparisons between cases are
based on the same stochasticity. The aperture mass was not in-
cluded here because of the time consuming convolution of the
unbinned shear catalog with the filter Q. The FDR ↵ of MRLens
was set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated  field.

Table 2. Definition of the data vector x for PMC ABC runs.

Filter ✓ker [arcmin] or ↵ Number of bins d

Gaussian ✓ker = 1.2, 2.4, 4.8 9 ⌫ bins 27
Starlet ✓ker = 2, 4, 8 9 ⌫ bins 27

Map tanh ✓ker = 2.125, 4.25, 8.5 9 ⌫ bins 27
MRLens ↵ = 0.05 6  bins 6

Notes. The 9 bins of ⌫ are [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, and the 6 bins of
 are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +1[. The symbol d is the total
dimension of x, and ↵ stands for the input value of FDR for MRLens.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian compu-
tation (ABC) technique. ABC bypasses the likelihood evalua-
tion to estimate directly the posterior by accept-reject sampling.
It is fast and robust, and has already had several applications
in astrophysics (Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Paper II; Killedar et al. 2016). Here, we use
the Population Monte Carlo ABC (PMC ABC) algorithm to con-
strain parameters. This algorithm adjusts the tolerance level iter-
atively, such that ABC posterior converges. A detailed descrip-
tion of the PMC ABC algorithm can be found in Sect. 6 of
Paper II.

We ran PMC ABC for four cases: the Gaussian kernel, the
starlet kernel, the aperture mass with the hyperbolic tangent
function, and MRLens with ↵ = 0.05. For the three first lin-
ear cases, the data vector x was composed of three scales. The
S/N bins of each scale were [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, which
result in 27 bins in total (Table 2). For MRLens, x was a 6-
bin  histogram, which is the same as for the analysis using the
likelihood.

Concerning the ABC parameters, we used 1500 particles in
the PMC process. The iteration stoped when the success ratio
of accept-reject processes fell below 1%. Finally, we tested two
distances. Between the sampled data vector x and the observed
one, xobs, we considered a simplified distance D1 and a fully
correlated one D2, which are respectively defined as

D1
⇣
x, xobs

⌘
⌘

vuutX

i

⇣
xi � x

obs
i

⌘2

Cii

, (36)

D2
⇣
x, xobs

⌘
⌘

q�
x � xobs�T C�1 �

x � xobs�, (37)

where Cii and C�1 are now independent from cosmology,
estimated using Eqs. (33) and (34) under (⌦m,�8, wde

0 ) =
(0.28, 0.82,�0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also ran ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter ⌃8.
Here, we define ⌃8 di↵erently from the literature:

⌃8 ⌘
 
⌦m + �

1 � ↵

!1�↵ ✓�8

↵

◆↵
· (38)

A88, page 8 of 14

D1 in Lin & MK 2015b 

D1 + D2 in Lin, MK & Pires 2016
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Fig. 9. Evolution of particles and the posterior from PMC ABC algorithm. We show results from first 8 iterations (0  t  7). Particles are given
by blue dots. Solid lines are 1-� contours and dashed lines are 2-� contours. White areas represent the prior. The corresponding accept rate r and
tolerance level ✏ are also given. The ✏ here is actually ✏(t�1) in Algorithm 1, and we set ✏(�1) = +1.

We find that the contours stablize for t � 8, which correponds to
an acceptance rate of r = 0.05. At these low accpetence rates,
corresponding to a small tolerance, the probability to satisfy the
tolerance criterion D(s(X), s(x

obs))  ✏ is low even though X

is sampled from parameters in the high-probability region, and
accepting a proposed particle depends mainly on random fluctu-
ations due to the stochasticity of the model.

In Fig. 10, we show the weights of particles sampled at the
final iteration t = 8. The weight is visualized by both color and
size of the circle. The figure shows that points further away from
the maximum have larger weights as constructed by Algorithm
1. Since those points are more isolated, their weights compensate
for the low density of points, avoiding undersampling of the tails
of the posterior and overestimating of the constraining power.

In Fig. 11 we show the comparison of credible regions be-
tween Lcg and PMC ABC with s(x) = x

abd5. The FoM and the
best-fit ABC results are presented in Tables 6 and 7, respectively.
The figure shows a good agreement between the two cases, and
thus validates the performance of PMC ABC. The broader con-
tours from ABC might be caused by a bias of KDE. The same
reason might be responsible for the slight shift of the contours
in the tails of the distribution, which do not follow exactly the
particles, best visible in the two left panels in the lower row of
Fig. 9.

7. Summary and discussion

Our model for weak-lensing peak counts, providing a direct es-
timation of the underlying PDF of observables, leads to a wide
range of possibilities for constraining parameters. To summarize
this work, we

– compare di↵erent data vector choices,
– study the dependence of the likelihood on cosmology,
– explore the full PDF information of observables,
– propose di↵erent constraint strategies, and
– examine them with two criteria.

In this paper, we perform three di↵erent series of analyses:
the Gaussian likelihood, the copula likelihood, and non-analytic
analyses, by using three di↵erent data vectors: one based on
the peak PDF and two on the CDF. We define two quantita-
tive criteria: �⌃8 which represents the error bar on the param-
eter ⌃8 = �8(⌦m/0.27)↵ and is a measure of the width of the
⌦m-�8 degeneracy direction, and FoM which is the area of the
⌦m-�8 contour. Both Bayesian and frequentist approaches are
proceeded. However, although the interpretations are di↵erent,
the results are very similar.

We study the cosmology-dependent-covariance (CDC) e↵ect
by estimating the true covariance for each parameter set. We find

Article number, page 13 of 15
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Fig. 10. Weights of particles from t = 8 with s(x) = x
abd5. The weight

is represented by the size and the color at the same time.

Fig. 11. Comparison between credible regions derived from Lcg (col-
ored areas) and ABC (solid and dashed lines).

that the CDC e↵ect can increase the constraining power up to
22%. The main contribution comes from the additional variation
of the �2 term and the contribution from the determinant term
is negligible. These observations conform a previous study by
Eifler et al. (2009).

We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di↵erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e↵ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
ables, we provide two straightforward ways to use the full PDF
information. The first one is the true likelihood. The direct eval-
uation of the likelihood is noisy due to the high statistical fluc-
tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e↵ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di↵erent data vectors is done in this
study. Although we find for all analyses that x

abd5 outperforms
x

pct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di↵erent percentile choice. Actually,
the performance of x

pct depends on the correlation between its
di↵erent components. However, the x

pct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the x

cut fam-
ily is largely outperformed by x

abd. Thus, we conclude that x
abd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from x

cut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e↵ects is desired. Our study displays two
di↵erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
on trade-o↵ between the unappropriatenss of analytic estimators
and the uncertainty of density estimation.
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ored areas) and ABC (solid and dashed lines).

that the CDC e↵ect can increase the constraining power up to
22%. The main contribution comes from the additional variation
of the �2 term and the contribution from the determinant term
is negligible. These observations conform a previous study by
Eifler et al. (2009).

We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di↵erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e↵ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
ables, we provide two straightforward ways to use the full PDF
information. The first one is the true likelihood. The direct eval-
uation of the likelihood is noisy due to the high statistical fluc-
tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e↵ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di↵erent data vectors is done in this
study. Although we find for all analyses that x

abd5 outperforms
x

pct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di↵erent percentile choice. Actually,
the performance of x

pct depends on the correlation between its
di↵erent components. However, the x

pct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the x

cut fam-
ily is largely outperformed by x

abd. Thus, we conclude that x
abd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from x

cut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e↵ects is desired. Our study displays two
di↵erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
on trade-o↵ between the unappropriatenss of analytic estimators
and the uncertainty of density estimation.
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Fig. 8.⌦m-�8-wde
0 constraints using starlet with three scales. Each panel

represents the contours derived from marginalized likelihood. Black
stars are the input parameter values for the “observation”. As far as
wde

0 is concerned, the constraints are weak, but the degeneracies are
clear. Fluctuations on both lower panels are due to usage of the cop-
ula likelihood.

Fig. 9. ABC constraints on ⌦m, �8, and wde
0 using starlet. The dis-

tance D2 is used for this run. On each panel, the ABC posterior is
marginalized over one of the three parameters. Black stars are the in-
put cosmology.

the Gaussian case, however, constraints from D1 are tighter than
those from D2. This phenomenon is due to the o↵-diagonal ele-
ments of the covariance matrix. For non-compensated filters, the
cross-correlations between bins are much stronger, as shown by
Fig. 10. If these cross-correlations are ignored, the repeated peak

Table 3. Quality indicators for ⌦m-�8 constraints with likelihood.

Filter ✓ker [arcmin] or ↵ �⌃8 FoM

Gaussian ✓ker = 1.2 0.045 19.1
Gaussian ✓ker = 1.2, 2.4, 4.8 0.046 20.7

Starlet ✓ker = 2, 4, 8 0.046 23.4
Starlet ✓ker = 4, 8, 16 0.044 21.2
Starlet ✓ker = 2, 4, 8, 12, 16 0.045 24.8

MRLens ↵ = 0.05 0.046 16.2

Notes. All cases figured below use number counts on g peaks. The quan-
tity �⌃8 stands for the width of the contour, while the FoM is related to
the area. In our study, combining five scales of starlet yield the best
result in terms of FoM.

Table 4. Quality indicators for ⌦m-�8 constraints with PMC ABC.

Filter Constraints �⌃8 FoM

Gaussian Likelihood 0.046 20.7
Gaussian ABC, D1 0.043 16.3
Gaussian ABC, D2 0.059 11.7

Starlet Likelihood 0.054 23.4
Starlet ABC, D1 0.050 15.5
Starlet ABC, D2 0.054 15.7

Map tanh ABC, D1 0.037 19.4
Map tanh ABC, D2 0.043 15.5
MRLens Likelihood 0.046 16.2
MRLens ABC, D1 0.045 11.5
MRLens ABC, D2 0.045 12.5

Notes. The quantity �⌃8 stands for the width of the contour, while the
FoM is related to the area. ABC is used with two di↵erent distances
D1 and D2 respectively given by Eqs. (36) and (37). Here, we also put
values from likelihood constraints using the same scales in this table for
comparison. The kernel sizes for linear methods are defined in Table 2.

Fig. 10. Correlation coe�cient matrices under the input cosmology. Left

panel: Gaussian case with ✓ker = 1.2, 2.4, and 4.8 arcmin. Right panel:
starlet case with ✓ker = 2, 4, and 8 arcmin. Each of the 3⇥ 3 blocks cor-
responds to the correlations between two filter scales. With each block,
the S/N bins are [1, 1.5, 2, . . ., 5, +1[. The data vector by starlet is less
correlated.

counts in di↵erent bins are not properly accounted for. This over-
estimates the additional sensitivity to massive structures, and
therefore produces overly tight constraints. As shown in Fig. 10,
in the Gaussian case, adjacent filter scales show a 20–30% corre-
lation. The blurring of the o↵-diagonal stripes indicate a leakage
to neighboring S/N bins due to noise, and the fact that clusters
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Fig. 4. Distribution of evaluated parameter points on the ⌦m-�8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.
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for the estimations, where d is the dimension of x, W is the
Gaussian kernel, and hi = (4/3N)1/5�̂i. Note that the model pre-
diction xmod is nothing but the average over the realization set;
the inverse covariance matrix is unbiased (Hartlap et al. 2007) to
good accuracy (see also Sellentin & Heavens 2016); and Eq. (35)
is a kernel density estimation (KDE).

We evaluated the copula likelihoods, given by Eq. (31), on a
grid. The range of wde

0 is [–1.8, 0], with �wde
0 = 0.04. Concerning

⌦m and �8, only some particular values were chosen for eval-
uation in order to reduce the computing cost. This resulted in
816 points in the ⌦m-�8 plane, as displayed in Fig. 4, and the
total number of parameter sets was 37536. For each parameter
set, we carried out N = 400 realizations of our model, to es-
timate L using Eqs. (31)–(35). Each realization produced data
vectors for three cases: (1) the Gaussian kernel; (2) the starlet
kernel; (3) MRLens, so that the comparisons between cases are
based on the same stochasticity. The aperture mass was not in-
cluded here because of the time consuming convolution of the
unbinned shear catalog with the filter Q. The FDR ↵ of MRLens
was set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated  field.

Table 2. Definition of the data vector x for PMC ABC runs.

Filter ✓ker [arcmin] or ↵ Number of bins d

Gaussian ✓ker = 1.2, 2.4, 4.8 9 ⌫ bins 27
Starlet ✓ker = 2, 4, 8 9 ⌫ bins 27

Map tanh ✓ker = 2.125, 4.25, 8.5 9 ⌫ bins 27
MRLens ↵ = 0.05 6  bins 6

Notes. The 9 bins of ⌫ are [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, and the 6 bins of
 are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +1[. The symbol d is the total
dimension of x, and ↵ stands for the input value of FDR for MRLens.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian compu-
tation (ABC) technique. ABC bypasses the likelihood evalua-
tion to estimate directly the posterior by accept-reject sampling.
It is fast and robust, and has already had several applications
in astrophysics (Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Paper II; Killedar et al. 2016). Here, we use
the Population Monte Carlo ABC (PMC ABC) algorithm to con-
strain parameters. This algorithm adjusts the tolerance level iter-
atively, such that ABC posterior converges. A detailed descrip-
tion of the PMC ABC algorithm can be found in Sect. 6 of
Paper II.

We ran PMC ABC for four cases: the Gaussian kernel, the
starlet kernel, the aperture mass with the hyperbolic tangent
function, and MRLens with ↵ = 0.05. For the three first lin-
ear cases, the data vector x was composed of three scales. The
S/N bins of each scale were [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, which
result in 27 bins in total (Table 2). For MRLens, x was a 6-
bin  histogram, which is the same as for the analysis using the
likelihood.

Concerning the ABC parameters, we used 1500 particles in
the PMC process. The iteration stoped when the success ratio
of accept-reject processes fell below 1%. Finally, we tested two
distances. Between the sampled data vector x and the observed
one, xobs, we considered a simplified distance D1 and a fully
correlated one D2, which are respectively defined as

D1
⇣
x, xobs

⌘
⌘

vuutX

i

⇣
xi � x

obs
i

⌘2

Cii

, (36)

D2
⇣
x, xobs

⌘
⌘

q�
x � xobs�T C�1 �

x � xobs�, (37)

where Cii and C�1 are now independent from cosmology,
estimated using Eqs. (33) and (34) under (⌦m,�8, wde

0 ) =
(0.28, 0.82,�0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also ran ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter ⌃8.
Here, we define ⌃8 di↵erently from the literature:

⌃8 ⌘
 
⌦m + �

1 � ↵

!1�↵ ✓�8

↵

◆↵
· (38)

A88, page 8 of 14

correlated data  
points

difference between 
metrics

smaller larger
is better

contour 
width   area



Martin KilbingerWL: higher-order stats. / 45

Code(s)

44

linc.tw Chieh-An Lin (CEA Saclay)

Public code

Fast weak-lensing peak counts modelling in C
with PMC ABC

Camelus@GitHub

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 B 12

https://github.com/Linc-tw/camelus

nicaea: 
NumerIcal Cosmology And 

lEnsing cAlculations

cosmostat.org/software/nicaea

uses

www2.iap.fr/users/kilbinge/CosmoPMC

CosmoPMC

part of
implements?

http://cosmostat.org/software/nicaea
http://www2.iap.fr/users/kilbinge/CosmoPMC
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• Higher-order statistics in WL tighten constraints  
in CFHTLenS 

• WL peak counts new, promising non-Gaussian probe for cosmology 
• ABC more and more popular sampling method in  

astrophysics and cosmology 
• Cameron & Pettitt (2012): galaxy morphology 
• Weyant, Schafer, & Wood-Vasey (2013): SNIa 
• Ishida et al. (2015; cosmoABC): galaxy cluster counts 
• Akeret et al. (2015): image simulations 
• Lin & MK (2015b; camelus): WL peak counts 
• Killedar et al. (2015): strong lensing 
• Hahn et al. (2016): HOD 
• Jennings & Madigan (2017; astroABC): SNIa 
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8.5 Results

Figure 8.9: Correlation coe�cient matrices under the input cosmology. Left panel: the Gaussian case with
◊ker = 1.2, 2.4, and 4.8 arcmin. Right panel: the starlet case with ◊ker = 2, 4, and 8 arcmin. Each of the 3◊3
blocks corresponds to the correlations between two filter scales. With each block, the S/N bins are [1, 1.5, 2,
. . ., 5, +Œ[. The data vector by starlet is less correlated.

additional sensitivity to massive structures, and therefore produces overly tight constraints.
As shown in Fig. 8.9, in the Gaussian case, adjacent filter scales show a 20–30% correlation.
The blurring of the o�-diagonal stripes indicate a leakage to neighboring S/N bins due to
noise, and the fact that clusters produce WL peaks with di�erent S/N for di�erent scales.
On the contrary, in the case of the starlet, except for the highest S/N bin there are negligible
correlations between di�erent scales.

Table 8.5 shows the ABC constraints from both the aperture mass and the starlet. We
find that the FoM are close. However, in Fig. 8.10, we see that the contours from the
aperture mass is shifted toward high-�m regions. The explanation for this shift is once again
the stochasticity. We simulated another observation data vector for Map, and the maximum-
likelihood point for di�erent methods do not coincide.

From Table 8.5, one can see that the di�erence between MRLens and linear filters using
ABC is similar to using the likelihood. This suggests once again that the combined strategy
leads to less tight constraints than the separated strategy. Note that we also try to adjust –

and run PMC ABC. However, without modifying the Ÿ bin choice, the resulting constraints
do not di�er substantially from – = 0.05.

Finally, we show the likelihood and ABC constraint contours for the Gaussian and starlet
cases in Fig. 8.11. It turns out that ABC contours are systematically larger in the high-�m,
low-‡8 region. This phenomenon was not observed previously. We speculate that by including
a third parameter w

de
0 the contour becomes less precise, and ABC might be more sensitive to

this e�ect. Note also that KDE is a biased estimator of posteriors. It smooths the posterior
and makes contours broader. Nevertheless, the ABC and likelihood constraints agree with
each other. To be free from the bias, a possible alternative is to map the samples to a Gaussian
distribution via some nonlinear mapping techniques (Schuhmann et al. 2016).
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Chapter 9 — Data applications

Figure 9.1: Illustrations of all eight patches (blue frames) from CFHTLenS. The four panels represent re-
spectively the W1, W2, W3, and W4 fields. Red points are the center of patches. Unmasked areas are showed
in yellow.

KiDS DR1/2

KiDS DR1/DR2 (de Jong et al. 2015) contains 109 tiles of 1 deg2 all near the equator.
Concerning the lensing catalogue, KiDS uses the same algorithm as CFHTLenS. We select
sources following the criteria suggested by Kuijken et al. (2015): MAN_MASK = 0, 0.005 < Z_B
< 1.2, weight > 0, and SNratio > 0. In addition to these, due to calibration limits, we
include also c1_best > ≠50 and c2_best > ≠50 to cut out values of -99 (Kuijken et al.
2015). The final selection includes 2.4 million galaxies distributed on an unmasked area of 75
deg2. The raw density is 8.87 arcmin≠2.

Regarding the fact that (1) the KiDS data are more contaminated by masks and (2) some
1-deg2 tiles are missing from a contiguous region, we only retain a small part of the whole
data set. This is organized as four patches with a total area of 41 deg2 (Fig. 9.2). After

166 PhD thesis of Chieh-An Lin

9.1 Data descriptions

Figure 9.2: Illustrations of all four patches (blue frames) from KiDS DR1/2. Three of them are taken from
the G09 field. The rest is taken from the G12 field. Red points are the center of patches. Unmasked areas are
showed in yellow.

cutting out edges, the e�ective area is 30 deg2.

DES SV

The DES SV data (Dark Energy Survey Collaboration et al. 2016; Jarvis et al. 2016) contains
a large field named SPT-E and some other small fields. Here we only focus on the SPT-E
field, which covers an unmasked area of 138 deg2. We use the ngmix catalogue provided by
the collaboration. The flag NGMIX_FLAG = 0, which is a combination of several flags, validates
that a source has a good ngmix measurement ˘2. An additional criterion is the redshift
information, with 0.3 < MEAN_PHOTOZ < 1.3, suggested by Kacprzak et al. (2016). The total

˘2See http://des.ncsa.illinois.edu/.
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Figure 9.3: Illustrations of all five patches (blue frames) from DES SV. Red points are the center of patches.
Unmasked areas are showed in yellow.

number of galaxies is 3.3 millions, with raw density 6.63 arcmin2.
In this study, the SPT-E field is divided into five patches (Fig. 9.3). The resulting

e�ective area is 115 deg2.

9.2 Methodology

The analysis is processed with the same method as described in Sect. 8.4.2, with Mmin =
2 ◊ 1012

M§. Each survey is modelled separately with the corresponding parameters such as
ngal, ‡‘, ◊pix, filtering scales, and the source redshift distribution (see Table 9.1). At the end,
three peak histograms are joined. The details are described in the following paragraphs.

Source redshift distribution

The redshift distribution of the sources is assumed to be a general gamma distribution:

p(z) Ã
3

z

z0

4–gal
exp

A

≠
3

z

z0

4—gal
B

, (9.1)

where the normalization is computed for the interval [zmin, zmax]. For each survey, zmin and
zmax are given by the suggested flags. Then, we fit –gal, —gal, and z0 to the redshift distribution
of the catalogues.
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9.3 Preliminary results

Figure 9.4: Correlation matrix from the data vector defined in this study. The components are very weakly
correlated with each other.

Parameter sampling

We only perform the ABC analysis in this chapter. Two runs have been carried out. The first
focuses on three free parameters, �m, ‡8, and w

de
0 . The second one includes two additional

parameters, c0 and —, which define the halo M -c relation (Eq. 3.93).
Concerning the configuration of ABC, we take a flat prior in the studied parameter space.

The number of particles is 2400. The shuto� parameter is set to 1%. The distance is the same
as Eq. (8.16), accounting for the full correlation.

9.3 Preliminary results

Figure 9.5 shows the primary results that we obtain from the joint data constraints. In this
figure, we only focus on �m and ‡8 from the run with three free parameters. As ‘ decreases, the
contour size reduces. The constraints from the last iteration are shown in Fig. 9.6. The orange
curve shows the best power-law fit (i.e. best �8 fit, Eq. 8.17) between �m and ‡8. It indicates
a very good agreement with the Planck cosmology (�m = 0.308±0.012, ‡8 = 0.8149±0.0093).
The contour is consistent with constraints from other lensing surveys using two-point statistics
(CFHTLenS: Kilbinger et al. 2013, Joudaki et al. 2016; KiDS: Hildebrandt et al. 2016; DES:
The Dark Energy Survey Collaboration et al. 2015) or peaks (CFHTLenS: Liu J. et al. 2015a;
CFHT Stripe 82: Liu X. et al. 2015b; DES: Kacprzak et al. 2016). However, since our results
are only preliminary, the comparisons are not shown. Here, we only give the characteristics
of the preliminary constraints: the error on the orange curve is ��8 = 0.13, obtained by the
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