# The Shape of the Inner Milky Way in Stars and Dark Matter

#### Chris Wegg with Ortwin Gerhard, Matthieu Portail and Marie Bieth

26/6/2018



 $(250 \mathrm{km/s})^2$ 

Sun

# Outline

- Shape of the bulge in stars
- Shape of the bar in stars
- Making dynamical models of the inner Galaxy
- •Using the kinematics of the stellar halo to measure the dark matter shape



### Classical Bulge vs Box/Peanut Bulge



Accretion/mergers vs disk instability formation

# **Box/Peanut Bulges**

- Inner parts of bars External galaxies & Simulations
- Formed by rearranging a kinematically cold disk into a bar. Central part subsequently buckles.







# The Galaxies Bulge: Classical vs Box/Peanut

- Surprisingly difficult to resolve argument persisted until recently
- Traditional evidence for B/P bulge:
  - Boxy shape in e.g. COBE images
  - Gas dynamics
- Traditional for classical bulge:
  - Metallicity gradient in the bulge
  - Photometrically apparently very old population
- Recent developments:
  - Metallicity gradients in the disk are mapped into gradients in the bulge (Martinez-Valpuesta et al 2013, Debatista et al 2016)
  - Microlensed stars show range of ages (Bensby et al 2017)
  - Bulge cylindrically rotates (Kunder et al 2012)
  - We now know the shape of the bar and bulge





### Red clump stars

- Helium Core Burning Stars
- Standard Candle with:  $\sigma(K_s) \sim 0.17$
- Given bulge MDF 90% of stars will become RCGs
   ⇒ they are good tracers of the underlying stellar
   distribution



- Used by Stanek ('94 & '97) to show bulge hosts triaxial bar-like structure
- X-shape by McWilliam & Zoccali (2010), Nataf et al. (2010), Saito et al. (2011), Ness et al. (2012)

# The Structure of the Inner Galaxy



### Line-of-sight density estimation



- Fit background to region outside Bulge's RC stars
- Statistically identified red clump stars are convolution of line-ofsight density with luminosity function.
- Deconvolve to estimate density using a slight variation on Lucy-Richardson algorithm

# The Structure of the Inner Galaxy





Shape of the bulge: **CW** & Gerhard (2013)

Shape of the bar outside the bulge: **CW**, Gerhard & Portail (2015)





Structure of the Galactic Bar at  $|I| > 10^{\circ}$ 

### Motivations for studying the Long Bar

- The bar outside the bulge called the *long bar* was found by Hammersley et al. (1994).
- But we still have very few details or understanding!
- Best investigation below. Long bar seems misaligned to bulge. Do we have two bars in the Milky Way?
- Seems unlikely:
  - Theoretically: Strong mutual torques
  - Observationally: External Galaxies
  - Philosophically: Connected 3D bulge+long bar arises naturally in simulations





#### Data Sources



 Signal-to-noise of RCGs is smaller *i.e.* background of foreground disk stars is higher, number of RCGs lower.
 ⇒ Can't field-by-field non-parametrically estimate density.

### The Structure of the Inner Galaxy



#### Parametric model tells us:

- Long bar angle is (28-33)° Aligned with the bulge!
- Bar half length is 5.0±0.2 kpc.

Shape of the bulge: **CW** & Gerhard (2013) Shape of the bar outside the bulge: **CW**, Gerhard & Portail (2015)

### The Structure of the Inner Galaxy



- Bulge looks like a typical Box/Peanut bulge.
- Looks just like other peanut bulges side-on.
- Shape naturally similar to N-body simulations of bars where the central part buckles into a B/P-bulge leaving a thinner 'long bar' outside.
- Most of the bulge evolved secularly from the disk, there can only a subdominant classical bulge

Shape of the bulge: **CW** & Gerhard (2013) Shape of the bar outside the bulge: **CW**, Gerhard & Portail (2015)



Application to Bulge: Portail, CW & Gerhard (2015) Application to Entire Inner Galaxy: Portail, Gehard, CW & Ness (2017)

![](_page_18_Figure_1.jpeg)

Models fitted to a range of data on the inner Galaxy:

- Density maps: Bulge
- Star counts: Bar
- Radial Velocities from spectroscopic surveys: BRAVA & ARGOS

Portail, **CW**, Gehard & Ness MNRAS (2015) Portail, Gehard, **CW** & Ness MNRAS (2017)

#### Fit to BRAVA radial velocities in the bulge

![](_page_19_Figure_2.jpeg)

Reproduce quantitatively:

• The cylindrical rotation

• The dispersion profiles

Portail, Gehard, CW & Ness MNRAS (2017)

![](_page_20_Figure_1.jpeg)

Application to Bulge: Portail, CW & Gerhard (2015) Application to Entire Inner Galaxy: Portail, Gehard, CW & Ness (2017)

### IMF in the Inner Milky Way

![](_page_21_Figure_1.jpeg)

- The time axis stretch of the curves is called the timescale
- It depends on lens mass, but also lens geometry and kinematics
- Model provides these statistically ⇒ Can statistically measure lens mass function and infer IMF

### The IMF of the Inner Galaxy

- IMF in the inner galaxy very similar to the local IMF. Indistinguishable because of the uncertain binary fraction.
- These stars lie 2kpc from the galactic centre and are therefore mostly 10Gyr old and mostly formed on a short a-enhanced timescale of formation.
- Therefore places stringent constraints on star formation models where the IMF varies according to the properties of the the parent molecular gas cloud.

![](_page_22_Figure_4.jpeg)

 $M_c = (0.17 \pm 0.02|_{\text{stat}} \pm 0.01|_{\text{sys}})M_{\odot}$  $\sigma_m = 0.49 \pm 0.07|_{\text{stat}} \pm 0.06|_{\text{sys}}$ 

**CW**, Gerhard & Portail ApJL, 843, 1 (2017)

### A New Era in Milky Way Science

Driven by data from GAIA in space

![](_page_23_Picture_2.jpeg)

gaia

DR2 released in April 2018 contains astrometry of ~10<sup>9</sup> stars Together with complementary ground based surveys

![](_page_23_Picture_6.jpeg)

![](_page_23_Picture_7.jpeg)

### A New Era in Milky Way Science

Proper motion errors < 5km/s

![](_page_24_Picture_2.jpeg)

View From Galactic Pole

![](_page_24_Picture_4.jpeg)

- Gaia will detect stars over a large fraction of the Galactic disk
- But view is obscured in the Galactic plane
- Gaia's horizon for accurate parallaxes lies in front of the Galactic centre
- But we can still measure very accurate proper motions – can make exquisite dynamical models

### A New Era in Milky Way Science

Proper motion errors < 5km/s

![](_page_25_Picture_2.jpeg)

View From Galactic Pole

![](_page_25_Picture_4.jpeg)

- Gaia has detected stars over a large fraction of the Galactic disk
- But view is obscured in the Galactic plane
- Gaia's horizon for accurate parallaxes lies in front of the Galactic centre
- But we can still measure very accurate proper motions – can make exquisite dynamical models

The Gravitational Force Field of the Galaxy Measured From the Kinematics of RR Lyrae in Gaia DR2

#### **Overview:**

- Kinematics of the inner halo
- Force field from Jeans Equations
- Implications for dark matter

![](_page_26_Figure_5.jpeg)

Chris Wegg

Ortwin Gerhard and Marie Bieth

Submitted to MNRAS and arXiv (will appear tomorrow morning)

### Halo RR Lyrae in Gaia DR2

- Use catalogue of RR Lyrae produced by Sesar *et al.* (2017) using Pan-Starrs Зп survey
- We make sample of RR Lyrae stars with galactocentric radii between 1.5kpc and 20kpc, avoiding the Galactic plane
- About 16,000 RR Lyrae over this volume
- Each has a distance to about 3%
- Cross matching to Gaia DR2 we get an accurate transverse velocity for almost all of them

![](_page_27_Figure_6.jpeg)

We use 9 bins in log r and 5 bins in  $\theta$ 

### Halo RR Lyrae in Gaia DR2

- RR Lyrae are strongly centrally concentrated with  $\rho \propto r^{-3}$
- Mildly flattened with qpprox 0.7
- But structure in detail is complicated - both flattening and density gradient vary with radius
- Making parametric models that fit this data will be difficult, so we make *non-parametric models*

![](_page_28_Figure_5.jpeg)

- We have transverse velocities, but no radial velocities i.e. we have measurements of only 5D of the 6D (x,v) phase space
- Each measured transverse velocity is the projection of the (unknown real velocity):

$$\mathbf{p} = \mathbf{A}.\mathbf{v}$$

- A is a projection matrix so we can't invert this...
- But if we take the mean in one of our bins, and assume that positions and velocities are uncorrelated we can!

$$\langle \mathbf{p} \rangle = \langle \mathbf{A} \rangle . \langle \mathbf{v} \rangle \quad \rightarrow \quad \langle \mathbf{v} \rangle = \langle \mathbf{A} \rangle^{-1} . \langle \mathbf{p} \rangle$$

- $\bullet$  Only tricky part is finding A since our assumption is that position and velocity in  $\ensuremath{\textit{spherical coordinates}}$  is uncorrelated
- Can construct similar estimators for dispersions

• Concrete example – a bin of stars with constant  $(r, \theta)$  near the Galactic plane

![](_page_30_Figure_2.jpeg)

• Because in each bin of  $(r, \theta)$  stars with different  $\phi$  have projections of the velocity  $(v_r, v_\theta, v_\phi)$  we can measure the 3D velocity distribution

- What do the reconstructed kinematics look like?
- $\bullet$  Velocity dispersion tensor  $\sigma$  like the covariance
- $\sigma_{rr} > \sigma_{\theta\theta} \approx \sigma_{\phi\phi}$
- $\sigma_{r\theta}$  Small
  - But what does this mean?

![](_page_31_Figure_6.jpeg)

- The inner halo is strongly radially anisotropic
- The velocity ellipsoid is nearly aligned in to spherical coordinates everywhere

![](_page_32_Figure_3.jpeg)

![](_page_32_Figure_4.jpeg)

- We knew that the halo near the the sun is rotating (e.g. Beers et al 2012, Kafle et al 2017, Helmi et al 2018)
- The inner halo is rotating even faster

![](_page_33_Figure_3.jpeg)

 The rotation could reflect early formation history of the Milky Way, but there is also significant angular momentum transfer from the bar

### The Gravitational Force Field of The Milky Way

- We have kinematics in 3D across a large fraction of the inner Galaxy. We can put these into the Jeans Equations to learn about the forces!
- If everything was isotropic things would be easy

$$\frac{1}{\rho} \frac{\partial \rho \sigma^2}{\partial r} = -F_r$$

- But galaxies aren't isotropic, and so there's extra terms that we can't usually measure
- But the Milky Way is different
- Equations are long, but straightforward... and we have all the kinematic measurements we need from Gaia

$$\frac{\partial \rho \langle v_r^2 \rangle}{\partial r} + \frac{1}{r} \frac{\partial \rho \langle v_r v_\theta \rangle}{\partial \theta} + \frac{\rho}{r} \left[ 2 \langle v_r^2 \rangle - \langle v_\theta^2 \rangle - \langle v_\phi^2 \rangle + \langle v_r v_\theta \rangle \cot \theta \right] = -\rho \langle F_r \rangle$$

### The Gravitational Force Field of The Milky Way

- Each arrow is a force measurement
- The pink ellipses have show the 1 sigma errors *ie* each arrow head can lie anywhere within the ellipse
- We can already see that the forces in the Milky Way are mostly radial

![](_page_35_Figure_4.jpeg)

### The Gravitational Force Field of The Milky Way

 Can subtract the baryonic part to see the contribution from the dark matter

![](_page_36_Figure_2.jpeg)

 For the baryonic part uses the made-to-measure model of the inner Galaxy with exponential star/gas disks outside

### The Shape of the Milky Way's Dark Matter Halo

• If we assume that the dark matter potential is ellipsoidal:

$$\Phi_{\rm dm}(m) = \Phi_{\rm dm} \left( \left[ R^2 + z^2 / q_{\Phi}^2 \right]^{1/2} \right) \quad \text{and}$$
$$\frac{\partial \Phi_{\rm dm}}{\partial \log m} = V_c^2$$

- We can use the forces to measure the flattening  $q_{\Phi}$  and circular velocity  $V_c$
- For the first time we have the profile of the flattening of the dark matter in the Milky Way
- Consistent with spherical:

 $q_{\Phi} = 1.03 \pm 0.08$ 

![](_page_37_Figure_7.jpeg)

### The Shape of the Milky Way's Dark Matter Halo

- We have also fit parametric dark matter models to the force field
- A range of dark matter profiles fit the data, but all agree on the flattening

 $\overline{q_{\rho}} = 1.00 \pm 0.09$ 

•  $q_{
ho} < 0.8$  is ruled out at 99% significance

![](_page_38_Figure_5.jpeg)

### The Shape of the Milky Way's Dark Matter Halo

#### What does it mean?

- Our flattening value of  $q_{\rho}=1.00\pm0.09\,$  agrees with two other recent measurements of a near spherical halo
- Modelling streams in the halo Bovy (2016) finds  $q_
  ho=1.05\pm0.14$
- Modelling ~100 globular clusters with 6D velocities Posti & Helmi (2018) find  $q_{\rho}=1.30\pm0.25$
- Such a spherical halo appears in tension with current LCDM simulations:
  - Dark Matter only simulations predict  $\langle q_{
    ho} 
    angle pprox 0.5$
  - Baryons increase this, but in most simulations only by 0.1-0.3 e.g. Kazantzidis+04/10
  - Could be a very exciting tension clear example of near-field cosmology

![](_page_40_Figure_0.jpeg)

External Galaxies Galaxy form? B/P-bulge and bar ⇒ secular evolution shaped the inner

MW

How did our

Milky Way

Research

Is Physics Correctly Modelled?

DM is spherical inside 20kpc

Simulations

![](_page_40_Picture_5.jpeg)