

Actions

Clues on radio AGN feedback at high-redshift from deep radio surveys

2018 MNRAS, 481, 4971

Ivan Delvecchio

Marie Curie Fellow (CEA-Saclay) <u>ivan.delvecchio@cea.fr</u>

On behalf of:

V. Smolčić, G. Zamorani, D.J. Rosario, M. Bondi, S. Marchesi, T. Miyaji, M. Novak, M.T. Sargent, D.M. Alexander, J. Delhaize, E. Daddi & the COSMOS team

• Why do we care about AGN?

• Why do we care about AGN?

• The deepest radio view of AGN in the COSMOS field: the VLA-COSMOS 3 GHz Large Project

• Why do we care about AGN?

• The deepest radio view of AGN in the COSMOS field: the VLA-COSMOS 3 GHz Large Project

• Radio AGN since z~4: does AGN feedback "quench" star formation?

• Why do we care about AGN?

• The deepest radio view of AGN in the COSMOS field: the VLA-COSMOS 3 GHz Large Project

• Radio AGN since z~4: does AGN feedback "quench" star formation?

Implications and summary

Super massive black hole (SMBH): $Mbh = 10^6 - 10^{10} Msun$

 Log R/R_s
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 Log R/pc
 -5
 -4
 -3
 -2
 -1
 0
 1
 2
 3
 4

Credit: NASA/CXC/M.Weiss

Credit: NASA/CXC/M.Weiss

- Super massive black hole (SMBH): $Mbh = 10^6 10^{10} Msun$
- Accretion disc

- Super massive black hole (SMBH): $Mbh = 10^6 10^{10} Msun$
- Accretion disc + broad line region (BLR)

- Super massive black hole (SMBH): $Mbh = 10^6 10^{10} Msun$
- Accretion disc + broad line region (BLR) and narrow line region (NLR)
- Dusty torus of gas and dust (= AGN obscuration)

- Super massive black hole (SMBH): $Mbh = 10^6 10^{10} Msun$
- Accretion disc + broad line region (BLR) and narrow line region (NLR)
- Dusty torus of gas and dust (= AGN obscuration)

- Super massive black hole (SMBH): $Mbh = 10^6 10^{10} Msun$
- Accretion disc + broad line region (BLR) and narrow line region (NLR)
- Dusty torus of gas and dust (= AGN obscuration) + Radio jets and lobes

Active Galactic Nuclei (AGN)

0,001 pc

Active Galactic Nuclei (AGN)

0,001 pc

Active Galactic Nuclei (AGN) 0,001 pc 1-10 pc 10-100 kpc x 10000 **MIND THE GAP!** SMBHs are **millions of times** smaller x 1000 than the galaxies they live in!

Galaxies and SMBHs know each other

Gultekin et al. (2009)

 Black hole masses correlate in nearby spheroidals with galaxy bulge properties: M_{BH} – σ relation (rms ~ 0.3 dex)

Galaxies and SMBHs know each other

Gultekin et al. (2009)

Madau & Dickinson (2014)

- Black hole masses correlate in nearby spheroidals with galaxy bulge properties: $M_{bh} - \sigma$ relation (rms ~ 0.3 dex)
- Cosmic star formation history and black hole accretion history closely trace each other.

The need for AGN feedback

Early phase

Galaxy mergers / Stochastic processes

The need for AGN feedback

Early phase

- Star forming galaxy
- X-ray / optical AGN

Galaxy mergers / Stochastic processes Gas inflow: SMBH becomes an AGN

"Radiative mode"

The need for AGN feedback

The need for AGN feedback

Open questions:

How are radio jets formed?
Why are jets only seen in a small fraction of galaxies?
How does AGN feedback change across cosmic time?

Hickox et al. (2009)

Radio AGN at z<1 are weakly accreting SMBHs hosted within massive and passive galaxies

 $\lambda_{EDD} << 1\%$

7729 radio sources selected at 3 GHz (10 cm) at 0.75" resolution, with optical/NIR counterpart in the COSMOS2015 catalogue (Smolčić, ID et al. 2017b).

L_{EDD} << 1%

Press release on A&A special issue: <u>http://cosmos.astro.caltech.edu/news/52</u>

- 7729 radio sources selected at 3 GHz (10 cm) at 0.75" resolution, with optical/NIR counterpart in the COSMOS2015 catalogue (Smolčić, ID et al. 2017b).
- Press release on A&A special issue: http://cosmos.astro.caltech.edu/news/52

Radio emission:

7729 radio sources selected at 3 GHz (10 cm) at 0.75" resolution, with optical/NIR counterpart in the COSMOS2015 catalogue (Smolčić, ID et al. 2017b).

-EDD << 1%

Press release on A&A special issue: <u>http://cosmos.astro.caltech.edu/news/52</u>

> 1800 radio AGN: identified via a (>2σ) 4x excess in radio emission, relative to their IR-based star formation rate (Delhaize et al. 2017)

Radio AGN in the COSMOS field

L_{1.4} AGN λ_{EDD} << 1%

Radio AGN in the COSMOS field

Are Radio AGN radiatively inefficient SMBHs? Does it vary with L1.4 and z?

ld

Radio AGN in the COSMOS field

Are Radio AGN radiatively inefficient SMBHs? Does it vary with L_{1.4} and z?

Selecting a L1.4-complete subset of
 >1200 radio-excess AGN out to z~4

L_{1.4}^{AON} λ_{EDD} << 1%

Radio AGN in the COSMOS field

Are Radio AGN radiatively inefficient SMBHs? Does it vary with $L_{1.4}$ and z?

- Selecting a L1.4-complete subset of
 >1200 radio-excess AGN out to z~4
- About 12% (906/7729) of them is detected with deep *Chandra* imaging (Civano et al. 2016; Marchesi et al. 2016)

-L₁₄^{AGN} λ_{EDD} << 1%

Radio AGN in the COSMOS field

Are Radio AGN radiatively inefficient SMBHs? Does it vary with L_{1.4} and z?

- Selecting a L1.4-complete subset of
 >1200 radio-excess AGN out to z~4
- About 12% (906/7729) of them is detected with deep *Chandra* imaging (Civano et al. 2016; Marchesi et al. 2016)
- X-ray stacking of radio AGN (CSTACK)*

-L₁₄^{AGN} λ_{EDD} << 1%

Radio AGN in the COSMOS field

Are Radio AGN radiatively inefficient SMBHs? Does it vary with L_{1.4} and z?

- Selecting a L1.4-complete subset of
 >1200 radio-excess AGN out to z~4
- About 12% (906/7729) of them is detected with deep *Chandra* imaging (Civano et al. 2016; Marchesi et al. 2016)
- X-ray stacking of radio AGN (CSTACK)*

<Lx> → specific BH accretion rate (s-BHAR ~ Lx/M*)

s-BHAR> Section (if fixed M*/MBH)

Does it imply that "jet-mode" feedback is less efficient at higher redshift?

Radio AGN hosts were predominantly star forming at z>1.5
 Does it imply that "jet-mode" feedback is less efficient at higher redshift?
 A control sample of non-AGN galaxies (matched in M*-z) shows similar %SF hosts and similar redshift evolution

Radio AGN hosts were predominantly star forming at z>1.5
 Does it imply that "jet-mode" feedback is less efficient at higher redshift?
 A control sample of non-AGN galaxies (matched in M*-z) shows similar %SF hosts and similar redshift evolution

The overall galaxy population becomes more SF with z, while the possible presence of a *radio AGN does not seem to influence its evolution*.

Red and passive galaxy

Weakly accreting SMBH ($\lambda_{EDD} \ll 1\%$)

RADIO (AND NON) AGN HOST

RADIO AGN

Blue and highly star-forming galaxy

Highly accreting SMBH ($\lambda_{EDD} > 1\%$)

SKA: towards a full census of radio AGN

Supplementary slides

Overcoming host-galaxy dilution: VLBI interferometry

Take-home messages

- All galaxies become typically bluer with redshift, incuding radio AGN hosts
- The qualitatively similar trends between s-BHAR and % SF hosts are plausible if cold gas drives radio AGN activity
- No correlation between X-ray and radio emission processes might explain the non-trend between s-BHAR and L1.4
- Radio jet emission at z>1.5 traces also radiative AGN activity (**High-Kinetic mode**?)

Literature: s-BHAR of radio AGN

- Best & Heckman (2012) used multiwavelength information to distinguish radio loud AGN between HERGs & LERGs
- Padovani et al. (2015) used deep
 VLA 1.4 GHz data in the E-CDFS to identify radio AGN down to the
 "radio quiet" regime
- SMBHs accretion rates are mostly limits (shaded areas) due to the large fraction of non-detections.

Average Lx of radio-excess AGN

- X-ray stacking of radio-excess AGN within each L1.4-z bin (CSTACK, T.Miyaji)
- Comparison with X-ray emission expected from star formation (Symeonidis et al. 2014; Mineo et al. 2014)

The stacked <Lx> is mostly arising from AGN activity