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Implications and summary
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Anatomy of an AGN
● Super massive black hole (SMBH): Mbh = 106 – 1010 Msun

● Accretion disc + broad line region (BLR)
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Anatomy of an AGN
● Super massive black hole (SMBH): Mbh = 106 – 1010 Msun

● Accretion disc + broad line region (BLR) and narrow line region (NLR)

● Dusty torus of gas and dust (= AGN obscuration) + Radio jets and lobes
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Relativistic jets
and radio lobes 
on kpc scales
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MIND THE GAP!
SMBHs are millions of times smaller 

than the galaxies they live in!
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Gultekin et al. (2009)

 Black hole masses correlate in
 nearby spheroidals with galaxy
 bulge properties:
Mbh – σ relation (rms ~ 0.3 dex)

         Star formation history

AGN (x3300) – IR (Delvecchio+2014) 
AGN (x3300) – Opt/X-ray (Shankar+2009)
AGN (x3300) – X-ray (Aird+2010) 

Madau & Dickinson (2014)

Cosmic star formation history and 
black hole accretion history closely 
trace each other.

Galaxies and SMBHs know each otherGalaxies and SMBHs know each other
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Early phase

Open questions:
How are radio jets formed?

Why are jets only seen in a small fraction of galaxies?
How does AGN feedback change across cosmic time?
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More massive

Radio (Radio (brightbright) AGN at z<1 are special) AGN at z<1 are special

Radio AGN at z<1 are weakly accreting SMBHs hosted within 
massive and passive galaxies
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STAR FORMATION AGN

Radio emission:



  

Going deeper and further back in time:Going deeper and further back in time:
The VLA-COSMOS 3 GHz Large ProjectThe VLA-COSMOS 3 GHz Large Project

7729 radio sources selected at 3 GHz (10 
cm) at 0.75‘‘ resolution, with optical/NIR 
counterpart in the COSMOS2015 
catalogue (Smolčić, ID et al. 2017b).

Press release on A&A special issue: 
http://cosmos.astro.caltech.edu/news/52

rms ~ 2.3 uJy/beam

PI: V. SmolčićV. Smolčić

> 1800 radio AGN: identified via a 
(>2σ) 4x excess in radio emission, 

relative to their IR-based star formation 
rate (Delhaize et al. 2017)
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Selecting a L1.4-complete subset of  
>1200 radio-excess AGN out to z~4

About 12% (906/7729) of them is 
detected with deep Chandra imaging 
(Civano et al. 2016; Marchesi et al. 2016)

X-ray stacking of radio AGN (CSTACK)*

<Lx>                specific BH accretion rate 
(s-BHAR ~ Lx/M*)

<s-BHAR>  <Edd. Ratio>         
                      (if fixed M*/MBH) 

                                   * http://lambic.astrosen.unam.mx/cstack/
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Are Radio AGN radiatively inefficient SMBHs? Does it vary with L1.4 and z?
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The average s-BHAR increases by a factor of 10 from z~0.7 to z~3.5

The Edd ratio exceeds 1% (=radiatively efficient BH accretion) at z>1.5 (Aird et al. 2018)

SMBH accretion                       cold gas supply 
(star forming content)

Saintonge et al. (2012)

ffgasgas

Average s-BHAR as a f(LAverage s-BHAR as a f(L1.4,1.4, z) z)



  

fSF = 

(NUV-r) / (r-J) locus to identify blue 
(=star forming) radio AGN hosts
(Ilbert et al. 2013; Davidzon et al. 2017)

# SF Radio AGN hosts
# Radio AGN hosts

(proxy for star-forming content)

Star formation in radio AGN hostsStar formation in radio AGN hosts
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  The overall galaxy population becomes more SF with z, while the 
possible presence of a radio AGN does not seem to influence its evolution.

 Radio AGN hosts were predominantly star forming at z>1.5 
 Does it imply that "jet-mode'' feedback is less efficient at higher redshift? 
 A control sample of non-AGN galaxies (matched in M*-z) shows similar 

%SF hosts and similar redshift evolution
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SKA: towards a full census of radio AGNSKA: towards a full census of radio AGN

Overcoming the host-galaxy dilution
Pin down the AGN jet position at mas 
resolution (few pc)

?Radio AGN washed 
out by star formation
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Overcoming host-galaxy dilution:Overcoming host-galaxy dilution:
VLBIVLBI interferometry interferometry

Herrera Ruiz et al. (2016)

10mas

(Courtesy of E. Middleberg and N. Herrera Ruiz)

  (PI: E. Middleberg)(PI: E. Middleberg)



  

How do How do radio AGNradio AGN hosts evolve? hosts evolve?

The average s-BHAR of blue radio AGN hosts is systematically (>3x) higher 
than that of red radio AGN hosts, at fixed L1.4 and z



  

Take-home messagesTake-home messages
Merloni & Heinz (2008)

 All galaxies become typically bluer with 
 redshift, incuding radio AGN hosts

 The qualitatively similar trends between
 s-BHAR and % SF hosts are plausible  
 if cold gas drives radio AGN activity

 No correlation between X-ray and radio     
   emission processes might explain the 

 non-trend between s-BHAR and L1.4

  Radio jet emission at z>1.5 traces also 
  radiative AGN activity (High-Kinetic 
  mode?)



  

sBHAR of red vs blue radio AGN

The average s-BHAR is significantly higher in blue radio AGN hosts, at fixed L1.4 and z



Best & Heckman (2012) used multi-
wavelength information to 
distinguish radio loud AGN between 
HERGs & LERGs

Padovani et al. (2015) used deep 
VLA 1.4 GHz data in the E-CDFS to 
identify radio AGN down to the 
''radio quiet'' regime

SMBHs accretion rates are mostly 
limits (shaded areas) due to the 
large fraction of non-detections.

Literature: s-BHAR of radio AGNLiterature: s-BHAR of radio AGN



  

Average Lx of radio-excess AGNAverage Lx of radio-excess AGN

The stacked <Lx> is mostly 
arising from AGN activity

X-ray stacking of radio-excess AGN 
within each L1.4-z bin (CSTACK, 
T.Miyaji)

Comparison with X-ray emission 
expected from star formation 
(Symeonidis et al. 2014; Mineo et al. 
2014)
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