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Observations and simulations are limited (/’ﬂ

Astrophysical observations are limited by the
spatial resolution of our detectors and also the
frequency or speed with which some
phenomena occur.

(left) AM Herculis polar star, photographed in the UV range, by GALEX, CIT

(right) Black hole at the centre of Messier 87, by the Event Horizon Telescope

30 ns - 3 um Resolution

Numerical simulations contain approximations
and can take impractically long to run

G. Rigon et al, PRE, E 100 (2), 021201, (2019).
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High energy density science (/ﬁﬂ

Energy densities created by the interaction of a high-power laser with matter are roughly
equivalent to those in many astrophysical systems (> 101! J/m?3)

Three different regimes:

Identical (1:1 scale)

Gives physical information directly e.g. opacity, equation of state
Similar (1:10Y scale)

Gives physical information providing certain scaling criteria are met

Analogous

Scaling criteria not met but certain phenomena reproduced. Can be used to validate codes




Scaling laws

Hydrodynamic and MHD fluid equations can be
recast as scale independent with the use of certain
dimensionless numbers

(e.g. Mach number, Reynolds number, Boltzmann
number, plasma beta etc...)
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Astrophysical jet in the laboratory (B. Albertazzi et al. Sci (2014))




LULI2000

Situated on the Saclay plateau outside of
Paris in lle-de-France

Part of L'ecole Polytechnique (Institut
Polytechnique de Paris)

Funded in parts by CNRS and CEA




LULI laser facility

MILKA target chamber
1x500)J,1.5ns, 2w beam

1x80)J, 10 ps, 1w beam
1x1mlJ,7ns, 2w optical probe beam
Pulsed power system

Capacitor-based pulse generator
charged to 9.6 kV, providing 23.6 kA to
a Helmholtz coil

Magnetic field reaches peak value after
183 us and stays constant for a period
of several ps




Diagnostics (/ﬁﬂ,.

Emission

Streaked in time, 2-D, energy resolved, temperature calibrated, Zeeman splitting
Optical probe

Interferometry, schlieren, shadowgraphy, Faraday rotation

X-ray

Absorption spectroscopy, diffraction, radiography

Particle beam

Deflectometry, stopping power, scattering
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What are Cataclysmic variables? // (: S¢

Cataclysmic variables are semi-detached binary systems,
containing a white dwarf and a companion star.

Non-magnetic (< 100 T)

The white dwarf continuously draws matter from the
companion star forming an accretion disk.

Magnetic (> 100 T)

The plasma flow is channeled by the magnetic field lines and
accretes directly onto the white dwarf poles, leading to the
(left) Mark A. Garlick, Magnetic Accretion (1998) formation of an accretion column.

(right) Mark A. Garlick, Cataclysm VI (2008) Such systems are strong hard X-ray sources due to the formation
of a stationary shock at the interaction point between the
column and the white dwarf surface.




Outstanding questions surrounding MCVs

Cool supersonic
accretion flow

Hard X ray
Bremsstrahlung emission

T ~10 keV
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Cyclotron radiation

Soft X-Ray — UV
lack body radiation

Accretion Column

T ~30eV
« Accretion spot
White Dwarf
White Dwa Photosphere
emission
T~20eV

Adapted from Wu 2000, Spac. Sci. Rev. 93, 611
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The only way to determine these objects’ properties
is based on fitting the observed X-ray flux and
comparing to models or simulations.

Different approximations to treat radiation give
different spectra.

They also disagree in the expected shock height.

Measuring the shock height is one possible way to
constrain models.

Observed quasi-periodic oscillations in the luminosity
of these systems are currently poorly understood.




Experimental setup

Nanosecond laser used to drive plasma flow onto
obstacle.

Optical diagnostics employed to observe
propagation of plasma flow.

Picosecond laser used to generate X-ray source for
radiography.

Whole setup placed in Helmholtz coil capable of
producing 15 T magnetic field.

B. Albertazzi et al., HPLSE 6 e43 (2018)
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Schlieren imaging results %’r‘

Laser incident from the right
hand side of the image. Plasma
flow is driven from rear surface
, towards the obstacle on the
left hand side.

The density of the reverse
shock region is higher than the
critical value. No late times are
recorded.

P. Mabey et al., Sci. Rep. (2019)
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Optical emission results
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Laser incident from
the right hand side
of the image.
Plasma flow is
driven from rear
surface towards the

obstacle on the left
hand side.

The emission
profiles with and
without the
magnetic field vary
greatly.




The B-field collimates the flow
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The width of the plasma flow is decreased when the magnetic field is imposed due to the Lorentz force

The difference in the width of the jet is seen from 75 ns onwards (left). The subsequent increase in density of
the incoming flow leads to a higher temperature reverse shock, as seen on the SOP (right).
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X-ray radiography results
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X-ray backlighter using ps driven
titanium K-alpha radiation.

According to scaling laws, the
reverse shock position in the
laboratory should be between 1000
pm and 450 um depending on the
radiation model.

In our experiment, we measure 800
+ 150 um.




MHD simulations with FLASH
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Temperature (left) and density (right) maps 150 ns after the laser drive.

0.20

Simulations performed
with the MHD code,

FLASH (developed at the
University of Chicago).

Non-ideal MHD, 2D,
SESAME equation of
state, radiation transfer
solved in the multi-group
diffusion. Simulation
resolution of 5 microns




Simulations vs experimental data
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The reverse shock does not stagnate in simulations. No mass is ejected transverse to the column or
absorbed by the obstacle hence there is no mechanism to decelerate the shock on these timescales.




Emission (arb. units)

Emission (arb. units)
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A hollow region between the obstacle and
the shock front travelling away from the
obstacle is observed.

Typical of a rarefaction wave, caused by
the lateral mass ejection in the collision
region.
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Limitations of simulations (/’ﬂ

Y Experiment A hollow region between the obstacle and
¢ Simulation the shock front travelling away from the
* obstacle is observed.
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{' Y the lateral mass ejection in the collision
region.
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Simulations currently unable to
adequately treat transport across
magnetic field lines in this scenario.
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More conclusions and caveats (/’ﬂ

According to scaling laws, the reverse shock position in the laboratory should be between 1000 pm and
450 um depending on the radiation model.

In our experiment, we measure 800 + 150 pum.

The experiment is well scaled to intermediate polars in terms of the magnetic pressure and the Reynolds
number, but not in terms of the radiation number. Higher flow velocities are required in order for a direct
comparison to be made.

At higher magnetic field strengths, can the flow be fully constrained by the B-field or do models need to
take this mass loss into account? Does FLASH underestimate diffusivity?

Can we answer questions related to QPOs?
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Celestial magnetic fields
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All-sky map of polarized thermal dust Magnetic field orientations in the Pipe and Musca
emission observed at 353 GHz by Planck molecular clouds inferred from the polarized thermal dust
showing the orientation of BL as the emission by Planck images (same color scheme as Figure
flow pattern. Planck Collab. et al. (2016a) 1) and starlight polarization (black bars). Soler et al.

© ESO. (2016) © ESO
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Theory of hydromagnetic shocks
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Observations of hydromagnetic shocks
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Abstract

Magnetohydrodynamic (MHD) shocks are violent events that inject large amounts of energy in the interstellar
medium dramatically modifying its physical properties and chemical composition. Indirect evidence for the
presence of such shocks has been reported from the especial chemistry detected toward a variety of astrophysical
shocked environments. However, the internal physical structure of these shocks remains unresolved since their
expected spatial scales are too small to be measured with current instrumentation. Here we report the first detection
of a fully spatially resolved, MHD shock toward the infrared dark cloud (IRDC) G034.77-00.55. The shock,
probed by silicon monoxide (SiO) and observed with the Atacama Large Millimeter/submillimeter Array
(ALMA), is associated with the collision between the dense molecular gas of the cloud and a molecular gas flow
pushed toward the IRDC by the nearby supernova remnant (SNR) W44, The interaction is occurring on subparsec
spatial scales thanks to the enhanced magnetic field of the SNR, making the dissipation region of the MHD shock
large enough to be resolved with ALMA. Our observations suggest that molecular flow-flow collisions can be
triggered by stellar feedback, inducing shocked molecular gas densities compatible with those required for massive
star formation.

Key words: 1ISM: clouds (G034.77-00.55) — ISM: molecules — ISM: supernova remnants (W44) — shock waves

(mag)

A, (mag)
=

A,

Distance (") Distance (")




Supernova remnants and Sedov-Taylor

e Self-similar solution independent of scale.
* Assumes point like energy source.
* |sotropic expansion

 Ram pressure of blast wave dominates
ambient pressure.

X-B9A

* Radiative effects are negligible.

J. L. West et al. A&A 587, A148 (2016)
* Shown to work in astrophysical and terrestrial

systems r o (Eo/p0)1/5t2/5




Barrel-shaped SNRs (G296.5+10.0)

G296.5+10.0

Observations suggest a link Radio ' X-Ray
between barrel-shaped / Orientation

axisymmetric SNRs and the of Galactic

galactic magnetic field. a magnetic

field?
J. L. West et al. A&A 587, A148
(2016)

Galactic Latitude

Or evidence for a
magnetized progenitor
wind

Harvey-Smith, L., et al. ApJ 712.2
(2010): 1157
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Experimental aims and scaling laws

Test hypothesis that uniform magnetic field causes barrel-shape blast wave
Create MHD shocks in controlled environment and test theory.
Magnetic Reynolds number >> 1 in both systems (ratio of magnetic advection to diffusion)

Plasma beta similar in both systems (ratio of ram pressure to magnetic pressure)

Lex




Creating a blast wave in the lab

P. Mabey et al. ApJ Submitted
The drive laser irradiates a

carbon pin target.

- Line of sight for optical spectroscopy

This causes a blast wave to be
generated in the ambient gas
inside the chamber.

Optical diagnostics are
employed in the two
perpendicular axes.
Drive beam
The entire experiment is 357, 1 ns, 527 nm
housed in a coil in order to Graphite pin be beam

generate the magnetic field on glass stalk 1 mJ, 7 ns, 532 nm
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Blast wave propagation (spectroscopy)

Shot 78 ; w/o B-field ; minimum focal spot, w BG filter ; 44 ] Shot 74 ; w B-field perpendicular, 10 T; minimum focal spot, w BG filter ; 38 ] .- TS ~
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Deviation from TS regime
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Blast wave decelerates faster than Taylor-Sedov perpendicular to magnetic field




Evidence of a barrel shape
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Barrel shaped blast wave

Without magnetic field Magnetic field —
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Barrel shaped blast wave (/ﬁg

Without magnetic field Magnetic field —
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Increased width of BW shell (schlieren) %
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Width of blast wave with magnetic field (black) increases with time




Increased width of BW shell (spectroscopy)

Shot 78 ; w/o B-field ; minimum focal spot, w BG filter ; 44 ]
1.5 mm after TCC
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Magnetic effects grow over time

—— Ram

— Blast Wave
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Speed of blast wave is high initially, B >> 1,
v, > v . magnetic effects are small.

Blast wave slows down due to Taylor-
Sedov law

At some time later, B~1and Vv, ~ V_

blast wave changes morphology and shell
thickness

Blast wave decelerates further when B is
perpendicular, creating positive feedback
loop
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Determining the magnetic field (/ﬁﬂ

Flux conservation Jump conditions

:...2

B(¢) = r2 — (r — d)? By sin(¢) (P + P+ B1/2p0), — (0" + P+ Bi/z‘”’“)“ =0

Van der Laan, H. 1962, MINRAS, 124, 125 Shu, F. H. 1991, The Physics of Astrophysics: Gas Dynamics, Vol. 2

Magnetic field initially increases from Temperature and density measurements

10.2 T to 24 T (radius dominates). taken at single point corresponding to
50 ns.

Then relaxes back down towards its B=15T

initial value (shell width dominates). Two methods in agreement.




What does this mean for G296.5+10.07

G296.5+10.0

X-Ray

Age = 10,000 years

Orientation
of Galactic
Explosion energy = 10°t erg ™" uEl{glSydle
field?

Magnetic field = 50 uG

Density = 0.1 cm™
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Future work

Next step is to create suitable
scaling laws to allow measurement
of:

* Field strength

* Age
 Explosion energy
* Particle density




Conclusions (/’ﬂ,.

e Blast waves deviate from Taylor-Sedov phase due to uniform magnetic field

e Effects are visible when B is order unity, although due to deceleration already inherent in
system this value will be reached at some point.

 Symmetry axis of SNRs can be linked to large scale (Galactic) magnetic fields
* Evidence that magnetic field fundamentally affects shock structure whenv, ~ v,

* Future experiments could test MHD shock theory in controlled manner




Thank you for listening

Questions
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