Contribution of Gaia to asteroid dynamics

Federica Spoto Frederica Spoto Frédérica Spoto

Seminaires Lagrange 7 March 2017, Nice

CNES Post-Doc

The Gaia mission

- Launched in December 2013.
- Currently surveying the sky from the Sun-Earth L2 Lagrangian Point.
- Provides astrometry of stars and asteroids at the sub-milliarcsec accuracy.

The first Gaia Data Release (GDR1)

- 14th September 2016
- 1.1 billion stars with **no proper motions** (G and position only)
- 2 million stars with positions and proper motions

Why asteroids?

How do we study asteroids?

Orbit determination

Orbit determination

SHORT ARC

SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Gaia and asteroids

Outline

Short arc

Problems

- Few astrometric observations over a short time span
- Limited amount of information to compute a full orbit

Approach

Orbit determination with short arcs

Methods

- Systematic ranging (Farnocchia et al. 2015)
- Random-walk statistical ranging (Muinonen et al. 2015)
- Admissible region + systematic ranging / cobweb (Spoto et al. 2017)

Attributable

Systematic ranging: admissible region

-2 -1 $\log_{10}(\rho)$ (au)

-2 -1

 $\log_{10}(\rho)$ (au)

0

0

Systematic ranging: grid

Alerts

Alerts

Gaia Follow-Up Network for Solar System Objects

Goal

The Gas False's UP before the Sale's System Objects (Gas-FALSES) has been set up in the Texnerwork of a task (UPHR) of the Coordination UP of Object CoordinationUP of Object Coordination UP of Object Coordination UP of Object

These pages provide an access to the alerts, including the ephemeris to help finding the targets, for the registered members of the Gala Follow-up network. The network currently consists in about 80 observers in 27 observing sites, spread all over the world (November 2016).

Workshops

Three Gala-FUN-SSD workshops dedicated to the astrometric follow-up of the Solar System Objects have already been organized in 2010, 2012 and 2014 in Paris Observatory. Discussions has been held about this network and the tasks to be accomplished, the capabilities of the observing sites and the preliminary actions already performed.

- · Proceedings of the 2010 workshop have been published and can be freely downloaded here
- · Proceedings of the 2012 workshop have been published and can be freely downloaded here.
- · Proceedings of the 2014 workshop have been published and can be freely downloaded have

https://gaiafunsso.imcce.fr/index.php

g0T015: Gaia observations

g0T015: Gaia observations

g0T015: Gaia + OHP observations

Residuals

GBOT

GBOT : Gaia Based Optical Tracking

- Ground Based Optical Tracking campaign of Gaia.
- Standard procedure for satellite tracking is not sufficient.
- GBOT needs a level of absolute accuracy of **20 mas** on the satellite position determination.

Asteroid observations

- Two main telescopes
 - Liverpool Telescope (LT) La Palma
 - VLT Survey Telescope (VST) Paranal

Data reduction

PPMXL

GDR1

Credit: S. Bouquillon (GBOT Team)

The case of 2016 EK₈₅: the discovery

M.P.E.C. 2816-E122

Issued 2016 Mar. 11, 18:11 UT

The Minor Planet Electronic Circulars contain information on unusual minor planets and routine data on comets. They are published on behalf of Division F of the International Astronomical Union by the Minor Planet Center, Smithsonian Astrophysical Observatory, Cambridge MM 02138. U.S.A.

Prepared using the Tankin Foundation Computer Network

MPCOCEA.HARVARD.EDU URL http://www.minorplanetcenter.net/ ISSN 1523-6714

2016 EK85

Observati	Lons:
-----------	-------

K16E85K 'C281	6 83	69.89989	11 12	47.37	+12 -	84 35.1	20.1	RtEE122369	
K16E85K 'C281	6 83	09.10109	11 12	47.77	+12	84 29.8	20.1	RtEE122309	
K16E85K 'C281	6 83	69.18238	11 12	48.18	+12	84 24.3	19.7	RtEE122309	VCT
K16E85K *C283	6 83	09.18351	11 12	48.58	+12	84 18.9	20.1	RtEE122309	VSI
K16E85K 'C281	6 83	09.18471	11 12	48.96	+12	84 13.6	19.9	RtEE122309	
K16E85K 1C201	6.03	09 10593	11 12	49.37	+12	94 68 2	10.7	P+FE122309	
¥16595¥ 10203	6 02	00 10712	11 17	40 75	+17	04 07 0	10.9	P+55122200	
K16E9EK 10203	6 02	00 10924	11 12	60.16	.12	02 67 6	10.0	BLEE122200	
KIGEODK C201	6 03	10, 22007	11 10	07.45	+10	44 47 0	19.9	NULCI22399	
V10503V- C501	.0 03	10.33067	11 19	03.43	+10	44 47.9	20.4	vqee 122030	
K16E85K C281	6 83	10.33596	11 19	05.12	+10	44 38.3	20.2	Vqtt122096	
K16E85K C281	6 83	10.34013	11 19	07.43	+10	44 18.9	20.2	VqEE122696	
K16E85K C281	6 83	10.36597	11 19	12.87	+10	42 59.6	20.5	RoEE122926	
K16E85K C281	6 83	10.37038	11 19	13.83	+10	42 45.8	20.5	RoEE122926	
K16E85K C281	6 83	10.37488	11 19	14.73	+10 -	42 31.6	20.8	RoEE122926	
K16E85K C283	6 83	10.42013	11 19	24.47	+10	48 07.4	21.4	VgEE122152	
K16E85K C281	6 83	10.42255	11 19	24.94	+10	39 58.7	21.4	VoEE122152	
K16E85K C283	6 83	10.42497	11 19	25.51	+10	39 51.4	21.1	VoEE122I52	
K16E85K 6C281	6 83	10.92462	11 21	31.84	+10	16 65.9	20.5	RtEE122J13	
K16E85K 6C281	6.03	10.92553	11.21	31 08	+10	16.03.8	20.7	D +EE122113	
K16E85K 6C281	6.83	10.92544	11 21	32.17	+18	15 61.3	29.7	RtFE122113	
¥16595¥ 67303	6 02	10.03736	11.01	22.24	110	15 50 0	20.6	01551223132	
¥16595¥ 6C201	6 02	10 92976	11 21	22.51	+10	15 56 4	20.0	P+55122112	
VIGEOUV GC201	6 02	10.02017	11 21	22 67	.10	10 64 1	20.0	REEE122112	
KIGEOFK CC201	A 03	10.02020	11 11	32.07	110	10 04.1	20.0	Decc122313	
N10E00K 0C201	0 03	10.93000	11 21	32.07	+10	15 51.0	20.0	NUEC122313	
K10E05K 6C201	0 03	10.95099	11 21	33.02	+10	15 49.5	20.3	RCEE 122313	A 1787
K10E85K 0C281	0 83	10.93190	11 21	35.28	+10	15 46.8	20.9	REEEI22J13	
K16E85K 6C281	6 83	10.93281	11 21	35.35	+10	15 44.7	28.4	REFEITS113	Date D
K16E85K 6C281	6 83	11.14049	11 22	88.96	+10	86 44.9	21.0	RtEE122J13	
K16E85K 6C281	6 83	11.14148	11 22	09.12	+10	86 42.7	20.3	RtEE122J13	
K16E85K 6C283	6 83	11.14231	11 22	89.28	+10	86 48.8	20.6	RtEE122J13	
K16E85K 6C281	6 83	11.14322	11 22	09.42	+10	86 37.7	20.6	RtEE122J13	
K16E85K 6C201	6 83	11.14413	11 22	09.58	+18	95 35.6	20.6	RtEE122J13	
K16E85K 6C201	6 83	11.14584	11 22	09.75	+18	95 33.0	20.8	RtEE122J13	
K16E85K 6C201	6 83	11.14595	11 22	09.98	+18	95 30.8	20.3	RtEE122J13	
K16E85K 6C201	6 83	11.14686	11 22	10.85	+18	95 28.4	20.6	RtEE122J13	
K16E85K 6C281	6 83	11.14777	11 22	10.21	+18 :	95 26.1	20.5	RtEE122J13	
K16E85K 6C201	6 83	11.14868	11 22	10.35	+18	95 23.6	29.8	RtEE122J13	
K16E85K C201	6 83	11.29442	11 22	44.28	+18	99 16.2	21.3	VoEE122152	
K16E85K C201	6 83	11.29553	11 22	44.43	+18	99 13.3	21.5	VoEE122I52	
K16E85K C201	6 83	11.29664	11 22	44.63	+18	99 18.5	21.4	VoEE122152	
K16E85K C201	6.83	11.33107	511 22	49.62	+09	58 43.7	21.3	VEFF122H01	
K16E85K (281	6.83	11.33431	611 22	50.13	+69	58 35 8	21.5	VtFE122H81	
K16E85K C201	6 83	11 34746	511 22	52 21	+00	58 03 7	21.3	VEEE122601	
V16E95V (20)	6 02	11 25401	711 77	52 20	+00	57 AS 7	21.3	V+SE122601	
VIGEORY COOL	6 02	11 46699	11 22	11 76	-00	62 16 E	21.2	W#EE122/06	
KINCOJA (20)	~ 83 c 03	AA. 40000	11 23	11.03		AD 40.0	21.3	VIPLE 122090	
MIGCOLK C201	0 83	11.40/72	11 23	11.93	109	22 43.3	20.8	vucc122096	
M10C00K (201	0 83	11.46857	11 23	12.06	+09	53 41.1	20.6	vdcc155096	
K10E85K C201	n 83	11.46941	11 23	12.19	+09.	53 69.3	21.3	VQEE122696	

Past situation

- 48 observations (28 GBOT observations, covering 2 days)
- Semi-major axis: 2.482 au.
- **Possible impacts** with the Earth in 2102 and 2106.

Current situation

- 74 observations, covering 27 days.
- Semi-major axis: 2.497 ± 0.005 au.
- **Removed** from the risk list (2016/03/23) after Mauna Kea observations.

The case of 2016 EK₈₅ : the LoV

Occultations

An occultation is an event that occurs when one object is hidden by another object that passes between it and the observer.

An occultation by an asteroid occurs when the asteroid passes in front of a star, temporarily blocking its light as seen from Earth.

- Measuring size and position of asteroids.
- Precise occultation timing provide the asteroid position at the same level of accuracy of the occulted star astrometry.
- Is it possible to fit a good orbit using occultations only?

Occultations

Occultations

Occultations: before GDR1

Occultations: after GDR1

Simulations

Orbit improvement

Outline - GDR2

Save the date! / Réservez la date!

April 2018									
SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY			
1	2	3	4	5	6	7			
8	9	10	11	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30								

Selection for GDR2

- Asteroid astrometry, per epoch, for well-known asteroids (\sim 10000)
- CCD level

To infinity and beyond

To infinity and beyond

Asteroid families

Main Belt

Family 20

V-shape and Yarkovsky effect

- Typical values: $10^{-3} 10^{-4}$ au/Myr
- Proportional on 1/D
- Unknown physical quantities

Age computation

Family 20

Age computation

Family 20

Chronology of the Main Belt

Family ages

Chronology of the Main Belt

Family ages

Gaia and the Chronology

Almost done

Conclusions

- Alerts work, but we need more follow-up
- GDR1: the accuracy is $\sim 20/30$ mas, but we know we can do better
- Occultations can be used for the astrometry which will have the same precision of the stars
- Orbit improvement due to Gaia will be crucial in the next years:
 - Computation of non-gravitational perturbations (Yarkovsky effect)
 - Chronology of the Main Belt

Enjoy GDR2 and following...

Thank you!

