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A workshop

® The intensity signal in helioseismology
¢ Why!
® What is it!

® What information does it carry!?
®— End -

Thomas Straus, INAF/OAC Napoli Picard Workshop, Nice, December 3-4, 2008



Helioseismology - Theory

60 CHAPTER 4. EQUATIONS OF LINEAR STELLAR OSCILLATIONS

4.2 The Oscillation Equations

4.2.1 Separation of variables

The displacement ér is separated into radial and horizontal components as

or =¢.a, + & . (4.15)

bl s o o o i, 1, ® Equations are written
o in displacement, which
pog—;vhfh:—vﬁp’—povﬁ@’. (4.17) is Sma”.

The equation of continuity, (3.41), can be written as

= —Vup' — poVn®' . (4.16)

As the horizontal gradient of equilibrium quantities is zero, the horizontal divergence of
equation (4.16) gives

19

p = *7725(/?07“2&) —poVh - &n - (4.18)

i e v ot 6 o i (117w o An 3 mHz oscilla-
X PIEE IO Iy 49 tion with amplitude
of | m/s has an dis-
placement amplitude
of about 50m.

The radial component of equation (3.43) is
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velocity signa!
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Helioseismology
Why doing it differently?
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@ Helioseismology
Why doing it differently?
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Figure 1 The relative sound-speed difference (left) and density difference (right) between the Sun and a
standard solar model constructed with the GS98 metallicity [model BPO4(Garching)], and also a standard

[ [}
solar model constructed with the AGS05 metallicity [model BSOS(AGS, OPAL)] of Bahcall, Basu, and
oo o Serenelli (2005). The model with GS98 Z/X has a CZ He abundance of Yz = 0.243 and a CZ base at

Rez =0.715r/ Ro. The AGS05 model has Y¢z = 0.230 and Rz = 0.7297/Re.

® Challenge of proposed abundance revision
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@ Helioseismology
Why doing it differently?
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® | ocal helioseismology
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@ Helioseismology
Why doing it differently?
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® | ocal helioseismology

® Astroseismology

not only velocity, details of Solar case important!
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® Helioseismology
Why doing it differently?

® Because we know our limits | Inversion results
since a decade... o 0
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@ Sources of oscillations

@ Atmospheric Seismology
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® Helioseismology
Why doing it differently?

® Because it is different...

® |ine aymmetries | , Veloc
ntensl (S I
(Duvall et al. 1993;...) tensity oo

=—>new information to
be unvelled...
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Velocity - Intensity: the Differences

No. 2, 1999 SOLAR BACKGROUND SPECTRUM OBSERVATIONS 941
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® relative oscillation amplitude
is it only the relative amplitude!?
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Velocity - Intensity: the Differences |l
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® Velocity signal
® Background limb-dominated (supergranulation)
® Oscillation signal center-dominated (geometrical effect)

® |ntensity signal
- Oscillation amplitude growing at limb
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Velocity - Intensity: The Full Information
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® Coherence has two asymmetric dips.

Thomas Straus, INAF/OAC Napoli Picard Workshop, Nice, December 3-4,2008



Mode profiles: Explanation

® Mode
® Noise

Intensity a) Intensity b) c) \Velocity d) Velocity
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Figure 2. Components of the simple model (Magri et al. 2000) to explain the asymmetry of p—mode profiles in power
and coherence. Panel a: the p—mode signal and the correlated background in intensity (upper panel) with the phase lag
between them (bottom panel); panel b: the correlated and uncoherent parts of the intensity signal; panel c: as a) for
velocity, panel d: as b) for velocity. The single components are: 1) total; 2) total coherent,; 3) uncoherent; 4) correlated
background; 5) p—-mode signals. Whereas the asymmetry in the power spectra is due to the asymmetry of the correlated
part of the signal, the two asymmetric dips in the coherence profile (see Fig. 3) are due to the variation of the fraction of
the correlated part of the total signal with frequency (see text).

® Correlated background
e.g. excitation source, direct wave.

® Uncorrelated, coherent background

Thomas Straus, INAF/OAC Napoli
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Mode profiles: Explanation

n=10, 4=17

Background amplitudes [fraction of mode]
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Mode profiles: Limits

It is not (yet!) possible to distinguish
different contributions to the asymmetry as
they all behave identically:

® “Natural asymmetry” (e.g. excitation mechanism)
® Source depth (Kumar & Basu, 1999)
® (Correlated background (e.g. direct wave)

® Opacity effects in intensity signal (Georgobiani et
al., 2003)

Thomas Straus, INAF/OAC Napoli Picard Workshop, Nice, December 3-4, 2008



What is the Intensity Signal?

60 CHAPTER 4. EQUATIONS OF LINEAR STELLAR OSCILLATIONS

4.2 The Oscillation Equations

4.2.1 Separation of variables . €6 I ~ T4’ 9

The displacement ér is separated into radial and horizontal components as

or =¢.a, + & . (4.15)

bl s o o o i, 1, ® Equations are written
o in Eulerian (or
= i e Lagrangian) space.

The equation of continuity, (3.41), can be written as

= —Vup' — poVn®' . (4.16)

As the horizontal gradient of equilibrium quantities is zero, the horizontal divergence of
equation (4.16) gives

1 0
P = *725(/?07“2&) —poVn-&n - (4.18)

This can be used to eliminate Vy, - &, from equation (4.17), which becomes

82 / 19 2 2.7 25/
“52 [Pt ap, res)| =~V = poVi®' . (4.19)

The radial component of equation (3.43) is
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What is the Intensity Signal?

60

CHAPTER 4. EQUATIONS OF LINEAR STELLAR OSCILLATIONS

4.2

4.2.1
The di

The hg

equati

The eq

This ¢

Th

As thel T

of the atmosphere, (e.g. cf. Mihalas & Mihalas 1984). The search
for monochromatic plane-wave solutions, e.g. for the vertical
velocity V=v,(x, z, t)= W(z)exp(z/2H )exp[i(wt — k,x)], leads to
a homogeneous linear differential equation of the second order
for the velocity amplitude W and to the polarization relations
between the thermodynamic variables T and P, and the vertical
velocity, which are '

d*W(z)
dz?

ST  (y—Do(l+iar) ( Ccik2d )
=—= - +1— |V
T (w?=c?k2)(1+a’r?)

+hW(z)=0 1)

2
1"ycu‘"H dz @

oP ya(1 +iar)

| . d
P=—P—=(w2_czk’2€)(1+a2r2)[i—"yg(l+'}’a)+(l+a)£:lV (3)

where the real and imaginary part of the complex number h are
respectively

w? —w? w3 1 wiy k2 w?
hy=—: +k§<_£2¥_1>— . 2[ e —(y—1)c—2] @)

where ¢ is the sound velocity, y the ratio of the specific heats,
H=c?/yg the pressure scale height, w,=c/2H the acoustic cut-
off frequency, wBV=\/ y—1g/c the Brunt-Viisdld frequency,
n=wrt,, a=1/(ywrt,), and r=(yw?*—c2k2)/(w*—c*k2).

(4.15)

(4.16)

bence of

(4.17)

(4.18)

(4.19)
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® Equations are written

in Eulerian (or
Lagrangian) space.

® Rather simple polari-

zation relations in an
isothermal atmosphe-
re.
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What is the Intensity Signal?
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CHAPTER 4. EQUATIONS OF LINEAR STELLAR OSCILLATIONS

4.2

4.2.1
The di

The hg

equati

The eq

This ¢

Th

As thel T

of the atmosphere, (e.g. cf. Mihalas & Mihalas 1984). The search
for monochromatic plane-wave solutions, e.g. for the vertical

velocity
a homo
for the
between
velocity,|

d*W(z)
dz?

where tl
respectiy

Oliviero et al. (1999)

phase differences

—100 0 100
degrees

coherence

Thomas Straus, INAF/OAC Napoli

o Y ~TH

® Equations are written
in Eulerian (or
Lagrangian) space.
Rather simple polari-
zation relations in an
isothermal atmosphe-
re.

< Complex structure of
phase spectra.
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Intensity in Realistic Atmosphere

v =1ms ! v=3mHz
& =50m
oT
T’ X A8 T 52 £,
Z=—const. Nl(;:?K NTK .
® Gradient-effect...

® .dominates in the z-frame (=Eulerian
frame) due to huge temperature gradient.

® In the z-frame we “observe” the
displacement, not the wave fluctuation.

Thomas Straus, INAF/OAC Napoli Picard Workshop, Nice, December 3-4, 2008



The z-frame
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The intensity signal

AL oc T’

T=1

Eddington-Barbier
approximation

Straus, Steffen, Severino (2006)
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The T-frame

Straus, Steffen, Severino (2006)
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The T-frame

Straus, Steffen, Severino (2006)
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The T-frame

Straus, Steffen, Severino (2006)
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The T-frame
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The T-frame

In the simple case that % and A—PP are constant with 4, we can derive an explicit, approx-
imated expression for the observed height fluctuation:

AP

AT 1
Ah =~ <5.76T + l.74—>

k(i)

P (25)

Finally, we are in a position to write the expressions linking the fluctuations in the
z-frame with those in the 7-frame. Since we neglected the spatial phase change introduced in
all perturbations by the height fluctuation occurring in the t-frame (see Equation (16) and
discussion), we conclude that the vertical velocity fluctuation is the same in both frames.
Furthermore, the temperature fluctuation in the z-frame is due to the sum of an isothermal
wave contribution and the T -gradient effect (Equations (8) and (9)), whereas in the t-frame
the opacity effect is also at work, producing an additional contribution to the temperature
fluctuation, which is given to first order by the atmospheric temperature gradient times a
height variation expressed, for example, by Equation (25). Therefore we can write the fol-
lowing relations:

V/(z = constant) = V/(z = constant),

dTy

T'(z = constant) = T, (z = constant) — (Szd—
z

iso
(26)
V!(z = constant) dTj
w dz’
dT,
(z = constant) — (§z — Ah) e
Z

:T/

iso

(z = constant) —

T'(t = constant) = T

iso
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* The opacity effect
reduces the

* The opacity effect can
reverse the asymme-
try.

* The simultaneous
study of z- and T-
frame in the simulation
can help to distinguish
various asymmetry
contributions.
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The T-frame

In the simple ca
imated expression

Finally, we arg
z-frame with those
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* The opacity effect
reduces the

* The opacity effect can
reverse the asymme-
try.

* The simultaneous
study of z- and T-
frame in the simulation
can help to distinguish
various asymmetry
contributions.
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Gradient Effect and
Opacity Effect at the Limb

® The opacity effect is largely reduced at the
limb as we observe the vertical oscillation
from the side.

® The gradient effect is again dominating and
is caused by an unresolvable displacement
perpendicular to the limb.

— Oscillation power grows towards the
limb.
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The V-V phase difference
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tmospheric Gravity VVaves
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The energy balance
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uture Plans

“Stop
observing
the Sun!”

“Look to

(my)
models!”

P§yoto, IAU 185 (1997)
Ake Nordlund
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Future Plans

“Then, there
IS a star
called

CO°BOLD”

Freiburg, ESPM12 (2008)
Rob Rutten
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Future Plans

“We
observe like
on a flat
table”

Somewhere (quite often)
Unknown Solar Physicist
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