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We demonstrate that the nonlinear optimization of a finite-amplitude disturbance over a freely evolving
and possibly even turbulent flow, can successfully identify subcritical dynamo branches as well as the
structure and amplitude of their critical perturbations. As this approach does not require prior knowledge of
the magnetic field amplification mechanisms, it opens a new avenue for systematically probing subcritical
dynamo flows.
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Long-lived astrophysical magnetic fields display a
remarkable diversity of spatial scales, structures and
intensities—with detected fields of order ∼1 μG in galaxies
[1], to ∼1014 G in magnetars [2]. A century ago, Joseph
Larmor argued that intense magnetic fields can be born out
of a dynamo instability [3], whereby favorable flow
motions amplify a magnetic seed field in the electrically
conducting fluid layers of celestial bodies. Ever since, the
origin of astrophysical magnetic fields has continued to
raise many fundamental questions.
Indeed, exhibiting a flow capable of amplifying and

maintaining a magnetic field by dynamo action has proved
a challenging task, both from a theoretical and experimental
point of view [4]: first, fluid motions need to be vigorous
enough, and the fluid resistivity sufficiently low, for
induction to overcome the destructive effect of Ohmic
dissipation. As a result, igniting a dynamo instability out
of a weak magnetic seed, often translates into intractable
parameter regimes for global numerical simulations or
unsustainable energy costs for laboratory devices, so that
experimental dynamos are very scarce, whether in liquid
metals [5–7] or plasma flows [8,9]. Second, flows too
simple—in the sense that they present too many sym-
metries, such as (typically) Keplerian flows—are linearly
stable to dynamo action [10].
In some situations, however, a dynamo can be triggered

by finite-amplitude disturbances even in a highly symmet-
ric or (comparatively) poorly conducting flow. This springs
from the nonlinear nature of the magnetohydrodynamics
(MHD) equations, and can occur whenever the feedback of
the magnetic field on the flow, sustains its own amplifi-
cation by subcritical dynamo instability. Natural systems
where subcritical dynamos are assumed to operate abound,
with important examples including Earth’s core [11], but
also accretion disks and radiative stars [12,13], where
magnetogenesis is poorly understood despite its suspected
role in explaining the observed anomalous transport of
angular momentum [14,15].

Because of the lack of a systematic nonlinear stability
method, however, the identification and modeling of sub-
critical dynamos so far involves a substantial amount of luck.
Successful attempts have relied on imposing (and sub-
sequently removing) a specifically tailored electromotive
force or magnetic field [12,16]. This, however, requires some
prior knowledge of the field’s structure and the intensity
required to sustain a dynamo in a given flow. Another way is
identifying a dynamo branch as it linearly bifurcates from the
base state, and then following the branch backwards in
parameter space, below its linear instability threshold—a
method, however, doomed to fail when the threshold
parameter regime is intractable, or when the base state is
always linearly stable to dynamo instability.
In this Letter, we show how subcritical dynamo branches

can be systematically explored in a given MHD base flow.
Furthermore, we aim at determining the minimal dynamo
seed—that is, the spatial structure of the smallest amplitude
(and often low dimensional) magnetic disturbance, capable
of nonlinearly triggering a self-sustaining dynamo in a
given system. Our approach builds on the mathematical
tools of optimal control and nonmodal stability analysis
[17], which have recently been used in the context of
subcritical transition to hydrodynamic turbulence in shear
flows [18–20]. The robustness of the proposed method is
demonstrated by considering two contrasting reference
flows—namely, a local model of laminar quasi-Keplerian
Couette flow, and a turbulent Taylor-Green flow.
To that end, we consider the MHD system

∂u
∂t

þ ðu ·∇Þu − νΔuþ∇P − ð∇ × bÞ × b ¼ 0; ð1Þ
∂b
∂t

−∇ × ðu × bÞ − ηΔb ¼ 0; ð2Þ

∇ · u ¼ 0; ð3Þ

∇ · b ¼ 0; ð4Þ
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where uðx; tÞ, bðx; tÞ, and Pðx; tÞ are, respectively, the
velocity, magnetic, and pressure fields; ν is the kinematic
viscosity and η the magnetic diffusivity. Here, the magnetic
field is rescaled by 1=

ffiffiffiffiffiffiffi
ρμ0

p
as an Alfvèn velocity, where ρ

is the (constant) fluid density and μ0 the void magnetic
permeability.
At long times, any initial condition b0 ¼ bðx; 0Þ capable

of nonlinearly exciting a dynamo instability, will yield strong
amplification of the magnetic energy. We thus consider the
following question: given a reference flow u0 ¼ uðx; 0Þ, and
an initial magnetic energy density budget M0 ¼ hjb0j2i
(where hfi ¼ ð1=VÞ RV fdV denotes spatial average), what
initial condition b0 maximizes the objective function
Jðb0Þ ¼

R
T
0 hjbj2idt by some target time T? Maximization

of the magnetic energy has been previously used to optimize
a frozen velocity field in the (linear) kinematic dynamo
problem [21–24]. Here, we address the optimization ques-
tion by extremizing the following functional:

L ¼
Z

T

0

hjbj2idt −
Z

T

0

hb̃ ·Gidt −
Z

T

0

hΠ̃ð∇ · bÞidt

−
Z

T

0

hũ · Fidt −
Z

T

0

hP̃ð∇ · uÞidt; ð5Þ

where ũðx; tÞ, b̃ðx; tÞ, P̃ðx; tÞ, and Π̃ðx; tÞ are Lagrange
multipliers used to enforce the nonlinear constraints (1)–(4)
in the whole domain for t ∈ ½0; T�; F and G stand for the
left-hand side of (1) and (2), respectively. Maximization with
respect to b0 requires estimation of the variational derivative
δL=δb0, which has to vanish when an optimum is reached.
This estimate is obtained at affordable computational cost
using a direct-adjoint looping method. First, canceling the
variational derivatives of L provides (i) compatibility con-
ditions that relate the physical (“direct”) variables u, b to the
Lagrange multipliers (or “adjoint variables”) ũ, b̃ at time T;
(ii) backward evolution equations and boundary conditions
for the adjoint variables, and (iii) an optimality condition
relating the desired information δL=δb0 to the adjoint fields
at t ¼ 0, which in the present case reduces to

δL
δb0

¼ b̃ðx; 0Þ þ∇Π̃: ð6Þ

Then for a given reference flow u0, the looping procedure
uses (i)–(iii) as follows: starting from a (random) first guess
b0 with energy M0, we evolve u, b from t ¼ 0 → T
according to (1)–(4). We then use condition (i), here that
ũðTÞ ¼ b̃ðTÞ ¼ 0, to evolve ũ, b̃ back from t ¼ T → 0
according to the adjoint equations (ii):

−
∂ũ
∂t

¼ Nðũ;uÞ þ b × ð∇ × b̃Þ þ νΔũþ∇P̃; ð7Þ

−
∂b̃
∂t

¼ −Nðũ; bÞ−u × ð∇ × b̃Þ þ ηΔb̃þ∇Π̃þ 2b; ð8Þ

whereNðũ;uÞ≡ ð∇ × uÞ × ũþ∇ × ðũ × uÞ, and ũ and b̃
are subject to divergence-free conditions [25] and the same
boundary conditions as u, b, respectively. This yields the
desired gradient information (6) at t ¼ 0, which we use to
update b0 by means of a classical descent method. The latter
is combined with the rotation method of [26,27] to enforce
the condition that b0 be of energyM0. The whole process is
then repeated until the system converges to an optimum. The
resulting optimal seed b0 exhibits whatever spatial structure
yields largest amplification of the magnetic energy by target
time T. In order to rule out transient states, or even self-
killing dynamo processes [28–30], the optimal seed is then
used as an initial condition for integrating the governing
equations (1)–(4) [direct numerical simulation (DNS)] over
longer timescales t ≫ T, which finally confirms whether a
self-sustained dynamo develops or not.
We first consider a laminar incompressible flow, sheared

between two infinite parallel rigid plates, in a rotating frame
of reference (rotating plane Couette flow). This highly
symmetric flow is linearly stable to dynamo action by
virtue of Zel’dovich’s antidynamo theorem [31]. The
existence of subcritical dynamo solutions in quasi-
Keplerian Couette flow was numerically demonstrated in
[12]: using Newton iteration they construct steady dynamo
states, which we find to be stable, however, only with
certain symmetries enforced. Their approach relies on
prescribing an artificial electromotive force, carefully
chosen so as to replenish a large-scale field prone to
(linear) destabilization via the magnetorotational instability
(MRI). Then by progressively removing it until nonlinear
interactions between MRI modes can take over in replen-
ishing the large-scale field, they close the dynamo loop.
Because the obtained solutions are time independent, their
approach is inherently restricted to low Reynolds numbers.
Here, we choose the same geometry and boundary

conditions as described in [12]. The domain aspect ratios
are Lx=Lz ¼ π=0.375 and Ly=Lz ¼ π (where Lx, Ly, and
Lz ¼ 2d are the domain size in the streamwise, spanwise,
and shearwise directions, respectively). The perfectly
conducting plates are located at z ¼ −d and z ¼ d. They
countermove shearwise at velocity þU and −U, respec-
tively, in the frame of reference rotating about the spanwise
direction at constant angular speed Ω ¼ 2U=3d. The flow
regime is described by the fixed magnetic Prandtl number
Pm ¼ ν=η ¼ 75 and a somewhat higher Reynolds number
than in [12], Re ¼ Ud=ν ¼ 25.
The forward and adjoint equations (with additional terms

2Ω × u and −2Ω × ũ in the left-hand side of (1) and (7),
respectively to account for Coriolis acceleration) are solved
with the pseudospectral code DEDALUS [32], using a
Chebyshev spectral decomposition in the shearwise direc-
tion, Fourier decomposition in x and y, and a second-order
modified Crank-Nicolson Adams-Bashforth time-stepping
scheme [33]. Our implementation of the forward equations
[34] has been verified against published results [12,35] and
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our adjoint has been carefully tested to ensure a consistent
gradient. For optimization runs, we use a numerical
resolution of Nx; Ny; Nz ¼ 54, 144, 72 grid points; all
results presented here are robust to changes in spatial and
temporal resolution. The target time for optimization
corresponds to T ¼ 234d=U (or equivalently T ¼ Tη=8,
where Tη ¼ d2=η is the Ohmic timescale). Importantly, no
assumptions are made on the symmetries or time depend-
ence of a dynamo solution, if there exists one at such Re.
Keeping all flow parameters fixed and applying the
procedure described above for some random energy budget
M0, we then decrease or increaseM0 depending on whether
a dynamo has been found or not. Convergence of the
optimization runs is assessed both in terms of the saturation
of the objective function and the significant decrease of a
gradient residual defined as in [27] (Eq. C2), for which a
reduction of at least 2 or 3 orders of magnitude is achieved.
Figure 1 shows the time series of the spatially integrated

kinetic and magnetic energies, obtained using DNS from a
typical optimal seed field b0 (identified here for M0 ¼
5 × 10−5). These show that a sustained, fluctuating dynamo
state can be reached, with saturation energy ∼105 times
larger than that of the seed field. The snapshots in the inset
show the typical development of the MRI-driven dynamo
instability, from seed to nonlinear saturation. Dominated by
its transverse components, the nearly streamwise invariant
seed structure (A), efficiently exploits the base flow’s shear
to yield rapid generation of a large-scale streamwise
magnetic field (B), through a process equivalent to the
so-called Ω-effect [10]. Upon exceeding a critical ampli-
tude, this large-scale component destabilizes and the non-
linear interactions of the resulting fully three-dimensional
states (C) close the dynamo loop. In contrast to [12], the
obtained dynamo solution is highly fluctuating but stable.
Note that, while we chose here a large Pm following [12],
the same approach can be used in the future to investigate

smaller-Pm regimes more relevant for accretion discs [36]
or stellar interiors [13].
To demonstrate the robustness of our approach, we now

consider a strongly fluctuating Taylor-Green flow in a triply
periodic cube of size L. This vortical flow is driven by a
constant forcing, introduced in (1) through an additional
forcing term as per [37]. Taylor-Green flow is known to be
prone to linear dynamo instability, and due to its symmetries
has been studied as a simple model for the Von Kármán
dynamo experiment. Using continuation from the linearly
unstable regime, [37] have shown that this flow harbors a
subcritical dynamo, in a region of fRe; Pmg space, where no
infinitesimal seed fields can be amplified. Our aim is to test:
if our approach directly identifies this subcritical branch,
despite velocity fluctuations, and if the minimal seed capable
of triggering the dynamo, bears any topological resemblance
with the saturated state. The pseudospectral code CUBBY [38]
is used for solving the direct and adjoint equations.
The control parameters are Pm and the Grashof number

Gr ¼ fl3=ν2 ¼ 1875, where l ¼ L=ð2πÞ is the unit length
and f the intensity of the Taylor-Green forcing. (A diagnostic
Reynolds number built on the root-mean square velocity is
computed as in [39], with Rerms ¼ 194.7.) For each value of
Pmconsidered here, we use the target timeT ¼ 10

ffiffiffiffiffiffiffi
l=f

p
, and

apply the procedure described above for some (large) energy
budget M0, accompanied by DNS for ∼100T. We typically
use a numerical resolution of 643 grid points.
The black squares in the bifurcation diagram of

Fig. 2 (left) denote the dynamo branch previously identified
by [37], while Pmc ∼ 0.54 denotes the linear dynamo
instability threshold, above which infinitesimal magnetic
fields are amplified up to their saturation energy M.
Restarting DNS from the saturated state above Pmc, while
gradually decreasing Pm (dashed arrows), allows the
dynamo branch to be tracked below its linear onset.
The full triangles denote new results: they indicate the

(b)

(a)

(c) (d)

FIG. 1. Time-series of the magnetic energy (thicker line) and kinetic energy (thinner line) densities, from DNS of the quasi-Keplerian
Couette flow at Re ¼ 25 and Pm ¼ 75 (resolution: Nx; Ny; Nz ¼ f96; 192; 96g). A blowup on the optimization window (right) shows
the same quantities, along with the energies of the transverse fields. Letters mark the times of the various snapshots. The structure of the
optimal seed (A) is highlighted by magnetic streamlines in transverse cut (left). The snapshots in inset show the amplitude of the
streamwise component bx, illustrating theΩ effect (B), destabilization of the large-scale field to MRI (C) and fully 3D saturated dynamo
(D). (Note that the MRI has already saturated by the optimization time T).
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smallest energy M0, of the optimal b0, found to trigger a
self-excited dynamo. Time-series of magnetic and kinetic
energies are shown in Fig. 2 (right) for Pm ¼ 0.44. Here
again, strong algebraic growth occurs first, followed by a
short plateau. Exponential energy growth finally kicks in,
as the optimal seed spontaneously evolves toward the
saturated state corresponding to the (previously known)
subcritical dynamo branch, driving larger, but slower,
fluctuations in the kinetic energy. Note that the magnetic
energy undergoes considerable amplification (∼104 times)
during this process. On the other hand, the empty triangles
in Fig. 2(a) correspond to failed dynamos, suggesting that
the frontier between the two (dynamo and nondynamo)
basins of attraction lies somewhere between the full and
empty triangle lines.
We reemphasize that no assumptions were ever made

about the structure or amplitude of the final state when
searching for b0; furthermore, the structure of the minimal
seed field [illustrated in Fig. 3(A)] bears no topological

resemblance with the saturated state [Fig. 3(D)]. This
implies that identifying the former by means of DNS
and continuation from the latter seems a hopeless endeavor.
Instead, the minimal seed structure is found to be both very
simple and localized in space, as well as being robust to
changes in the initialization of the optimization procedure.
Although the nonconvexity of the optimization problem
considered, makes it impossible to guarantee that the
optimal seed identified corresponds to a global extremum,
repeated optimizations have reassuringly identified such
magnetic loops. Remarkably, these seeds are located near
one of the flow’s stagnation points: indeed in such
regions, the intense stretching of magnetic field lines
ensures efficient growth of the magnetic energy [10],
while localization ensures optimal expenditure of the
energy budget M0 [20].
Finally, let us note that while the minimal energy M0

required to trigger the subcritical dynamo seems to
decrease slightly as T increases, or that it changes slightly

FIG. 2. Left: bifurcation diagram of the Taylor-Green dynamo, for Gr ¼ 1875. Magnetic energy of (shaded square) the saturated
dynamo states and (shaded triangle) the smallest magnetic disturbances that trigger a subcritical dynamo, as found by nonlinear
optimization with T ¼ 10

ffiffiffiffiffiffiffi
l=f

p
. ▿: failed dynamo seeds. Right: Typical time series of the kinetic energy (thinner line) and magnetic

energy (thicker line) densities, as the minimal seed (A) spontaneously evolves toward the saturated dynamo state (D). Letters mark the
times of the snapshots shown in Fig. 3(A).

FIG. 3. Left to right: snapshots of (A) the minimal seed for the Taylor-Green dynamo at fGr ¼ 1875; Pm ¼ 0.44g (magnetic lines in
blue, current lines in red); (B) magnetic field during the algebraic growth (rescaled and time-averaged over the growth period);
(C) growing magnetic field during the exponential growth (rescaled and time-averaged); (D) saturated state (recovers [37]). The volume
rendering shows the density of magnetic energy. The magnetic energy at saturation displays cigar-shaped structures aligned in two
parallel planes.
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when maximizing hjbðx; TÞj2i in place of its time-integrated
quantity, the seed structure remains consistent in both cases.
Because of the deterioration of the gradient estimates with
larger optimization times, or alternative objective functions
in highly fluctuating regimes, these issues were not further
investigated in the present study. Since we anticipate the
minimal dynamo seed to be independent of the target time or
the objective function if the former is sufficiently large,
future improvement of the numerical methods used to
estimate the gradient will be interesting for the purpose of
accurate nonlinear stability analysis.
In this Letter we have shown how nonlinear optimization,

previously used to identify minimal disturbances in shear
flows [18–20], is a numerically viable and flexible approach
to systematically probe subcritical dynamo action in electri-
cally conducting flows. The significance of this approach
lies in its numerical feasibility, given the existence of highly
parallel open source codes [32]. It also lies in its here
demonstrated ability to identify at the same time stable
dynamo branches and their critical perturbations, without
imposing symmetries, restricting time dependence, or mak-
ing prior assumptions on the physical processes involved.
Although we restricted our attention here to purely magnetic
seeds, the same approach can readily identify optimal
velocity, magnetic disturbances, or a combination of both,
with only minor modifications in the optimization pro-
cedure. We thus argue that this approach represents a
promising way of numerically obtaining elusive dynamo
models, such as the strong branch of the geodynamo or the
dynamo of Keplerian flows. Moreover, the possibility of
placing additional constraints on the structure of the opti-
mized disturbance can be exploited for experimental pur-
poses, to design a way of kickstarting self-excited dynamos
at sustainable energy cost in the laboratory.

We wish to thank Didier Auroux for his helpful dis-
cussions regarding adjoint optimization methods, and Jean-
Marc Lacroix for his help in optimizing the installation of
Dedalus. Y. P. thanks A. Miniussi for computing design
assistance on the CUBBY code. P. M.M. and F. M. acknowl-
edge support from the French program “T-ERC” from
Agence Nationale de la Recherche (ANR) (Grant
No. ANR-19-ERC7-0008). This work was also supported
by the French government, through the UCAJEDI
Investments in the Future project managed by the ANR
under reference number ANR-15-IDEX-0001. The authors
are grateful to the OPAL infrastructure from Université
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