Meet GW230529: the gravitational wave from the merger of a ~3.6 Compact Object and a Neutron Star Shanika Galaudage April 18 2024 | Artemis Seminar

🥑 🖌 @astronerdik

shanika.galaudage@oca.eu

Compact binary mergers

the binary system (e.g. mass and spin).

The gravitational-wave (GW) signal carries information about the properties of

Latest observing run of LIGO-Virgo-KAGRA • Currently in second half (O4b) with Virgo joining! • ~80 significant alerts so far in O4

Apr 18, 2024

Latest observing run of LIGO-Virgo-KAGRA • Currently in second half (O4b) with Virgo joining! • ~80 significant alerts so far in O4

_										
20	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

Apr 18, 2024

Is there a gap between masses of NS and BH? • Dearth of compact objects observed in the Milky Way between $\sim 3-5~M_{\odot}$ (from observations of X-ray binaries)

X-ray Binaries

Detached Galactic Binaries

Özel+2010 arXiv:1006.2834

FILING THE MASS -

GW190425 (primary)

Mass of compact object (M_{\odot})

Apr 18, 2024

FILING FEVASS

GW190425 (primary)

GW230529 (secondary)

Mass of compact object (M_{\odot})

Apr 18, 2024

Discovery of GW230529

- Observed on 29 May 2023 at 18h15 UTC
- Seen only by LIGO Livingston
- LIGO Livingston operationally stable for $\simeq 66$ hours with binary neutron star range of $\simeq 150 \text{ Mpc}$
- Poor sky localization $(\sim 25,000 \text{ deg}^2)$

Offline OR not operational Detectors Online BUT not used for analysis* Online AND used for analysis

10 of 24

Event significance • Observed with high significance in three search pipelines • Note, different pipelines have different significance statistics

GstLAL

MBTA

10

9

GW230529

11

12

Source properties

- Primary component in 2.5-4.5 M_{\odot} range ($< 5 M_{\odot}$) at 99% credibility
- Most likely a black hole paired with a neutron star of $\sim 1.4 M_{\odot}$
- However, some support for GW230529 source being merger of two $\gtrsim 2 M_{\odot}$ compact objects

Source properties

- More massive component (primary object) consistent with non-spinning or anti-aligned spin $(\chi_{1,z} < 0 \text{ at } 83\% \text{ credibility})$
- Correlation between mass ratio $(q = m_2/m_1)$ and spin components parallel to orbital angular momentum $(\chi_{1,z})$

Animation credit:

I. Markin, T. Dietrich, H. Pfeiffer, A. Buonanno

Bigger black hole?

Neutron star is ENGULFED

Smaller black hole?

Neutron star is **RIPPED APART**

Neutron Star

Nice

Black hole could be similar in size!

Merger rates of NSBH

- Updated NSBH merger rate $30-200 \text{ Gpc}^{-3} \text{ yr}^{-1}$ (90% credible)
- Two methods:
 - 1. population-based = all NSBH same class of events
 - 2. event-based = GW230529 is a different class of event.
- GW230529-like events have similar or higher merger rates than other NSBH events we have seen.

Population analyses

- Three different population models:
 - Binned Gaussian Process: a non-parametric, data driven model (most flexible model) to fit full compact binary population.
 - **Power law + Dip + Break:** a parametric model designed to fit full compact binary population and models dip-like feature in the mass distribution
 - **NSBH-pop:** a parametric model designed to fit NSBH population and models mass and spin distributions.

Mass distribution of NSBH population Assuming the source is a NSBH, minimum black hole mass is smaller than previously inferred for NSBH systems.

Mass distribution of CBC population • GW230529 is consistent with the full compact binary population observed with gravitational waves

Shanika Galaudage | Meet GW230529: the GW from the merger of a ~3.6 solar mass compact object and a NS | Artemis Seminar

20 of 24

Merger rate of lower mass gap objects

• Increases in inferred rate of mergers in lower mass gap

 Binned Gaussian Process: $1-54 \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1} \to 4-1 \,12 \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1}$ • Power law + Dip + Break: $3-42 \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1} \rightarrow 8-52 \,\mathrm{Gpc}^{-3} \,\mathrm{yr}^{-1}$

• Rate of mergers in the lower mass gap inconsistent with zero

Is the source an NSBH?

- Most likely, yes!
- We use population-informed priors to reweight distributions, varying conclusions from different models.
- Combining population models and equation-of-state constraints we can get up to ~10% chance of BNS.

How did GW230529 form?

Isolated binary evolution

From current understanding, unlikely that the BH formed via direct collapse, but:

- stochasticity in remnant masses (Mandel & Müller 2020 arXiv:2006.08360, Antoniadis+2022 arXiv:2110.01393)
- supernova fallback (Sukhbold+2016 arXiv:1510.04643, Ertl+2020 arXiv:1910.01641)
- delayed explosion timescales (Fryer+2012 arXiv:1110.1726, Zevin+2020 arXiv:2006.14573)

Dynamical assembly

- BH possibly formed in dense stellar environment or triple system:
 - product of a merger b/w two NS (Fragione+2020 arXiv:2002.11278, Gupta+2020 arXiv:1909.05804, Tagawa+2021 arXiv:2012.00011)
 - but rates expected to be too low (Ye+2020 arXiv:1910.10740)

Get to know **GW230529_181500**

most likely a merger between a Neutron Star & Black Hole (NSBH)

oiscovered on 29 May 2023 at 18h15 UV

~1.4 M_o

Most symmetric NSBH event so far

more likely than prior GW NSBHs to have the neutron star ripped apart by the black hole

~ 650 million light years away

Detectors Offline OR not operational Online BUT not used for analysis* Online AND used for analysis

Primary object in lower mass gap further supports that this region is not empty

* Although the KAGRA detector was in observing mode, its sensitivity was insufficient to impact the analysis of GW230529

24

Summary

- We have seen all three 'flavours' of compact binaries with gravitational waves;
- component is well within this gap.
- #O4IsHere with 83 events as of this morning! Follow along on gracedb: https://gracedb.ligo.org/superevents/public/O4/

now we can probe deeper questions, e.g. is there a gap between NS and BH? • The gap is being filled with gravitational wave events too! GW230529's primary

shanika.galaudage@oca.eu

Shanika Galaudage | Meet GW230529: the GW from the merger of a ~3.6 solar mass compact object and a NS | Artemis Seminar

25 of 24

Waveform systematics

Apr 18, 2024

A. 27

Multimessenger prospects

• Increases upper limits on fraction of EM-bright NSBH mergers from $\leq 6\%$ to $\leq 18\%$

- At most 1.1 M_{\odot} Gpc⁻³ yr⁻¹ contributes to heavy element production, and rate of gamma-ray bursts with NSBH progenitors is at most 23 $Gpc^{-3}yr^{-1}$
- Note, model dependant.

Shanika Galaudage | Meet GW230529: the GW from the merger of a ~3.6 solar mass compact object and a NS | Artemis Seminar

A. 28

Waveform details

Waveform Model	Precession	Higher Multipoles	Tides	Disruption	Spin Prior
IMRPhenomNSBH	_	_	\checkmark	\checkmark	$\chi_1 < 0.50, \chi_2 < 0.05$
$IMRPhenomPv2_NRTidalv2$	\checkmark		\checkmark	_	$\chi_1 < 0.99, \chi_2 < 0.05$
IMRPhenomXPHM	\checkmark	\checkmark	—	—	$\chi_1 < 0.99, \chi_2 < 0.99$
SEOBNRv5PHM	\checkmark	\checkmark	—	—	$\chi_1 < 0.99, \chi_2 < 0.99$
$SEOBNRv4_ROM_NRTidalv2_NSBH$	—		\checkmark	\checkmark	$\chi_1 < 0.90, \chi_2 < 0.05$
IMRPhenomXPHM	\checkmark	\checkmark	—	—	$\chi_1 < 0.99, \chi_2 < 0.05$
IMRPhenomXP	\checkmark	_	—	—	$\chi_1 < 0.99, \chi_2 < 0.99$
IMRPhenomXHM	—	\checkmark	—	—	$\chi_1 < 0.99, \chi_2 < 0.99$
IMRPhenomXAS	_		_	_	$\chi_1 < 0.99, \chi_2 < 0.99$
IMRPhenomXAS	—		—	—	$\chi_1 < 0.50, \chi_2 < 0.05$
$IMRPhenomPv2_NRTidalv2$	\checkmark		\checkmark	_	$\chi_1 < 0.05, \chi_2 < 0.05$
IMRPhenomXPHM	\checkmark	\checkmark	_	_	$\chi_1 < 0.05, \chi_2 < 0.05$
SEOBNRv5PHM	\checkmark	\checkmark	_	_	$\chi_1 < 0.99, \chi_2 < 0.05$

Tidal deformability

Shanika Galaudage | Meet GW230529: the GW from the merger of a ~3.6 solar mass compact object and a NS | Artemis Seminar

A. 30

Component spins

Population inference

- source properties (e.g. mass, spin) from gravitational-wave signals.

• Parameter estimation programs (e.g. BILBY), employing Bayesian inference to extract

• Hierarchical Bayesian inference to study the shape of the population. Define model where parameters you sample are describing the shape (e.g. slope, min and max values)

Mass transfer

Maximum BH mass from stellar collapse

Star formation history

•

Shanika Galaudage | Meet GW230529: the GW from the merger of a ~3.6 solar mass compact object and a NS | Artemis Seminar

Heavy element production

Supernova mechanisms

Formation channels

۲

