Sélectionnez votre langue

L’Observatoire de la Côte d’Azur

est un EPSCP Grand Etablissement, « établissement composante » d'Université Côte d'Azur. L'Observatoire de la Côte d'Azur regroupe et pilote les activités de recherche en sciences de la Terre et de l'Univers d'Université Côte d'Azur. Ses missions sont la recherche, l'observation, la formation et la diffusion des connaissances dans ces domaines.

L'Observatoire de la Côte d'Azur est composé de trois unités mixtes de recherche ( Artemis, Géoazur, Lagrange) et d'une unité de service (Galilée) qui exercent leurs activités sur quatre sites répartis entre le site historique du Mont-Gros et le campus de Valrose à Nice, le campus du CNRS à Sophia Antipolis, et le site instrumenté du plateau de Calern sur les communes de Caussols et Cipières.

En collaboration avec des scientifiques suédois, des chercheurs du laboratoire LAGRANGE (OCA, CNRS/Université Côte d'Azur) ont prouvé que la dynamique complexe des AGB, cause d'asymétries en luminosité, affectent la position mesurée par Gaia. Il s’agit du premier résultat de Gaia sur la physique des AGB.

 figure1 10Fig 1. Exemple de carte d'intensité pour un instantané d'une simulation.Les étoiles de masse faible à intermédiaire évoluent vers la branche asymptotique des géantes (AGB), ce qui augmente la perte de masse au cours de cette évolution. Elles sont caractérisées par : (i) des variations de grande amplitude du rayon, de la luminosité et de la température de surface ; et (ii) par un fort taux de perte de masse entraîné par une interaction entre la pulsation, la formation de la poussière et la pression radiative sur cette dernière. Leur dynamique complexe affecte les mesures et amplifie les incertitudes sur les paramètres stellaires.

Très récemment (Gaia DR2 en avril 2018), le satellite Gaia a livré des mesures astrométriques (positions, parallaxes et mouvements propres) de haute précision pour plus d'un milliard de sources. Parmi tous ces objets, les étoiles AGB sont affectées par la complexité de leur dynamique atmosphérique qui peut affecter la position du photocentre et, à son tour, leurs parallaxes.

La surface visible des AGB est faite d'ondes de choc qui sont produites à leur intérieur et qui sont façonnées par le haut de la zone de convection lorsqu'elles voyagent vers l'extérieur. Quelques grandes cellules convectives (avec une longue durée de vie) recouvrent la surface. Elles sont accompagnées par des structures à plus petite échelle avec une durée plus courte. 

En présence d'asymétries de luminosité, la position du photocentre ne coïncide pas avec le barycentre de l'étoile et change au fur et à mesure que le motif convectif évolue avec le temps.

figure2 8Fig 2. Position du photocentre calculée pour une simulation dans le filtre de la bande de Gaia. Les différents instantanés sont reliés par des segments de ligne. Les lignes pointillées en rouge se croisent à la position du centre géométrique.

Afin de quantifier ces mouvements, il faut s’appuyer sur une approche théorique basée sur les simulations hydrodynamiques multidimensionnelles (et en particulier en trois dimensions, 3D) du mouvement du gaz dans les couches atmosphériques des étoiles, couplé avec la radiation. Dans ces modèles, la totalité de l'enveloppe de l'étoile est simulée, au cours du temps. 

Nous avons calculé le déplacement du photocentre dans les simulations et comparé avec l'incertitude de mesure sur la parallaxe d'un échantillon d'étoiles AGB dans le voisinage solaire (source Gaia DR2). Nous avons trouvé un bon accord avec les observations, ce qui suggère que la variabilité liée à la convection explique en grande partie l'erreur de parallaxe. En plus, nous avons montré que, dans les simulations, des déplacements plus amples du photocentre correspondent à des périodes de pulsation plus longues. Par conséquence, les variations de parallaxe sur les mesures de Gaia pourraient être exploitées pour extraire les paramètres fondamentaux de ces étoiles. Il s’agit du premier résultat de Gaia sur la physique des AGBs.

Les AGB apportent une contribution importante à l'enrichissement chimique des galaxies parce qu'elles perdent d'énormes quantités de leur masse. La convection vigoureuse qui les caractérise pourrait être à la base du mécanisme de la perte de masse et seules les simulations hydrodynamiques peuvent aider les astronomes à comprendre pleinement tous les processus physiques que le caractérise.

Source(s): 

A. Chiavassa, B. Freytag, M. Schultheis (2018) Heading Gaia to measure atmospheric dynamics in AGB starsAstronomy & Astrophysics Letter, doi:10.1051/0004-6361/201833844

"Source : Actualités du CNRS-INSU"

Contact(s):

L’unité de recherche Artemis réunit des spécialistes des lasers et du traitement du signal, des mathématiciens, des astrophysiciens des objets compacts pour créer des antennes d’un type nouveau, détectant des ondes gravitationnelles : Virgo, LISA, Einstein Telescope.

La recherche sur les lasers de puissance, les mesures de distance extrèmes et la modélisation de sources cosmiques et de leurs signaux, les études multimessagers utilisant les ondes gravitationnelles sont au coeur de l’activité d’Artemis.

Le laboratoire Géoazur est une unité de recherche pluridisciplinaire composée de géophysiciens, de géologues, et d’astronomes se fédérant autour de grandes problématiques scientifiques : les aléas telluriques (sismiques, gravitaires et tsunamigéniques) et les risques associés, la dynamique de la lithosphère et l’imagerie de la Terre, la géodésie-métrologie de la Terre et de l’Univers proche.

Le laboratoire J.-L. LAGRANGE est un laboratoire pluridisciplinaire qui regroupe des équipes d’astrophysique (planétologie, physique stellaire et solaire, galaxies et cosmologie), de mécanique des fluides, de traitement du signal et images et d’instrumentation pour l’observation astronomique à haute résolution spatiale et haute dynamique.
Des compétences transverses en calcul à haute performance sont au coeur des capacités des équipes pour développer de nouvelles théories et modèles et de les confronter à des observations acquises sur les grands télescopes au sol et dans l’espace.

Focus sur....la grande coupole !
Focus sur....la grande coupole !
Un peu d'histoire .... 💭
Édifié entre 1881 et 1887 sur une ligne de crête orientée nord-sud culminant à 375 m d’altitude, l’observatoire historique occupe un domaine de 35 hectares qui surplombe la ville de Nice et s’inscrit dans une chaîne de monts reliant la côte méditerranéenne au parc du Mercantour. Premier observatoire français implanté à la suite d’une campagne de Lire plus
Focus sur... le grand méridien !
Focus sur... le grand méridien !
Un peu d'histoire .... 💭
Édifié entre 1881 et 1887 sur une ligne de crête orientée nord-sud culminant à 375 m d’altitude, l’observatoire historique occupe un domaine de 35 hectares qui surplombe la ville de Nice et s’inscrit dans une chaîne de monts reliant la côte méditerranéenne au parc du Mercantour. Premier observatoire français implanté à la suite d’une campagne de Lire plus
Focus sur... la coupole Charlois !
Focus sur... la coupole Charlois !
Un peu d'histoire .... 💭
Édifié entre 1881 et 1887 sur une ligne de crête orientée nord-sud culminant à 375 m d’altitude, l’observatoire historique occupe un domaine de 35 hectares qui surplombe la ville de Nice et s’inscrit dans une chaîne de monts reliant la côte méditerranéenne au parc du Mercantour. Premier observatoire français implanté à la suite d’une campagne de Lire plus