Sélectionnez votre langue

HAL : Dernières publications

HAL : Dernières publications
  • [hal-02290788] Standardizing kilonovae and their use as standard candles to measure the Hubble constant
    The detection of GW170817 is revolutionizing many areas of astrophysics with the joint observation of gravitational waves and electromagnetic emissions. These multimessenger events provide a new approach to determine the Hubble constant, thus, they are a promising candidate for mitigating the tension between measurements of type-Ia supernovae via the local distance ladder and the cosmic microwave background. In addition to the “standard siren” provided by the gravitational-wave measurement, the kilonova itself has characteristics that allow one to improve existing measurements or to perform yet another, independent measurement of the Hubble constant without gravitational-wave information. Here, we employ standardization techniques borrowed from the type-Ia community and apply them to kilonovae, not using any information from the gravitational-wave signal. We use two versions of this technique, one derived from direct observables measured from the light curve, and the other based on inferred ejecta parameters, e.g., mass, velocity, and composition, for two different models. These lead to Hubble constant measurements of H0=109−35+49 km s−1 Mpc−1 for the measured analysis, and H0=85−17+22 km s−1 Mpc−1 and H0=79−15+23 km s−1 Mpc−1 for the inferred analyses. This measurement has error bars within ∼2 to the gravitational-wave measurements (H0=74−8+16 km s−1 Mpc−1), showing its promise as an independent constraint on H0.
  • [hal-02417088] A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals
    The LIGO Scientific Collaboration and the Virgo Collaboration have cataloged eleven confidently detected gravitational-wave events during the first two observing runs of the advanced detector era. All eleven events were consistent with being from well-modeled mergers between compact stellar-mass objects: black holes or neutron stars. The data around the time of each of these events have been made publicly available through the gravitational-wave open science center. The entirety of the gravitational-wave strain data from the first and second observing runs have also now been made publicly available. There is considerable interest among the broad scientific community in understanding the data and methods used in the analyses. In this paper, we provide an overview of the detector noise properties and the data analysis techniques used to detect gravitational-wave signals and infer the source properties. We describe some of the checks that are performed to validate the analyses and results from the observations of gravitational-wave events. We also address concerns that have been raised about various properties of LIGO–Virgo detector noise and the correctness of our analyses as applied to the resulting data.
  • [hal-02564555] Identifying and Addressing Nonstationary LISA Noise
    We anticipate noise from the Laser Interferometer Space Antenna (LISA) will exhibit nonstationarities throughout the duration of its mission due to factors such as antenna repointing, cyclostationarities from spacecraft motion, and glitches as highlighted by LISA Pathfinder. In this paper, we use a surrogate data approach to test the stationarity of a time series which does not rely on the Gaussianity assumption. The main goal is to identify noise nonstationarities in the future LISA mission. This will be necessary for determining how often the LISA noise power spectral density (PSD) will need to be updated for parameter estimation routines. We conduct a thorough simulation study illustrating the power/size of various versions of the hypothesis tests and then apply these approaches to differential acceleration measurements from LISA Pathfinder. We also develop a data analysis strategy for addressing nonstationarities in the LISA PSD, where we update the noise PSD over time, while simultaneously conducting parameter estimation, with a focus on planned data gaps.